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Abstract: A model of a physical vacuum defined by a Gross–Pitaevskij equation and characterized by
dissipative features close to the Planck scale is proposed, which provides an emergent explanation of
scales, hierarchies and Higgs mass generation of the Standard Model. A fundamental nonlocal and
nonlinear texture of the vacuum is introduced in terms of planckeons, sub-Planckian objects defined by
a generalized Compton wavelength, which lead to find Planckian signatures of the Standard Model.
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1. Introduction

The Standard Model of particle physics is the fundamental theoretical scheme which
provides a detailed description of the elementary particles of matter and their interactions
up to at least a few TeV as revealed in experiments at the LHC and in low-energy precision
experiments. In this theory, the spontaneous symmetry breaking mechanism generates the
masses of the weak gauge bosons, gives rise to the appearance of the Higgs boson, as well
as of the fermion masses and mixings. Despite its extraordinary predictive power and the
recent discovery of the Higgs boson, which seems to complete the particle spectrum of
the theory, the Standard Model is affected by several flaws which indicate the necessity to
develop an extension of this theory. In particular, there is the problem of Higgs boson’s
couplings, which still requires a satisfactory solution, and there is a quadratically divergent
counterterm in the mass of the Higgs boson which would push its value towards the Planck
scale. On the other hand, some extra new physics is still needed in order to explain other
questions, such as the origin of tiny neutrino masses, the matter–antimatter asymmetry in
the Universe, the strong CP puzzle, the origin of dark matter, and the vacuum energies
associated with the cosmological constant and initial inflation. The origin of this new
physics and how it interacts with the Standard Model is yet unknown [1].

In order to develop a beyond Standard Model physics, namely, to treat processes
beyond the TeV scale, the Higgs sector seems to play a key role in the sense that it provides
a portal between the visible and dark sector [1–4], is the ultimate source of the interactions
with right-handed neutrinos in the leptogenesis framework which can reproduce the
baryon asymmetry [5], and leads to a possible explanation of the origin of the electroweak
symmetry breaking if the Higgs field is associated to additional scalar particles [6–9].
However, in the light of the interactions of the Higgs boson with any heavier state of new
physics [10–14], quantum corrections to the Higgs mass are involved that are quadratic
in the mass of the heavy particle. This implies that the Standard Model turns out to be
affected by a hierarchy problem, namely, in light of the absence of new physics signatures
at the TeV scale and beyond, the observed Higgs mass appears rather “unnatural” and
there is the problem to explain the smallness of the electroweak scale [15]. On the other
hand, the hierarchy problem of the Standard Model can also be considered as a fine-tuning
problem, regarding the careful choice of the parameters of new high-scale physics in order
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to reproduce the observed low-energy parameters. As a consequence, there is the problem
to explain the extreme smallness of the cosmological constant of vacuum energy density,
which drives the accelerating expansion of the universe with respect to the Higgs mass,
QCD scale, and Planck scale.

As regards the treatment of the hierarchy problem of the Standard Model at the TeV
scale, if several proposals exist in the literature, such as supersymmetric extensions [16–19],
strong dynamics or technicolor [20,21], composite Higgs [22–24], extra dimensions [25–27],
and the recent decoupling methods [28], it must be emphasized that all these models imply
a fine-tuning process in order to stay compatible with experiments [15,29–32].

An important aspect of the fine-tuning problem connected to the hierarchy problem
of the Standard Model lies in the explanation of the origin of the electroweak scale, so
that one needs a scale-generation mechanism, namely a scalegenesis. In this regard, if the
Coleman–Weinberg mechanism and the dimensional transmutation associated with QCD
historically seemed two possible convenient ways [33], both these mechanisms, however,
turn out to be not compatible with the observed masses of Standard Model particles in
order to generate the electroweak scale. An electroweak scalegenesis could be obtained by
developing a scale invariant extension of the Standard Model. In this regard, by considering
a scalar field coupled to the Higgs field, if the TeV scale is generated by the dynamics in the
new (hidden) sector, the electroweak symmetry breaking is determined by the Higgs–portal
coupling. This programme has led to the development of many possible scale invariant
extensions as a hidden sector, associated with other issues such as dark matter, neutrino
masses, and baryogenesis.

Among the different proposals of treating the hierarchy problem of the Standard
Model, an important place is today occupied by the emergent models. In this kind of
approach, the key idea is that if one considers a critical statistical system close to the
Planck scale, the only long-range correlations—light mass particles—that might exist in
the infrared self-organise into multiplets just as they do in the Standard Model; in other
words, a many-body system exhibits collective behaviour in the infrared that is qualitatively
different from that of its more primordial constituents as probed in the ultraviolet [3,4].
Recently, an interesting emergent approach of the scale hierarchies of the Standard Model
considers the interplay of Poincaré invariance, mass generation, and renormalization group
invariance, leading to the fact that the measured cosmological constant scale is associated
with higher dimensional terms in the action, suppressed by power of the large emergence
scale, thus implying that the cosmological constant scale and neutrino masses should be of
similar size [34].

In this paper, in the spirit of an emergent explanation of the hierarchies of the Standard
Model, we provide an alternative explanation of the hierarchy scales of the Standard Model
by invoking a model of a physical vacuum which is characterized by dissipative features
close to the Planck scale, expressed by an opportune dispersion relation. The structure
of this paper is the following. In Section 2 we introduce the mathematical formalism of
the vacuum with dissipative features. In Section 3 we explore the perspectives introduced
by our model as regards the explanation of the scale hierarchies and the Higgs mass
mechanism. In Section 4 we analyse in what sense, in our approach of dissipative vacuum,
it is possible to obtain the Standard Model particles as emergent facts and to find Planck
signatures in the Standard Model. In Section 5 we explore in what sense one can provide in
this model an emergent treatment of the gauge symmetry associated with a tiny nonzero
value of the cosmological constant. Finally, in Section 6 we summarize the main results of
the paper.

2. A Vacuum with Dissipative Features

Several current researchers consider the possibility that spacetime is an emergent fact
from a physical vacuum characterized by dissipative features. For example, in Ref. [35],
Liberati and Maccione analysed the dynamics of the matter propagating on an emergent
spacetime as collective excitation in hydrodynamics, showing that the energy exchange
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between collective excitations of the deep level and the spacetime fundamental degrees of
freedom may be treated in terms of dissipative hydrodynamics. The Liberati and Maccione
framework exhibits an epistemological affinity with the adoption of a nonlinear Schrödinger
equation. In analogous way, Zloshcastiev explored the possibility that collective degrees of
freedom which emerge in the condensate-like Bose systems, due to quantum interactions
between original constituent particles, are described through a nonlinear logarithmic
Schrödinger-like equation. There, the nonlinear coupling is related to the temperature,
showing in this way that in the case of a varying nonlinear coupling an additional force
occurs, which is parallel to a gradient of the coupling [36]. On the other hand, Volovik and
Jannes [37] suggested that spacetime emerges as a collective excitation from an underlying
microscopic Bose–Einstein condensate in the long-wavelength limit while, for shorter
wavelengths, the spectrum of excitations of the vacuum becomes nonlinear, the emergent
Lorentz invariance is violated and one has a phononic dispersion relation in the Bose–
Einstein condensate, which can be expressed in the Bogoliubov form:

ω2 = c2k2 − 1
4
ℏ2

m2 k4 (1)

where c is the speed of light, k is the wave number, ℏ is Planck’s reduced constant, and m is
the mass of the particles of the condensate.

In line with the research of Liberati and Maccione, Zloshcastiev and Volovik and
Jannes, our purpose is to find the real particles of ordinary quantum mechanics as emergent
structures from the virtual particle–antiparticle pairs of a Bose–Einstein condensate, where
the energy fluctuations are characterized by dissipative features, and the collective degrees
of freedom are described through a nonlinear Schrödinger-like equation.

On the basis of the results obtained by one of the authors (DF) in the context of
the dynamic quantum vacuum model [38], we consider a physical vacuum given by a
Bose–Einstein condensate of virtual particles which can be associated with elementary
reduction-state processes and corresponding to opportune changes of the quantum vacuum
energy density. In order to characterize the fluctuations of the quantum vacuum energy
density, we invoke an idea originally suggested by Staniukovich, Melnikov, and Bronnikov,
of a gravitational vacuum intended as a set of virtual, radiating planckeons with Planck
size and mass

Mdim =
ℏ

clp
(2)

where lp =
√

ℏG
c3 is the Planck length, G being Newton’s universal gravitation constant,

which leads to obtain that the minimum universe scale factor corresponds to the chronon
scale [39]. Moreover, we underline that the idea of planckeons has been applied in the
context of the evaporation of primordial black holes, in order to explore the possibility
that cosmological dark matter can be generated by black hole relics. In this regard, it has
been proposed that black holes cease to evaporate and, in the last stage of evaporation,
become stable relics, called planckeons, which would have mass of the order of Planck
mass and a lifetime longer than the age of the universe [40]. More recently, it has been
shown how, with a reheating temperature close to the Planck scale, high-energy collisions
can produce the correct relic abundance of planckeons to account for all of the observed
dark matter, and analytic expressions for the density of planckeons and its evolution have
been obtained [41–43].

