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Abstract: Higher derivative terms in the gravitational action are natural from the perspective of
quantum gravity, but are perceived as leading to a lack of well-posedness. The Gauss–Bonnet term
has second-order equations of motion, but does not impact gravitational dynamics in 4D, so one
might expect that it is not physically relevant. We discuss how signatures can show up in tunnelling
processes and whether these will likely be physically accessible in Higgs vacuum decay.
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1. Brief Overview of Seeded Vacuum Decay

One of the mysteries at the core of the conflict between gravity and particle physics is
the nature of the vacuum. Assumptions about the vacuum underlie Hawking radiation
and inflation. But, how do we define the vacuum? The simplest way is to say it is the state
of “lowest energy”; however, this presupposes that there is a lower bound and that we
live in it. This research arose from re-examining the methods behind the calculations of
first-order phase transitions in the universe. In nature, first-order phase transitions are
usually triggered by impurities, but the classic field theory description of a first-order
transition, quantum tunnelling, is more or less the opposite—extremely symmetric and
idealised. How do we translate this concept of impurity to a gravitational setting, and what
pitfalls arise? Further, if we go beyond Einstein’s theory, how does this modify the results?

Theories of modified gravity have been developed to address some of the issues
that exist in General Relativity (GR), such as late time acceleration or as an alternative to
dark matter (see [1] for a review). More recently, considering modifications to GR in the
strong gravitational regime provides a more-robust discriminator when testing gravity
near black holes observationally. Among the alternatives to GR, higher curvature theories
have a uniquely privileged position as they require no extra fundamental fields and can be
motivated within a quantum gravity setting. While adding an arbitrary higher derivative
term to the gravitational action can result in quartic (or higher) time derivatives, which
leads to a lack of well-posedness, the Gauss–Bonnet (GB) [2–4] term (the lowest-order
Lovelock contribution [5]) is quadratic in curvature while retaining only second-order field
equations. A further feature of relevance to this work is the fact that a general higher
curvature term will not have a Birkhoff-type theorem for the uniqueness of black hole
solutions. When one has a Birkhoff theorem, the uniqueness of a black hole geometry is
guaranteed. Thus, if one is performing a path integral, the geometries satisfying some given
boundary constraints are now specified precisely, and one can be sure that the saddle point
has been fully identified. In the absence of this uniqueness theorem, the possibility arises
of multiple geometries having the same asymptotic form; hence, a background subtraction
may not be unique, or even defined. Therefore, for the purpose of testing how higher
curvature terms alter gravitational phenomenology in the context of vacuum decay, we
focus on the GB term as an exemplar of a well-posed theory that has a Birkhoff uniqueness
property [6].
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The reason for being interested in vacuum decay lies in the discovery of the Higgs
boson [7,8]. The measurement of Standard Model (SM) parameters, particularly the Higgs
and top quark masses, reveals the possibility of a lower vacuum energy in the effective
potential of the SM Higgs field at high Higgs values [9–12]. This suggests that our universe
could be in a metastable vacuum that can undergo quantum tunnelling from our local
minimum (false vacuum) to a global minimum (true vacuum) or exit point at a very different
Higgs value. This decay is traditionally described by a process of bubble nucleation, where
a bubble of true vacuum nucleates in the ambient false vacuum and, then, expands. This
process was described by Coleman and collaborators [13–15] in a sequence of papers
computing the tunnelling rate via so-called bounce solutions: regular solutions of the
Euclidean field equations, which can, then, be readily extended to a gravitational setting
using the Gibbons–Hawking [16] and Israel [17] formalisms in GR.

An alternate decay process is via the Hawking–Moss (HM) [18] instanton—a more-
quantum-cosmology-motivated picture in which the universe instantaneously “jumps” to
a higher vacuum energy corresponding to the (maximum) turning point of the potential,
the idea being that it will then evolve cosmologically to lower, or true vacuum, energy values.

Both processes involve a Euclidean quantum gravity approach, in which the instanton
is a Euclidean solution, and the leading order contribution to the probability of decay is
the exponential of the tunnelling action—the difference between the initial false vacuum
state and either the bounce action in the case of bubble nucleation or the higher vacuum
energy universe action in the case of HM. The main difference between HM and Coleman
instantons is how one interprets the transition, particularly when considering the transition
to a real-time Lorentzian interpretation. The bubble nucleation picture has a natural analytic
continuation back to Lorentzian (real