In light of these results, we assume that the most elementary constituents, at a fun-
damental level, which generate the variable energy density of the physical vacuum, are
planckeons of dimensions and mass lying in the Planckian range. In this picture, therefore,
both microscopic systems and macroscopic objects can be seen as emergent physical struc-
tures which derive from the planckeons; more precisely, they can be seen as the collective
behaviour of a more fundamental variable quantum vacuum energy density, which in turn
is associated with opportune aggregates of planckeons.
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In order to throw new light towards a unifying treatment of microscopic systems and
macroscopic regime, some authors have recently demonstrated the existence of a unified
expression for the radii of black holes and fundamental particles, and, for this reason, also
referred to as the Compton–Schwarzschild correspondence [34–38]. Trying inspiration from
this kind of research, in Ref. [44], one of the authors [DF] has shown that, at a fundamental
level, the scale where Compton wavelength and Schwarzschild radius are unified can be
expressed by the following expression

R′
C = R′

S =

√√√√( βℏc
∆ρqvEV

)2

+

(
βl2

p
∆ρqvEV

ℏc

)2

(3)

Equation (3) can be called the “generalized Compton wavelength”. In this equation,
∆ρqvE is the variable energy density of the vacuum in a given volume V, and the parameter
β is a fluctuating quantity which can be associated with the Planck scale, in analogy with
what happens in quantum foam scenarios such as loop quantum gravity, as well as cellular
automaton interpretation of quantum mechanics [45–52]. This parameter has a fundamental
importance: not only is it present in all theories on the Planck scale, but it is linked to a
general phenomenon of complex systems, i.e., the loss of the degrees of freedom that occurs
in the transition from one scale to another, making one class of phenomena “invisible”
and others emerging. This parameter introduces essential ingredients of nonlinearity
and nonlocality, which remain as subtle “signatures” in the various levels of the physical
world [53]. We underline that the quantity (3) has been obtained by starting from the
following generalized uncertainty relation, which are valid at the Planck scale:

∆x∆p ≥ ℏ
2

(
1 + βl2

p
∆ρ2

qvEV2

ℏ2c2

)
(4)

which expresses how the variable energy density of the vacuum can be associated to a
deformation of the geometry of the background.

In summary, in our approach, we assume that the fundamental energy fluctuations
of the physical vacuum are the physical manifestations—or, better, forms of collective
organization—of these planckeons of mass and dimensions lying in the Planck range,
intended simply as particles that live at the smallest scale on which one can construct a
metric, i.e., at the scale (3) at which Compton wavelength and Schwarzschild radius are
comparable. In other words, the planckeons are just the ultimate particles which can be
defined at this scale, namely, express the activity of the vacuum associated with the Planck
scale. In this sense, the planckeons may also be defined as elementary objects, of the Planck
scale, which simultaneously have the properties of elementary particles and of black holes.
In this picture, moreover, we can say that, below the generalized Compton wavelength, the
planckeons are simply nonlocal entities, are everywhere, while above that scale, opportune
aggregates of the planckeons lead to the localizations of actual, real particles with the
corresponding (Fermi or Bose–Einstein) statistics.

In our model, our aim is to find the ordinary particles as the result of processes of
emergence from opportune condensates of planckeons. This implies that one must assume
that the energy of the planckeons is variable in the sense the planckeons can have energy
that is not always the one corresponding to its maximum value. In order to mathematically
define the mass of the planckeons, taking into account the essential role of gravity in the
formation of an elementary particle (see for example [54]), we introduce inside Equation (2)
the parameter

γ =

(
m
√

4πε0G
e

)2

(5)

which corresponds to the ratio of gravitational and electromagnetic interactions for an
elementary particle of mass m and charge e, where ε0 is the dielectric permittivity of the
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vacuum and G is the gravitational constant. In this way, we define the dimensional mass of
the planckeons on the basis of relation

MP =
γℏ
clp

(6)

where γ is given by (5) and the mass m appearing in (5) must be interpreted as the mass of
the virtual sub-particles of the medium. Because of the variability of the parameter γ, the
planckeons can have different masses. Each planckeon can be associated to a corresponding
(variable) elementary energy density of the vacuum given by relation

∆ρqvE =
MPc2

V
(7)

which implies that the total energy density in a certain region can be seen as a form of
collective organization of the aggregates planckeons of that region. In the bath constituted
by these elementary quantum vacuum energy density fluctuations, the virtual particles
of the medium continuously appear and disappear and give rise to a total zero spin,
thus constituting an organized Bose ensemble. As a consequence of these processes of
the vacuum where virtual particles generating a Bose–Einstein condensate appear and
annihilate, space-time can be seen as a collective excitation emerging from the elementary
modes of the vacuum defined by frequency

ωi =
2∆ρqvEV

ℏn
(8)

associated with the Bose–Einstein condensate of the virtual sub-particles, where these
modes are characterized by dissipative features close to the Planck scale. In Equation (8),
∆ρqvE are the energy density fluctuations of the vacuum in the volume V, n is the number
of the virtual particles in the volume V. By substituting Equation (7) into Equation (8), one
obtains the link between the frequency of the elementary modes of the vacuum and the
variable mass of its virtual planckeons

ωi =
MPc2

ℏn
(9)

The dissipative features characterizing the Bose–Einstein condensate of the planckeons
can be described by invoking a dispersion relation, which can be seen as a generalization
of the Jannes–Volovik Equation (1). In our model, the phononic dispersion relation (1) of
Volovik–Jannes becomes a dispersion relation which describes the dissipative features near
the Planck scale, and reads

ω2 = c2k2 − 1
4

ℏ2

MP
2 k4 (10)

The physical meaning of this relation, at the most fundamental level, can be analysed
by considering the unified scale (3), namely the generalized Compton wavelength, which
describes the microscopic geometry of the vacuum associated with the planckeons, in other
words, which expresses the activity of the vacuum associated with the Planck scale. By
substituting (6) and (7) into Equation (3), the generalized Compton wavelength can be
expressed as

R′
C = R′

S =

√(
βlp

γ

)2

+
(

βγlp
)2 (11)
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and, in light of the existence of this underlying scale (11), we can assume that the wave
number appearing in the dispersion relation (10) may be assimilated to the generalized
Compton wavelength (11), namely:

k =
1√(

βlp
γ

)2
+
(

βγlp
)2

(12)

Therefore, by substituting (12) into Equation (10), one obtains the final expression of
the dispersion relation in our model of dissipative vacuum:

ω2 = c2 1(
βlp
γ

)2
+
(

βγlp
)2

− 1
4

ℏ2

MP
2

1[(
βlp
γ

)2
+
(

βγlp
)2
]2 (13)

namely, taking account of (7),

ω2 = c2 1(
βlp
γ

)2
+
(

βγlp
)2

− 1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+
(

βγlp
)2
]2 (14)

In the light of Equation (14), one can say that, in this approach, the fluctuations of
the quantum vacuum energy density determined by the planckeons are the fundamental
entities which generate the dissipative features of the vacuum, and here the second term
1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+(βγlp)

2
]2 is responsible of the magnitude of the Lorentz violation. Moreover,

by virtue of the role of the generalized Compton wavelength (11) in generating a scale
where elementary particles and black holes are unified, the planckeons can be also defined
as microblack holes associated with the dissipative vacuum.

Now, in our approach, the behaviour and evolution of the physical vacuum are ruled
by the following nonlinear Schrödinger equation

iℏ∂ψ

∂t
=

−ℏ2

2m
∇2ψ + νm|ψ|2ψ + Uψ (15)

where m is the mass of each virtual particle of the physical vacuum, U is the potential
energy relating to the single virtual particle, and ν is a viscosity coefficient having the

dimensions length2

time which can be expressed as ν = a2kω
2π where a is the scattering length

between the virtual particles, ω is the frequency of the elementary modes given by the
dispersion relation (14), and k is an adimensional parameter corresponding to the size of
the condensate of planckeons in the region of consideration (namely, represents a sort of
effective parameter of density of the planckeons). The parameter k plays a fundamental
role in the model, as we will see in Section 3. Equation (15) can be considered as a new
peculiar version of the Gross–Pitaevskij equation with the presence of a new fundamental
term, depending of |ψ|2 and the viscosity coefficient ν linked with the scattering length
of the virtual sub-particles of the vacuum, the generalized Compton wavelength, and the
parameter measuring the effective density of the planckeons. We must emphasize here
that the consideration of the nonlinear Schrödinger Equation (15) as a basis to describe
the behaviour of the dissipative vacuum finds its motivation in (and is in affinity with)
some important recent research which explores the mechanism of spontaneous symmetry
breaking associated with Goldstone and Higgs fields (as well as the elementary excitations
for a weakly-interacting Bose gas at a finite temperature) in the context of Gross–Pitaevskij
and Klein–Gordon nonlinear equations [55].

In our model, in light of the dispersion relation (14), Equation (15) may be conveniently
expressed as:
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iℏ∂ψ

∂t
=

−ℏ2

2m
∇2ψ +

a2k
2π


√√√√√√c2 1(

βlp
γ

)2
+
(

βγlp
)2

− 1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+
(

βγlp
)2
]2

m|ψ|2ψ + Uψ (16)

The nonlinearity of Equation (16) emerges as a result of the interactions of the funda-
mental planckeons of the vacuum, which give rise to states of collective organization. In
order to explore the consequences of the nonlinear Schrödinger Equation (16), we recast
this equation by the Madelung transformation, writing the wave function as

ψ = ReiS/ℏ (17)

By substituting (17) into Equation (16) and separating real and imaginary parts, one
obtains a continuity equation

∂ρ

∂t
+

ℏ
M

∇(ρ∇S) = 0 (18)

and the Hamilton–Jacobi equation

∂

∂t
S +

1
2M

(∇S)2 + U + Q − a2k
2π


√√√√√√c2 1(

βlp
γ

)2
+
(

βγlp
)2

− 1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+
(

βγlp
)2
]2

 ∇2S = 0 (19)

where

Q =
p1 + p2

ρ
=

ℏ2

8m

(
∇ρ

ρ

)2
− ℏ2

4m
∇2ρ

ρ
(20)

is the quantum potential. In Equation (20), ρ = n/V, where n is the number of the virtual
particles in the volume V and p1 + p2 is the pressure generated by the collisions of the
virtual planckeons of the medium, where

p1 = −D2

c2

[
∇2∆ρqvE − 1

c2
∂2

∂t2 ∆ρqvE

]
(21)

and

p2 =
D2

2∆ρqvEc2

[(
∇∆ρqvE

)2 − 1
c2

(
∂

∂t
∆ρqvE

)2
]

(22)

where

D =
ℏc2n

2∆ρqvEV
(23)

On the basis of relation (20), in the case of bound systems, the points where the
quantum potential tends to zero indicate the boundary of the region where the virtual
planckeons of the vacuum are delocalized [56].

Since, on the basis of Equation (20), the quantum potential cannot be ever null because
it represents the internal pressure divided by the density distribution of the particle–
antiparticle pairs (and in fact the internal pressure cannot ever be null), in the limit of
Q → ∞ , one obtains the configuration of the maximum degree of nonlocality. In virtue of
these features of the quantum potential (20), one can say that the texture of the planckeons is
characterized by an inner nonlocality, which implies that even what appears localized (real)
is woven into the nonlocality. In other words, one deals with a Bose–Einstein condensate of
virtual particles of the vacuum, namely the planckeons, which constitutes a fundamental
nonlocal texture.

Because of the fundamental nonlocality of the dissipative vacuum associated with
the quantum potential (20), the planckeons, intended as pre-local objects which obey the
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Gross–Pitaevskij Equation (16), can be seen as extreme bridges of nonlocality. Here, a
crucial point lies in the fact that the dispersion relation (14), determined by the generalized
Compton wavelength (11), and ultimately by the generalized uncertainty relations (4),
fixes the statistics of the planckeons. In this regard, if one considers the field ψ of the
vacuum as an infinite set of decoupled harmonic oscillators, by following Refs. [57,58], one
can formulate the following commutation relation between the creation and annihilation
operators, which, respectively, create and annihilate virtual particles from the vacuum:

âM â†
M′ − qâ†

M′ âM =
1

1 − ∼
α

[
1 − ∼

α
(
a+Ma+M′ + aMaM′ − 2aMa+M′

)]
δMM′ (24)

where
∼
α = 2βl2

p

c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

.

Relation (24) can be considered as a sort of generalization of the so-called infinite
statistics introduced by Ng in [59–63], represented by the q deformation of the commutation
relations of the oscillators, expressed by the following relation

âM â†
M′ − qâ†

M′ âM = δMM′ (25)

where the special cases q = ±1 correspond to bosons and fermions. The infinite statistics
characterizing the virtual particles of the background implies that each opportune set of
planckeons can give rise to a boson or a fermion depending of the value of the deformation
parameter q appearing in the commutation relations of the oscillators (25). On the basis
of Equation (24), one can provide an interpretation of the infinite statistics described
by the commutation relations (25), and therefore of the Fermi–Dirac and Bose–Einstein
statistics, in an emergent key as collective phenomena which are generated by a set of
virtual planckeons of the vacuum characterized by dissipative features. According to
Equation (24), the ordinary statistics of fermions and bosons follow directly as special
cases of more generalized commutation relations regarding the creation and annihilation
operators of the dissipative vacuum; in other words, can be seen as emergent facts from
opportune collective sets of planckeons.

3. Scales, Hierarchies, and Higgs Mass in the Dissipative Vacuum

The model, here developed, of the physical vacuum—characterized by dissipative
features originating from the planckeons—allows us to shed new light on the explanation
of the formation of the mass of elementary particles, introducing new perspectives in the
interpretation of the Higgs boson, and explaining in what sense not all the values of energy
coming from the vacuum can give origin to a minimal substitution. In this picture, a key
point is that the large hierarchy problem between electroweak scale and Planck scale is
faced from the perspective of new concepts at the Planck scale, namely, the dissipative
features of the vacuum associated with the planckeons. This scenario implies that the Higgs
mechanism can be associated to the Planck scale and, thus, on new procedures which have
to integrate conventional quantum field theory. In particular, our insight is that the Higgs
mass would be fixed by the dissipative features of the vacuum at the unified scale (11),
namely, the generalized Compton wavelength describing the ultimate geometry of the
planckeons, which expresses the activity of the vacuum associated with the Planck scale.
As a consequence, in this programme, we forbid any kind of new intermediate energy scale
between weak and Planck scale in order to avoid the large hierarchy between Higgs and
heavy intermediate particle’s mass.

3.1. Higgs Field and the Renormalization Equation

The Standard Model predicts that the masses of the W and Z gauge bosons and
charged fermions are emergent facts from the Higgs boson with a finite Higgs vacuum
expectation value (vev). In the theoretical plant of this theory, the renormalized Higgs mass
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squared m2
h ren is characterized by a divergent counterterm, in the sense that it is connected

to the bare Higgs mass m2
h bare by relation

m2
h bare = m2

h ren + δm2
h (26)

where δm2
h, by neglecting the contributions from lighter mass quarks, is

δm2
h =

K2

16π2
6
v2

(
m2

h + m2
Z + 2m2

W − 4m2
t

)
(27)

where K is an ultraviolet scale identifying the limit of the Standard Model, v is the Higgs
vev, mh is the Higgs mass, mZ is the mass of the Z boson, mW is the mass of the W boson,
mt is the mass of the top quark. A crucial result of this theory lies in the fact that the
quadratic divergence in the Higgs mass self energy would dissolve, and the corresponding
Higgs mass hierarchy problem would be resolved, when the coefficient of K2 vanishes.
This occurs if the Veltman condition [15,64] given by

m2
h + m2

Z + 2m2
W = 4m2

t (28)

is satisfied, leading to an equality of renormalized and bare masses with no hierarchy
problem. However, the pole masses of W, Z bosons and top quark involved in the Veltman
constraint imply a Higgs mass of 314 GeV, much above the measured value of 125 GeV [34].

In our approach of Gross–Pitaevskji dissipative vacuum, our starting point is to
consider a quantum vacuum energy linked with the fluctuations of the dissipative vacuum,
given by relation

ρqvE =
1
2

tpc2k
ℏnlp

∑
particles

gi

∫ Mmax
P

0

d3m

(2π)3

√√√√c2 1(
βlp
γ

)2
+
(

βγlp
)2

+ m2 (29)

where m is the mass of the particle, tp is Planck time, gi = (−1)2j(2j + 1) f is the degeneracy
factor for a particle i of spin j, and gi > 0 for bosons and gi < 0 for fermions, and Mmax

P
is the maximum value of the mass of the planckeons. The factor f is 1 for bosons, 2 for
each charged lepton, and 6 for each flavour of quark (2 charge factors for the quark and
antiquark, each with 3 colours). Here, by invoking a Lorentz covariant regularization and
using some results obtained in Ref. [34], one obtains

1
2

tpc2k
ℏnlp

∑
particles

gi

∫ Mmax
P

0

d3m

(2π)3

√√√√c2 1(
βlp
γ

)2
+
(

βγlp
)2

+ m2 = −ℏgi
m4

64π2

[
2
ε
+

3
2
− θ − ln

(
m2

4πµ2

)]
+ . . . (30)

where D = 4− ε is the number of dimensions, µ is the renormalization scale, and θ is Euler’s
constant. On the basis of Equation (30), the renormalization, which leads to a vanished
zero-point energy for photons and for which Standard Model particles are induced by the
Higgs field, can be ultimately associated with opportune networks of the elementary virtual
planckeons of the vacuum, which express the activity of the vacuum at Planck scale linked
with the generalized uncertainty relations. In other words, in light of the renormalization
Equation (30) of the Gross–Pitaevskij vacuum, the ultimate source of the action of the Higgs
field is represented by the virtual planckeons providing the dissipative features of the
vacuum. Equation (30) and the Pauli constraint that cancels the zero-point energy lead
to specific fundamental constraints on the collective excitations of the planckeons of the
vacuum, expressed by relations

∑
i

gi

(
γiℏ
clp

)4
= 0 (31)
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∑
i

gi

(
γiℏ
clp

)4
ln
[

γiℏ
clp

]2
= 0 (32)

which directly justify the requirement of the mass of Higgs boson of the value 125 GeV.
Moreover, if in the current extensions of the Standard Model the appearance of Standard
Model fermions when the zero-point energy is negative is assured by invoking some extra
bosons such as 2 Higgs Doublet Models [65], now in our model of Gross–Pitaevskij vacuum
we can provide a deeper characterization of the origin of these extra bosons, as emergent
entities from more fundamental networks the virtual planckeons of the vacuum.

3.2. Higgs Boson, Spontaneous Symmetry Breaking, Vector Bosons, and Photon as Emergent Facts

If, in light of the experimental results obtained at LHC, the Standard Model works
as a consistent theory up to the Planck scale, the electroweak vacuum sits very close to
the border of stable and metastable, suggesting possible new critical phenomena in the
ultraviolet [66]. In current models, which face the hierarchy problem of the Standard
Model, the question of vacuum stability depends on whether the Higgs self-coupling
crosses zero or not deep in the ultraviolet and involves a delicate balance of Standard
Model parameters. Instead, in our model of physical vacuum with dissipative features
in the form of energy fluctuations associated to the collective organization of the virtual
planckeons and described by the Gross–Pitaevskij Equation (21), the hierarchy problem can
receive a more satisfactory re-reading in the sense that the actions of the Higgs field and
other particle masses have their fundamental origin in the physics close to the Planck scale
in a causal way inside an emergent picture.

Let us consider the Gross–Pitaevskij Equation (16) of the dissipative vacuum. Here, if
in some representation the function

H =
−ℏ2

2m
∇2 +

a2

2π
k


√√√√√√c2 1(

βlp
γ

)2
+
(

βγlp
)2

− 1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+
(

βγlp
)2
]2

m|ψ|2 + U (33)

appearing in the Gross–Pitaevskij Equation (16), can be written as a second-order dif-
ferential function with respect to some variable X, namely H ∼ f1

∂2

∂X2 + f2
∂

∂X , then the
Gross–Pitaevskij Equation (16) becomes the equation of motion of a virtual particle moving
in the following rotational-invariant effective potential, which turns out to be characterized
by a Mexican-hat shape:

V(ψ) =


a2

2π
k


√√√√√√c2 1(

βlp
γ

)2
+
(

βγlp
)2

− 1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+
(

βγlp
)2
]2

m|ψ|2 + U

+ V0 (34)

where V0 = V

|ψ| = 1((
βlp
γ

)2
+(βγlp)

2
)3/2

, with the role of time coordinate being as-

signed to X or iX. The Mexican-hat shape of the potential (34) lies in the fact that its
local maximum is located at |ψ| = 0, whereas the degenerate minima lie on the circle
|ψ| = 1((

βlp
γ

)2
+(βγlp)

2
)3/2 where the energy of the “particle” reaches its minimum. The

effective potential (34), by virtue of its features, can be considered a plausible candidate to
express the Higgs potential. Therefore, the effective potential (34) represents our specific
hypotheses related to the Higgs field.

By starting from the effective potential (34), the Higgs mass can be derived as an
emergent fact from the fundamental properties of the dissipative vacuum, as follows. In
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our approach, by applying the Unitary gauge in order to remove the nonphysical degrees
of freedom, the Higgs doublet can be expressed as

ϕ =
1√
2

[
0

(
1

k
(
(βlp

γ )
2
+(βγlp)

2
)3/2) + h

]
(35)

where h indicates the excitations of the dissipative vacuum from the vacuum expectation
value ε which is related to the rest mass of the W boson as

ε =

√
2c2

g
MW (36)

where g represents the electroweak coupling constant. Then, taking account of the results
obtained in Ref. [67], by applying the Unitary gauge constraint, the effective potential (34)
may be expressed as

V(ψ) =
1
4

λ
1((

βlp
γ

)2
+
(

βγlp
)2
)6 + λ

1((
βlp
γ

)2
+
(

βγlp
)2
)3 h2 + λ

1((
βlp
γ

)2
+
(

βγlp
)2
)3/2 h3 +

1
4

λh4 (37)

where λ is a positive constant which satisfies relation√√√√√√√√
a2

2π k

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2

λ
=

1((
βlp
γ

)2
+
(

βγlp
)2
)3/2 (38)

namely

λ =

 a2

2π
k


√√√√√√c2 1(

βlp
γ

)2
+
(

βγlp
)2

− 1
4

c2l2
p

γ2
1[(

βlp
γ

)2
+
(

βγlp
)2
]2

m|ψ|2


1/2((

βlp

γ

)2

+
(

βγlp
)2
)3/2

(39)

Now, the second term in the potential (37) (quadratic in h) allows us to obtain the
following expression for the Higgs mass

m2
H =

2

 a2k
2π

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2


1/2

((
βlp
γ

)2
+
(

βγlp
)2
)3/2 (40)

Equation (40) establishes the condition which must be satisfied by the planckeons in
order to generate the Higgs mass. On the basis of Equation (40), the Higgs mass turns
out to be directly determined by fundamental properties of the dissipative vacuum and,
in particular, can be seen as an emergent fact from the generalized Compton wavelength,
which is the crucial entity generating the dissipative activity of the vacuum associated with
the Planck scale.

Let us see now how, by starting from the effective potential (34) of the dissipative
vacuum, one can develop a mathematical treatment of the issues related to the spontaneous
symmetry breaking invoked in the Standard Model. In this regard, before all, the potential
(34) leads to defining the potential energy density of the dissipative vacuum as follows:
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V(ψ) ≡ V(ψ)

k3
((

βlp
γ

)2
+(βγlp)

2
)3/2 = 1

k3
((

βlp
γ

)2
+(βγlp)

2
)3/2

 a2

2π k

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2 + U

+ V0 (41)

where k is a parameter corresponding to the size of the condensate of planckeons in the
region of consideration. From the potential energy density (41), we can consider the
following effective action of the dissipative vacuum:

S =
∼
S(ϕi, ψ)−

∫
V(ψ) (42)

Here, although the exact form of the effective action
∼
S(ϕi, ψ) depending on the wave

function ψ as well as on all the other fields ϕi, is unknown, some plausible conjectures can
be made in order to include vacuum effects which account for the small fluctuations of the
Bose–Einstein condensate of the virtual particles of the vacuum. Here, since the quantum
wave amplitude of the planckeons turns out to be much smaller than the background value
of the condensate wave function amplitude, the field-theoretical models can be constructed
in a covariant manner. In line of principle, since we are dealing with low-energy effective
models, we are free to use any form of the covariant action for the psi-field—as long as it is
physically transparent, self-consistent, mathematically manageable, and the corresponding

field equation contains the requested nonlinearity. Moreover, it is likely that
∼
S will contain

couplings of the psi-particle to other fields.
By following Ref. [68], a simple toy-model in order to mathematically describe the

effective action
∼
S of the dissipative vacuum is the self-interacting vacuum involving only

the complex psi-field. In this simple model, in D-dimensional spacetime, the Lagrangian
can be expressed in the covariant form

L = k

√(
βlp

γ

)2

+
(

βγlp
)2

∂µψ∂µψ∗ − V(ψ) (43)

where the potential energy density is given by Equation (41) and k is a parameter corre-
sponding to the size of the condensate of planckeons. This model is invariant under a
global change of phase of ψ, but in the vacuum state, the value of ψ must be nonzero, with

a magnitude close to 1/

√
k3
((

βlp
γ

)2
+
(

βγlp
)2
)3/2

and arbitrary phase. This means that

the model implies the existence of a degenerate family of vacuum states, which, together
with the Goldstone theorem, would suggest the presence of the Nambu–Goldstone bosons
in the theory. This can be obtained by introducing the shifted real-valued fields

ψ = k−3

((
βlp

γ

)2

+
(

βγlp
)2
)−3/2

+
1√

2k

√(
βlp
γ

)2
+
(

βγlp
)2

(φ1 + iφ2) (44)

and expanding the potential near the minimum as follows

L = 1
2

[
(∂φ1)

2 + (∂φ2)
2
]
− 1

2 m2
φ φ2

1 −
√

2k
D−4

2

[(
βlp
γ

)2
+
(

βγlp
)2
] D−4

4
φ1
[
φ1

2 + φ2
2]

− 1
4 kD−3

[(
βlp
γ

)2
+
(

βγlp
)2
] D−3

2 [
φ1

2 + φ2
2]2 +O

(
φ5) (45)
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In Equation (45) we have defined the quantity

mφ =
2
√

lp

k1/2β
1/2
[(

βlp
γ

)2
+
(

βγlp
)2
] 1

4

(
γℏ
clp

)4
(46)

as the effective mass of the fluctuation of the condensate of the planckeons of the dissipa-
tive vacuum (and therefore must not be confused with the mass Mdim of the planckeons
themselves). As regards the behaviour of the parameter β, we apply now the results of
Refs. [68,69], namely

β ∼ (E0 − E)−1 (47)

where E0 is the energy of the “ground state” of the dissipative vacuum associated with the
generalized Compton wavelength, defined as

E0 =
hc√(

βlp
γ

)2
+
(

βγlp
)2

(48)

In this way, we obtain

mφk1/2

[(
βlp

γ

)2

+
(

βγlp
)2
] 1

4

∼
√

E0 − E (49)

which means that the mass of the fluctuation of the condensate of the planckeons of the
dissipative vacuum is not determined solely by the Planck scale, in the sense that for energy
very small compared to E0, it tends to the constant value

m(0)
φ ≡ mφ(E = 0) ∼

√√√√E0/k1/2

√(
βlp

γ

)2

+
(

βγlp
)2 (50)

namely, by inserting (48):

m(0)
φ ∼

√√√√hc/k1/2

[(
βlp

γ

)2

+
(

βγlp
)2
]

(51)

Instead, at high energies, this mass turns out to be subjected to changes as a conse-
quence of the dynamical nature of the dissipative vacuum. Thus, one obtains that, in the
broken symmetry regime, this model describes two kinds of particles, one massive and
one massless, where the latter are the Nambu–Goldstone bosons which describe the spatial
variations of the vacuum’s phase.

In this toy-model based on the Lagrangian (43), the effective mass of the fluctuation
of the condensate of the planckeons can be therefore considered the starting-point in
order to define the mass of the vector bosons W and Z, finding suggestive consequences
as regards the relation between the gauge couplings and the fundamental parameters
of the dissipative vacuum. In fact, on the basis of the general Equation (46) and some
mathematical formalism developed in Ref. [67], if kW is the constant associated to the
aggregate of planckeons corresponding to the appearance of a W boson, we can define the
mass of W bosons as

MW =
2
√

lp

kW
1/2β

1/2
[(

βlp
γ

)2
+
(

βγlp
)2
] 1

4

γℏ
clp

(52)
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In an analogous way, if kZ is the constant associated to the aggregate of planckeons
corresponding to the appearance of a Z boson, we can define the mass of Z bosons as

MZ =
2γh̄

kZ
1/2β

1/2
c
√

lp

[(
βlp
γ

)2
+
(

βγlp
)2
] 1

4
(53)

In this way, in light of relation (52), as regards the W bosons, we find:

2γℏ
√

lp

kW
1/2β

1/2
c
√

lp

[(
βlp
γ

)2
+
(

βγlp
)2
] 1

4
=

g

2
((

βlp
γ

)2
+
(

βγlp
)2
)3/2 (54)

namely

g =

4γℏ
((

βlp
γ

)2
+
(

βγlp
)2
)5/4

kW
1/2β

1/2
c
√

lp

(55)

Instead, in light of Equation (53), as regards the Z boson, we find:

2γℏ

kZ
1/2β

1/2
c
√

lp

[(
βlp
γ

)2
+
(

βγlp
)2
] 1

4
=

1

2
((

βlp
γ

)2
+
(

βγlp
)2
)3/2

√
g2 + g′2 (56)

namely

g2 + g′2 =

16γ2ℏ2
((

βlp
γ

)2
+
(

βγlp
)2
)5/2

kZβc2lp
(57)

and, thus, substituting the expression (55) of g, we obtain the final expression for g′ :

g′2 =

16γ2ℏ2
((

βlp
γ

)2
+
(

βγlp
)2
)5/2

kZβlpc2 −
16γ2ℏ2

((
βlp
γ

)2
+
(

βγlp
)2
)5/2

kZβlpc2 (58)

namely

g′2 =
16
lp

((
βlp

γ

)2

+
(

βγlp
)2
)5/2

γ2ℏ2

c2β

[
1

kZ
− 1

kW

]
(59)

On the basis of relations (55) and (59), we have thus obtained that the gauge couplings
of the vector bosons of the Standard Model can also receive a re-reading in terms of
quantities characteristic of the dissipative vacuum and, in particular, depend on the size
of the opportune aggregate of planckeons, the mass of the planckeons, as well as the
generalized Compton wavelength describing the ultimate geometry of the vacuum. In
other words, the couplings (55) and (59) express in what sense Planck-scale signatures can
be found in the Standard Model. Moreover, since in the Standard Model the elementary
charge is expressed in terms of the gauge couplings g and g′ as follows

e = gg′
√

g2 + g′2 (60)
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now, by substituting (55), (57) and (59) inside (60), we obtain

e =
64
[(

βlp
γ

)2
+
(

βγlp
)2
]15/4

kW
1/2β

3/2
kZ

1/2

γ3ℏ3

c3l3/2
p

√
1

kZ
− 1

kW
(61)

According to Equation (61), the elementary charge, in the approach of the dissipative
vacuum, can also be seen as an emergent fact, a collective phenomenon from opportune
condensates of the planckeons. Finally, the Fermi constant can also receive a new re-reading,
as follows:

GF =
√

2
(

g2/8M2
W

)
=

√
2

kZ

((
βlp
γ

)2
+
(

βγlp
)2
)3

2kW
(62)

namely, it is a collective result of the dissipative vacuum, being linked with the parameters
associated with the size of the aggregates of planckeons corresponding to the appearance of W
and Z bosons, as well as with the generalized Compton wavelength. Here, since the quantity

v =

√√√√√ kZ

((
βlp
γ

)2
+
(

βγlp
)2
)3

kW
(63)

represents the electroweak scale, which is equal to about 246 GeV, one can also obtain
a relation between the parameters kZ and kW regarding the condensates of planckeons
associated with Z bosons and W bosons, respectively:√√√√√ kZ

((
βlp
γ

)2
+
(

βγlp
)2
)3

kW
= 246 GeV (64)

From Equation (64), it follows that the Higgs mass of 125 GeV can be expressed in
terms of the parameters kZ and kW regarding the condensates of planckeons associated
with Z bosons and W bosons as

mH =
125
246

√√√√√ kZ

((
βlp
γ

)2
+
(

βγlp
)2
)3

kW
(65)

Then, by comparing Equation (65) with Equation (40), one obtains

15, 625
60, 516

kZ

((
βlp
γ

)2
+
(

βγlp
)2
)3

kW
=

2

 a2k
2π

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2


1/2

((
βlp
γ

)2
+
(

βγlp
)2
)3/2 (66)

namely

15, 625
60, 516

kZ
kW

=

2

 a2k
2π

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2


1/2

((
βlp
γ

)2
+
(

βγlp
)2
)9/2 (67)
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Equation (67) leads directly to an expression of the effective parameter of the density
of planckeons associated with the action of the Higgs field:

[k]1/2 =
15, 625

121, 032

kZ

((
βlp
γ

)2
+
(

βγlp
)2
)9/2

kW


 2π

a2

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2


1/2 (68)

namely:

k = 0.0167
kZ

2
((

βlp
γ

)2
+
(

βγlp
)2
)9

kW
2


 2π

a2

√√√√c2 1(
βlp
γ

)2
+(βγlp)

2
− 1

4
c2l2

p
γ2

1[(
βlp
γ

)2
+(βγlp)

2
]2

m|ψ|2


(69)

In summary, we can say that the approach based on Equations (33)–(69) shows how
the condensates of planckeons (and fundamental properties of the dissipative vacuum
such as the generalized Compton wavelength) have a selective function in generating the
appearance of Higgs mass, of the mass of W and Z bosons, as well as the electroweak scale,
the gauge couplings of vector bosons, and the elementary electric charge.

Another toy-model in order to mathematically describe the effective action
∼
S of the

dissipative vacuum, which can lead to other suggestive consequences, lies in coupling
the condensate of planckeons to the Abelian gauge field, by starting from the following
Lagrangian in D-dimensional spacetime:

L = k

√(
βlp

γ

)2

+
(

βγlp
)2Dµψ∗Dµψ − 1

4
FµνFµν − V(ψ) (70)

where k is the usual parameter quantifying the size of the condensate of the planckeons,

Dµ = ∂µ + iek
D−4

2

[(
βlp
γ

)2
+
(

βγlp
)2
] D−4

4
Aµ and Fµν = ∂µ Aν − ∂ν Aµ. The Lagrangian (70)

is invariant under the U(1) local transformation and describes psi-particles and antiparticles
interacting with massless photons. To see what happens in the regime of spontaneously
broken symmetry, we apply again the constraint (44), thus obtaining

L =
1
2
(∂φ1)

2 − 1
2

m2
φ φ2

1 −
1
4

FµνFµν +
1
2

m2
γBµBµ + . . . (71)

where the quantity

Bµ = Aµ +
k

e
√

2

√(
βlp

γ

)2

+
(

βγlp
)2

∂µ φ2 (72)

refers to the new gauge field having mass

mγ =
e
√

2

k

√(
βlp
γ

)2
+
(

βγlp
)2

(73)

Relation (73) physically means that the photon acquires mass mγ while no massless
Goldstone bosons appear. This model seems to be compatible with the Coleman–Weinberg
idea regarding spontaneous symmetry breaking as an effect induced by the vacuum [38].
Above all, it shows that the possible effect of the dissipative vacuum, and in particular
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of the condensate of the planckeons of the vacuum, lies in generating a mass of photons,
where this mass turns out to be strictly related to the generalized Compton wavelength. In
fact, here one can opportunely choose the value of the parameter k describing the size of the
condensate of planckeons in order to assure the smallness of the mass (73) of photons. In

this regard, by virtue of the large value of the quantity k

√(
βlp
γ

)2
+
(

βγlp
)2, it is tempting

to conjecture the cosmological-scale value for the volume k3
((

βlp
γ

)2
+
(

βγlp
)2
)3/2

, in

other words, to claim that it represents the volume of the (observable part of the) Universe.
Then, if one inserts the current value of volume of the (observable part of the) Universe
given by about ten billion light years, the above-mentioned characteristic masses (51) and
(73) can be respectively estimated as

m(0)
φ c2 ∼ 10−3 ÷ 10−2eV, mγc2 ∼ 10−35eV (74)

where for the former mass we imposed E0 to be the Planck one (which is valid if the external
fields are weak enough as not to change the vacuum energy significantly). These small yet
nonvanishing masses indicate that their gravitational effect and contributions to the density
of matter in the Universe can be quite substantial. Moreover, by virtue of the presence of
the elementary charge e in the Formula (73), one can explain why it is the photon which
mediates the long-range interactions between the electrically charged elementary particles:
in analogy with superconductivity, the photons in this model can be interpreted as the
pairs of virtual particles and antiparticles of the vacuum associated with the condensate
of planckeons.

In summary, in light of the two models we have here considered for describing the
effective action of the dissipative vacuum, and which are based on Equations (34)–(74),
we can say that we deal here with two complementary descriptions as regards the issue
of estimating the values of the generated masses of the otherwise massless particles such
as the photon: the fundamental one of the planckeons and the emergent one given by
an opportune vacuum condensate of planckeons. However, whereas this condensate of
planckeons is opportunely formed, it can be regarded as the most fundamental object (due
to its ground state being described by a single wave function only) while the particles
and interactions observed by a physical observer are represented by its different modes,
collective ones, and excitations. In this approach, the generation of opportune condensates
of planckeons is the fundamental physical property which gives, in turn, rise to massless
and massive particles, thus causing in principle the spontaneous symmetry breaking. Each
elementary particle can be seen as an emergent fact from the fundamental dissipative
vacuum in the sense that its appearance can be seen as a collective mode associated
with opportune condensate of the planckeons. The mass generation mechanism based
on vacuum fluctuations is universal in a sense that it may supplement the electroweak
one (by generating the masses of the photon and Higgs boson, for instance), but also it
can enhance or even replace the latter, under certain physical circumstances. The role of
the Bose–Einstein condensate of planckeons seems to be natural here because the mass
generation by such a highly nonclassical object naturally serves as a physical realization of
Mach’s principle. The straightforward computation we have made in the picture of the two
toy-models shows that the photon mass, gained due to its interaction with the quantum-
gravitational vacuum represented by the condensate of planckeons of the dissipative
vacuum, can be expressed as a ratio of the elementary electrical charge and the length
related to one of the parameters of nonlinearity.

On the other hand, it is worth mentioning that this description can also be reconciled
with the current cosmological paradigm. In fact, on the basis of the results obtained in
Ref. [68], the perspective is opened that the curved-spacetime description of the Universe’s
large-scale evolution is valid only in the long-wavelength approximation, and it is not the
only possible or most convenient: one can also describe it in (hydro-) dynamical terms
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by invoking a Bose liquid which flows in a certain way when viewed as an embedding
manifold into the Euclidean space. Such description has the potential to watch in a different
manner at some long-standing problems of both the standard and inflationary cosmolo-
gies, also hinting at the possible ways of facing quantum gravity. In this regard, further
investigations are obviously required.

3.3. About TeV Scale of Strong Interactions and the “Negative Mass Square Problem”

As regards the treatment of a dynamical spontaneous symmetry breaking in the
hidden sector generating the TeV scale of strong interactions, the model of the dissipative
vacuum leads to appealing results in terms of opportune energy fluctuations linked with
the condensates of virtual planckeons too. In this regard, taking account of the results
of Yamada [70], a spontaneous dynamical scale symmetry breaking can be obtained by
considering the mean-field approximated effective Lagrangian of the form

LMFA =
(
[∂µsR]

+∂µsR

)
− ε2(sR

+sR
)
− λC

(
H+H

)2
+ N f

(
N fλS + λS′

)
f 2 +

λS′
2

(ϕa)2 − 2λS′ϕa
(

sR
+ta

ijsR

)
(75)

In Equation (72) sR is a scalar field depending on the energy fluctuations of the vacuum,
f = (sR

+sR)/N f , H is the Higgs doublet field which ultimately emerges from the renormal-
ization constraint (30), and therefore from the fundamental network of planckeons of the
vacuum, ϕa = 2

(
sR

+ta
ijsR

)
are auxiliary fields with ta

ij generators of the flavour SU
(

N f

)
transformation, and ε = kMdimc2

V is a “constituent” scalar variable quantum vacuum en-
ergy of the hidden sector of the strong interactions—which is determined by opportune
collective excitations of the virtual planckeons of the dissipative vacuum—given by relation

ε2 = 2
(

N fλS + λS′
)

f − λSC
(

H+H
)

(76)

Here, if one sets ϕa = 0 in the mean-field approximation lagrangian, one can obtain
the effective potential

VMFA = k2 MP
2c4

V2

(
sR

+sR
)
+ λC(H+H)

2 − N f

(
N fλS + λS′

)
f 2 +

NC N f
32π2

k4 MP
4c8

V4 ln MP
2c4

V2Λ2
C

(77)

where sR is the background field of the scalar field sR. The effective potential (77), by apply-
ing the dimensional regularization and the MS scheme to eliminate ultraviolet divergence,
can be considered as the real mediating entity that is responsible of the spontaneous sym-
metry breaking occurring at the TeV scale, by leading directly to the following expressions
for the changes of the vacuum energy associated to the collective excitations of the virtual
planckeons, and the Higgs mass:〈

k2 MP
2c4

V2

〉
=

4N f λCλS − N f λ2
SC + 4λCλS′

2λC

〈(
sR

+sR
)
/N f

〉
(78)

M2
h
∼= 2N f λSC

〈(
sR

+sR
)
/N f

〉
(79)

where here a small λSC is assumed. On the basis of Equations (78) and (79), we can say that
a scale-generation mechanism in the interactions predicted by the Standard Model emerges
naturally from opportune collective excitations of the virtual planckeons of the dissipative
vacuum expressing the activity of the vacuum at the Planck scale, which is associated with
the generalized uncertainty relations. Here, the variable quantum vacuum energy, the
scalar field sR depending on the energy fluctuations of the dissipative vacuum, as well
as the scalar couplings λSC, λC, λS associated with the vacuum and with the singlet field
depending on the quantum vacuum energy density fluctuations, can be considered the
ultimate parameters that are responsible of the generation of the action of the Higgs boson
in the high-energy regime. In other words, in the approach based on Equations (75) and (79),
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the action of the Higgs boson can be considered as a “mechanism”, as an emerging process.
It is the interplay of opportune fluctuations of the energy of the dissipative quantum
vacuum associated with the condensates of the planckeons, which indeed determines the
action of the Higgs boson generating a spontaneous symmetry breaking at the TeV scale.

Moreover, by exploring quantum gravity effects on the effective potential (74), one
obtains the following renormalization group equations for the scalar mass

∂

∂t
m2 =

(
−2 + γ

g
m

)
m2 (80)

where

γ
g
m =

gN
6π

[
20

(1 − v0)
2 +

1(
1 − v0

4
)2

]
(81)

is the graviton anomalous dimension, where v0 = 16πgN
∼
U0 with

∼
U0 = ΛCC

k4 being the
dimensionless cosmological constant. The graviton anomalous dimension γ

g
m given by

relation (81) implies a radical change of the energy scaling of coupling constants above the
Planck scale. If γ

g
m is larger than 2, the scalar mass parameter becomes irrelevant. In this

situation, one gets the following two potential solutions to the gauge hierarchy problem.
On one hand, one deals with the resurgence mechanism in which the small Higgs mass

parameter m2
H

M2
Pl

∼= 10−36 is self-organized by quantum gravity effects. In other words, the

scalar mass parameter shrinks towards zero above the Planck scale and then increases such

that m2
H

v2
h

∼= 0, 2 at the electroweak scale, as a consequence of the decoupling of quantum

gravity effects below the Planck scale. On the other hand, one has the perspective of
classical scale invariance, namely, the scale invariance at the Planck scale could be naturally
realized as a consequence of the irrelevance of the scalar mass parameter above the Planck
scale. Inside our approach, one can say that a gauge hierarchy problem is originated when
there is a large intermediate scale between the Planck scale and the electroweak scale, for
example, the grand unification scale, ΛGUT [70].

Moreover, by taking into account the results of Ref. [71] as regards a fundamental
intrinsic relation between mass, gravity, space-time symmetry, and the Higgs mechanism,
which emerges by involvement of the de Sitter (false) vacuum as its basic ingredient, our
model of physical vacuum with dissipative features in the form of energy fluctuations
associated to the virtual planckeons suggests a natural explanation for the anomalous
results known as “negative mass square problem”. In light of the data on the solar and
atmospheric neutrino [72], the mass-squared difference for the neutrino oscillation is given,
in two-flavour mixing approximation, by the following values

∆m2
atm = 2.5·10−3 eV2; ∆m2

sol = 6.9·10−5 eV2 (82)

which lead to a relation between the gravity–electroweak unification scale and observational
data. In our approach, in the interaction vertex, a particle can be described by an eigenstate
of the de Sitter Casimir invariants, given by relation

I′1 = k2

[
µ2c2 ± ℏ2

2r2
0

]
(83)

where r0 is the de Sitter radius, which is ultimately associated and derived from the more
fundamental generalized Compton wavelength (11), namely:

r2
0 =

(
βlp

γ

)2

+
(

βγlp
)2 (84)
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By taking into account Refs. [66,68], the state (83), by following an evolution in the
Minkowski space, assumes the form of a linear superposition of two different mass eigen-
states related to the condensate of the planckeons

m2
1 = k2

µ2 +
ℏ2

2c2
[(

βlp
γ

)2
+
(

βγlp
)2
]
, m2

2 = k2

µ2 − ℏ2

2c2
[(

βlp
γ

)2
+
(

βγlp
)2
]
 (85)

with equal weights. Moreover, always following Ref. [73], the mass-squared difference (82)
can be connected directly with the unification scale Muni f of gravity and electroweak scale
as follows

∆m2 =
8π

3
k2
(Muni f

mPl

)4

m2
Pl (86)

The resulting symmetry induced by the vacuum energy density of the Gross–Pitaevskij
vacuum in the gravito–electroweak vertex generates an exact bi-maximal mixing for neutri-
nos, which leads to the following mass-squared difference between atmospheric and solar
neutrinos linked with the condensate of the planckeons:

∆m2 =
ℏ2k2

2c2
[(

βlp
γ

)2
+
(

βγlp
)2
] (87)

for both the right- and left-handed fields. On the basis of Equation (87), the physical meaning
of the mass-squared difference between atmospheric and solar neutrinos lies in the collective
excitations of the virtual planckeons, namely, it can be seen as an emergent effect from the
dissipative features of the Gross–Pitaevskij vacuum close to the Planck scale.

Now, by equating (86) and (87), one can obtain an expression for the gravito–electroweak
scale Muni f in the dissipative vacuum as follows

8π

3
k2
(Muni f

mPl

)4

m2
Pl =

ℏ2k2

2c2
[(

βlp
γ

)2
+
(

βγlp
)2
] (88)

thus leading to the following expression of the unification scale

(
Muni f

)4
=

3ℏ2m2
Pl

16πc2
[(

βlp
γ

)2
+
(

βγlp
)2
] (89)

namely

Muni f =
1
2

 3ℏ2m2
Pl

πc2
[(

βlp
γ

)2
+
(

βγlp
)2
]


1/4

(90)

On the basis of relation (90), in our model of dissipative vacuum, the gravito–electroweak
scale Muni f turns out to be directly fixed by the generalized Compton wavelength, which
measures the activity of the vacuum at the Planck scale, but turns out to be independent
of the parameter k indicating the size of the condensate of the planckeons. In this way, the
mass-squared differences of neutrinos determined by fluctuations of the quantum vacuum
energy density associated with the virtual planckeons of the dissipative Gross–Pitaevskij
vacuum, lead to the following corresponding values of the unification scale for solar and
atmospheric neutrinos:

Muni f (atm) ≈ 14.5 TeV; Muni f (sol) ≈ 5.9 TeV (91)
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The values (91) turn out to be in good agreement with the results obtained in Ref. [66],
as well as in other previous theories of electroweak unification [74–76]. The novelty of this
approach, with respect to the previous theories of electroweak unification, lies in the fact
that the unification scale for solar and atmospheric neutrinos emerges naturally from the
interplay of the virtual planckeons of the Gross–Pitaevskij vacuum close to the Planck scale.

4. The Link with Quantum Jumps: About Emergence of Particles at the Planck Scale in
the Standard Model

The approach suggested in this paper allows us to shed new light as regards the emer-
gence of particles at the Planck scale, leading to a direct relation between the planckeons
describing the activity of the vacuum at the Planck scale and the Licata–Chiatti quantum
jumps theory.

By following Ref. [77], one can assume that a quantum jump, a process of localization of
the skeleton of a particle, can be described through an internal (inaccessible) wave function
factor ϕ(τ′) of an internal time, when the information associated with the elementary cells of a
de Sitter–Planck vacuum satisfies relation A/lp ≈ 10−13cm where A is the area of the de Sitter
micro-region encoding the information about that region. This area, which is linked with the
information of the ultimate vacuum, can be expressed as A = I(δl)2 where, taking account
of the results obtained in Refs. [59–63], the quantity δl represents the average minimum
uncertainty, i.e., the average separation between neighbouring cells, of the background, which
is determined by the fluctuations of the quantum vacuum energy density, namely, by the
ultimate texture of the planckeons, and is given by the following relation

δl ≥
(

2π2

3

)1/3

cθ0 (92)

where c is light speed and θ0 is the minimum proper time corresponding to the switching
of a cell, which generates the “bare” state of a particle (and thus determines, as a derived
fact, the time interval between two successive localizations of the same particle).

Now, in the de Sitter geometry of the dissipative vacuum characterized by semi-local
cells, the intrinsic positional uncertainty (92) can be associated to a corresponding spatial
length, which we denote l0, expressing the minimum spatial length, where the switching of
opportune cells can give origin to the appearance of the “bare state” of a particle, such as a
fermion of the Standard Model. In order to define this peculiar spatial length characterizing
the ultimate texture of Planck scale in a region of the de Sitter universe, by following
Refs. [59–63], we assume that the spatial volume occupied on the average by each cell is
l0l2

P, and thus that a spatial region of size l0 contains a number of cells given by

N =l3/
(

ll2
P

)
= (l/lP)

2 (93)

We can therefore define l0 through the following equation:

(δl)3 = l0l2
p (94)

which yields

l0 =
2π2

3
(cθ0)

3

/l2
p (95)

Equation (95) expresses, in the de Sitter background of the dissipative vacuum, the
minimum size of each spatial length which is ultimately determined by the intrinsic
positional uncertainty (94) characterizing the Planck lattice, giving rise to the appearance
of the “bare” state of a particle.

The wave function ϕ(τ′) describing a process of localization of the skeleton of a
particle physically regards the virtual particles of the dissipative vacuum, while τ′ is a
kind of internal time of the background of the planckeons, which acts as when the real
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elementary particles are someway “dormant” relative to external time (namely after their
annihilation or before their creation). As regards the features and evolution of this wave
function, by following the Licata–Chiatti quantum jumps approach, in the de Sitter–Planck
background, this function is oscillatory in the internal time and it is just these elementary
oscillations which originate the different types of elementary particles that can be created or
annihilated. Moreover, the wave function ϕ(τ′) has the property to be real and harmonic in
the internal time variable τ′, null at the boundary and outside of the interval

[
− A

2clp
, A

2clp

]
where A/lp ≈ 10−13cm, and obeys the following general equation:{

−ℏ2 ∂2

[∂(2πτ′)]2
ϕ(τ′) =

(
mc2)2

ϕ(τ′) i f τ′ ∈
[
− A

2clp
, A

2clp

]
ϕ(τ′) = 0 otherwise

(96)

where m is the mass of the virtual particles of the de Sitter–Planck background, which
represents the skeleton, namely the “bare” state of the particle mass of the observable
world. By defining θ0 = A

clp
, on the basis of Equation (96), in the Licata–Chiatti model of

quantum jumps, the virtual particles emerging from the ultimate texture of cells of Planck
scale of the de Sitter background generate the usual real elementary particles when their
mass satisfies the following relation

mc2 = n′ ℏ
θ0

(97)

where cθ0 ≈ 10−13cm corresponds to the chronon scale, n′ = 0, , 1, 3/2, . . . is an integer
for odd solutions, a half-integer for even solutions.

Now, in our model of dissipative vacuum developed in this paper, as a consequence
of the crucial role of the condensate of the planckeons at the scale represented by the
generalized Compton wavelength (11), it follows that the minimum size of each spatial
length (95) which give rise to the appearance of the “bare” state of a particle can be
expressed by relation:

2π2

3
(cθ0)

3

/l2
p = k

√(
βlp

γ

)2

+
(

βγlp
)2 (98)

Equation (98) expresses in what sense the generalized Compton wavelength and the
size of the condensate of the planckeons lead in a direct way to the minimum size of each
spatial length characterizing the Planck lattice, which gives rise to the appearance of the
“bare” state of a particle, i.e., to the chronon scale. In other words, on the basis of Equation
(98), we can say that the chronon scale can be considered as a direct manifestation, at un
upper level, of the generalized Compton wavelength as well as of the size of the condensate
of the planckeons:

cθ0 =

 3l2
p

2π2 k

√(
βlp

γ

)2

+
(

βγlp
)2

1/3

(99)

By substituting Equation (99) into Equation (97), this latest equation becomes

mc = n′ ℏ(
3l2

p
2π2 k

√(
βlp
γ

)2
+
(

βγlp
)2
)1/3 (100)

which expresses the constraint which must be satisfied by the virtual planckeons of the
dissipative vacuum described by a Gross–Pitaevskij evolution in order to give origin to the
ordinary elementary particles. The physical meaning of Equation (100) is thus the following:
the mass of the planckeons of the dissipative vacuum characterized by a Gross–Pitaevskij
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evolution law can be considered as the ultimate element which gives rise to the appearance
of particles of the Standard Model at the Planck scale and, conversely, can be considered as
the Planck signature of Standard Model particles.

5. Gauge Symmetry, Scale of Emergence, and Cosmological Constant

In the Standard Model, gauge symmetries assume a relevant role in fixing the features
of the interactions of elementary particles, but there is the problem regarding their origin,
whether they unify in the ultraviolet or are emergent in the infrared and disappear above
the scale of emergence. Emergence of the Standard Model can be considered a sort of a
phase transition, connected with the stability of the Higgs vacuum, which implies that
leptons, quarks, gauge, and Higgs bosons can be seen as the stable long-range collective
excitations of some critical statistical system that sits close to the Planck scale. In this way,
the Standard Model manifests itself as an effective theory with action containing an infinite
series of higher-dimensional operators whose contributions are suppressed by powers of
the scale of emergence. However, within the emergence scenario, the degrees of freedom
above the scale of emergence remain an open issue, and there is the problem of connecting
the scale of emergence to the vacuum stability.

In the approach of the dissipative vacuum, if hadrons and their interactions described
by fundamental QCD quark and gluon degrees of freedom and the structure of ordinary
matter described inside QED, are emergent from the nonlinearity and nonlocality of the
fundamental background of the planckeons, intended as activity of the vacuum at Planck
scale linked with the generalized uncertainty relations, one expects that at a deeper level,
the gauge symmetries would be emergent and would dissolve in the ultraviolet and that
these processes are ruled by opportune behaviour of the collective excitations of the virtual
planckeons of the dissipative vacuum too. While in standard unification models the
maximum symmetry is at the highest energies of the extreme ultraviolet and a spontaneous
symmetry is applied in the infrared, which is associated with the Higgs mechanism [78],
instead in our model one can suggest that new critical phenomena in the ultraviolet appear
as the long-range consequence of the unification scale Muni f given by (87) and determined
by the virtual planckeons of the vacuum described by the Gross–Pitaevskij Equation (16).

According to the approach suggested in this paper, the Gross–Pitaevskij vacuum
and, in particular, the scale Muni f associated with the virtual planckeons generating the
gravity–electroweak unification scale and which is given by Equation (90), is the turning
key that allows a resolution of the cosmological constant issue and the hierarchy problem.
As a consequence, the gauge symmetries of the Standard Model would be emergent from
the collective features of the network of the planckeons of the vacuum characterizing this
scale Muni f .

If one takes the Standard Model gauge symmetries as emergent and dynamically
generated by the collective behaviour of the elementary particles of the dissipative vacuum
ruled by the Gross–Pitaevskij Equation (16), the Standard Model can be interpreted as
an effective theory where at low energies, the physics is determined by a relatively small
number of operators with mass dimension at most four. For these terms, gauge invariance
and renormalizability restrict the number of possible operator contributions and strongly
constrain the global symmetries of the system. Instead, the extra symmetry breaking terms
associated with higher dimensional operators only become active in the particle dynamics
when mass and energy scales close to the large emergence scale are approached.

In our theory, the Gross–Pitaevskji vacuum characterized by fluctuations determined
by the network of its fundamental planckeons emerges as a possible candidate to define
the ultraviolet scale Mu that, according to the experimental constraints on the size of the
Pauli term, tiny neutrino masses, axion masses, and proton decay, should be between
1015 GeV and the Planck scale of 1.2 × 1019 GeV. In other words, the lattice of the virtual
planckeons of the Gross–Pitaevskji vacuum is the fundamental background that explains
the appearance of the ultraviolet scale in a natural and direct way. So, the specific collective
behaviour of the virtual planckeons, as a consequence of the activity of the vacuum at the
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Planck scale associated with the generalized Compton wavelength, imply that at the highest
energies, the system becomes increasingly chaotic, characterized by a maximum symmetry
breaking, in contrast to unification models which exhibit the maximum symmetry in the
extreme ultraviolet.

In the context of an emergent picture of the Standard Model gauge symmetries from
the interplay of the virtual planckeons generating dissipative features of the vacuum, some
considerations can be made also as regards hints of new physics and new patterns of global
symmetry violation associated with higher dimensional operators beyond the Standard Model.
In this regard, the lowest-dimension operators that violate lepton and baryon numbers,
respectively, are the Weinberg dimension-five operator regarding neutrino mass and the
four-fermion operator associated with proton decay. The lepton number violation at energies
typical of the very early universe is described by the Weinberg dimension-five operator

O5 =
(HL)T

i λij(H)j

Mu
(101)

concerning Majorana neutrino mass, where here the Higgs doublet H ultimately emerges
as the result of more elementary fluctuations of the Gross–Pitaevskij vacuum determined
by the collective excitations of the virtual planckeons describing its dissipative features, Li
denotes the SU(2) left-handed lepton doublets and λij is a matrix in flavour space, Mu is
the ultraviolet scale, about 1015 GeV, itself determined by opportune collective networks of
the planckeons of the vacuum. In an analogous way, the dissipative features of the vacuum
determined by collective excitations of the virtual planckeons, by the activity of the vacuum
at the Planck scale linked with the generalized Compton wavelength, can be considered as
the fundamental origin of the possible violation of the baryon number associated with the
four-fermion operator

O6 =
1

Mu
2 QQQL (102)

where L and Q are the lepton and quark doublets, respectively, which becomes active at
energies typical of the very early universe and might play an important role in under-
standing the matter–antimatter asymmetry in the Universe. Moreover, we emphasize
here the importance of operators, with dimensions greater than four, that give corrections
to flavour-changing processes that are highly suppressed in the Standard Model, such
as, for example, the one contributing to Kaon mixing or operators involving large extra
dimensions expressed in terms of towers of Kaluza–Klein excitations which could give
rise to a physics beyond the Standard Model that cannot be described by an effective field
theory [79]. Indeed, as regards physics beyond the Standard Model and corresponding
symmetry violations, it has been claimed that two different scenarios are possible: one
where the new physics is dominated by interference terms between dimension-six contribu-
tions and the Standard Model (a scenario that occurs whenever the scale of new physics is
high in comparison with the electroweak scale), the other where one should also consider
interference terms between dimension-six contributions and dimension-eight contributions
(which indicates an underlying structure in the beyond Standard Model background and
can occur if the dimension-six operators are purely CP-odd and the observable is a CP-even
quantity) [80].

On the other hand, in light of cosmology observations, we know that, as regards the
real content of the Universe, just 5% is built from Standard Model particles, in the sense
that 26% involves dark matter (possibly made of new elementary particles) and 69% is
dark energy [81]. Dark energy, which is introduced in order to “explain” the accelerated
evolution of the universe, refers to some mysterious form of diffuse energy presumably
permeating all corners of the universe, and is currently associated to the energy density
of the vacuum [82–84]. Dark matter is invoked in order to “reproduce” the anomalous
dynamics of galaxies and of galaxy clusters. New axion-like particles with masses and
couplings suppressed by powers of the large emergence scale might be a vital ingredient in
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understanding dark matter. The model suggested in this paper, by considering an emergent
approach from fluctuations describing the dissipative features of the vacuum, associated
with collective excitations of virtual planckeons close to the Planck scale, has the potential
to introduce interesting perspectives of explanation also of dark matter and dark energy.

Moreover, it must be emphasized that, in models of the emergent Standard Model,
the scale of emergence can have a relation with new dynamical scenarios in the sense
that, if electroweak symmetry breaking and emergence were to happen at the same scale,
then the physics of inflation would involve totally new physics with different unknown
degrees of freedom. In this regard, the model of the physical vacuum with dissipative
features expressed by fluctuations generated by the virtual planckeons of the vacuum, on
the basis of Equation (40) which expresses the origin of the Higgs field and Equation (87)
which expresses the gravity-electroweak unification scale, suggests new perspectives of
explanation of the issue whether chirality (and neutrinos) might assume a special role
in any ultraviolet critical phenomena and a consequent emergent gauge symmetry in
the infrared.

Some interesting considerations can also be made as regards the treatment of the
cosmological constant in the sense that the contributions appearing in it—and represented
by the Higgs and QCD condensates and a renormalized version of the bare gravitational
term ρΛ [82,85]—can be seen as the results of specific collective behaviours of the virtual
particles of the physical vacuum with dissipative features. In our approach, the net vacuum
energy density may thus be expressed in the following form

ρvac = ρqvE + ρpotential + ρΛ (103)

where ρpotential is the potential energy density given by Equation (41). The vacuum en-
ergy density (103), which turns out to be renormalization scale invariant and drives the
accelerating expansion of the Universe, satisfies relation

d
dµ2 ρvac = 0 (104)

which means that it is independent of the way it is computed. In light of its explicit
µ2 dependence and of the network of the planckeons of the dissipative vacuum, the
contributions to the quantum vacuum energy density ρqvE in Equation (103) are scale
dependent. In line with the results obtained in Ref. [34], one finds the following results:
for QCD, the degrees of freedom depend on the resolution, deep in the ultraviolet one has
asymptotic freedom, for massless quarks the quantum vacuum energy density vanishes, in
the infrared confinement and dynamical chiral symmetry breaking take over. The Higgs
potential is renormalization scale-dependent as a consequence of the scale dependence of
the Higgs mass and Higgs self-coupling, which ultimately derives from the elementary
virtual planckeons of the dissipative vacuum on the basis of Equation (30), and determines
the stability of the electroweak vacuum ultimately emerging from the unification scale (90).

In this emergent picture of the Standard Model and of its gauge symmetries from the
ultimate Gross–Pitaevskij vacuum intended as a network of virtual planckeons describing
its dissipative features at the Planck scale, if we suppose that the vacuum is translational
invariant and flat space-time is consistent at dimension four, just as suggested by the success
of the Standard Model, then the contribution of the Renormalization Group invariant scales
ΛQCD and electroweak Λew into the cosmological constant lies in the scale of the leading term
suppressed by Λew/M, where the scale of emergence M depends on opportune fluctuations
of the dissipative vacuum determined by the network of the virtual planckeons (which lead

to ρvac ∼
(

Λew
2/M

)4
with one factor of Λew

2/M for each dimension of space-time). This
scenario allows an explanation of the reason why the cosmological constant scale 0.002 eV
is similar to what we expect for the neutrino masses [86] and Majorana neutrinos [87], as a
consequence of the interplay and the collective excitations of fundamental virtual planckeons
of the dissipative vacuum close to the Planck scale. In summary, we can conclude that,
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according to the approach developed in this paper, we can justify in what sense the scale of
emergence should be deep in the ultraviolet, much above the Higgs and other Standard Model
particle masses, close to the Planck scale, just as a consequence of the collective behaviour of
the virtual planckeons of the Gross–Pitaevskij vacuum.

Finally, we must mention that several issues put the Standard Model at risk. In par-
ticular, scenarios towards a new physics could be opened by the so-called g-2 anomaly,
regarding the discrepancy between theory and data of the magnetic dipole moment of the
muon. To date, the most part of physical explanations of the muon g-2 discrepancy invokes
new scalar fields, for example, axions, i.e., light, periodic scalar bosons originating from the
breaking of an approximate U(1) symmetry. In Ref. [88], an approach was suggested, based
on heavy axion-like particles with couplings to leptons and photons, which provides a tan-
talizing potential solution to the muon g-2 anomaly. However, this recent approach which
invokes axions does not manage to specify the origins of the axion couplings and other
relevant degrees of freedom. This could be the clue of the existence of new fundamental
particles existing in nature, that could be probed in future searches. In light of the treatment
made in this paper, the perspective is opened that these new fundamental particles, which
take account of the origin of axions, could be associated with the planckeons describing the
activity of the vacuum at the Planck scale linked with the generalized Compton wavelength.
In this regard, further research will yield more information.

6. Conclusions

Since their appearance in the early 1900s, Planck’s natural units have posed the
question we now call quantum gravity. Much of the difficulty comes from the fact that
nobody really knows what these units mean. They appear as a mysterious sphinx placed at
the centre of convergence between quantum mechanics and relativity, and only a theory
capable of including gravitation in a unified picture with the other forces will be able to
reveal their secret. Most physicists have understood natural units as elementary pieces of
space-time, beyond which the very description of the physical world loses meaning. The
idea of a Rubik space-time has been taken up by many authors [89–96]. These approaches,
based on an idea of fixed tessellation, have been progressively replaced by others that
interpret the Planck scale in dynamic (or pre-dynamic) terms such as loops and strings (for
an introduction, see Refs. [97,98]). Obviously, these are different approaches. In fact, it is
possible to say that if the theories with Rubik’s construction tried to find the traces of a
reconciliation between quantum field theory and relativity on an extreme microphysical
scale of space-time, the new classes of theories, on the contrary, have laid the foundations
for an emergent description of space-time and particles.

In this work, we have introduced planckeons, which are not to be understood as
ultimate building blocks, but as a special class of particles which obey the constraints of the
Planck scale, ingredients which introduce nonlocality and nonlinearity by solving some
serious problems of scales and hierarchies which afflict the Standard Model. In other words,
we could say that planckeons are like dust introduced into the mechanism of the Standard
Model in order to match the theory with the observations, a not too radical intervention
which allows us to keep the advantages of the Standard Model. We want to remind here that
the equation that guides the vacuum of the planckeons is the Gross–Pitaevskij equation, well
known—on other scales—in collective phenomena. In fact, here the Higgs mechanism finds
interpretation in terms of organization of opportune condensates of planckeons around a
bare charge. In the approach suggested in this paper, by starting from the nonlinear and
nonlocal Gross–Pitaevskij Equation (16), one directly arrives at the effective potential (34),
expressing the interactions of the fundamental planckeons, which is characterized by a
Mexican-hat shape, making it a plausible candidate for the Higgs potential. In this way,
the Higgs mechanism and the spontaneous symmetry breaking emerge naturally from the
ultimate dynamics of opportune condensates of the planckeons of the dissipative vacuum
and, in particular, the Higgs mass turns out to be an emergent fact from the generalized
Compton wavelength which is associated with the dissipative features of the vacuum. We
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have explored two different toy-models in order to characterize the effective action of the
dissipative vacuum, the one which considers the self-interacting vacuum involving only
the complex psi-field, the other which lies in coupling the condensate of planckeons to
the Abelian gauge field. The first model shows that, in the broken symmetry regime, one
can describe two kinds of particles, one massive and one massless, where the latter are the
Nambu–Goldstone bosons which describe the spatial variations of the vacuum’s phase. In
the other model, the condensate of the planckeons of the vacuum lead to generating a mass
of photons, strictly related to the generalized Compton wavelength, and the smallness of
the photon's mass is assured by opportunely choosing the value of the parameter describing
the size of the condensate of planckeons. A fascinating result of our approach lies in the
possibility to find Planck-scale signatures in the Standard Model, by formulating the gauge
couplings of the vector bosons in terms of the size of the opportune aggregate of planckeons,
the mass of the planckeons, as well as the generalized Compton wavelength describing the
ultimate geometry of the vacuum and by demonstrating that also the elementary charge
can be seen as a collective phenomenon from opportune condensates of planckeons.

Moreover, the mathematical framework of our approach shows how a scale-generation
mechanism in the interactions predicted by the Standard Model emerges naturally as a
consequence of opportune collective excitations of the virtual planckeons of the dissipative
vacuum, showing that the interplay of opportune fluctuations of the energy of the vacuum
associated with the condensates of the planckeons determines the action of the Higgs
boson generating a spontaneous symmetry breaking at the TeV scale. Here, one can also
provide a natural explanation for the “negative mass square problem”, in the sense that
a unification scale for solar and atmospheric neutrinos, given by Equation (90), emerges
directly from the interplay of the virtual planckeons of the Gross–Pitaevskij vacuum close
to the Planck scale. An appealing result of this formalism is that, while the mass of solar
and atmospheric neutrinos depends on the parameter describing the size of the condensate
of planckeons, instead, the unification scale responsible for the mass difference between
solar and atmospheric neutrinos turns out to be independent of the value of this parameter
and depends only on the generalized Compton wavelength, and thus on the mass of the
virtual sub-particles of the vacuum.

On the other hand, the generalized Compton wavelength generating the dissipative
features of the vacuum leads in a direct way to the minimum size of each spatial length
characterizing the Planck lattice, which gives rise to the appearance of the “bare” state of
a particle, i.e., to the chronon scale, thus shedding new light as regards the issue of the
emergence of particles at the Planck scale, leading to a direct relation with the Licata–Chiatti
quantum jumps theory. In this regard, on the basis of Equation (98), the chronon scale can
be considered as a direct manifestation, at un upper level, of the generalized Compton
wavelength and the size of the condensate of the planckeons.

Finally, our model leads to the fundamental prediction that the scale of emergence
should be deep in the ultraviolet, much above the Higgs and other Standard Model particle
masses, close to the Planck scale, just as a consequence of the collective behaviour of the
virtual planckeons of the Gross–Pitaevskij vacuum and, therefore, that the cosmological
constant and the hierarchy problem could be resolved near to the unification scale (90)
associated with the virtual planckeons generating the gravity–electroweak unification scale.
This introduces the perspective that the gauge symmetries of the Standard Model would
be emergent from the collective features of the network of the planckeons of the vacuum
characterizing the unification scale (90).
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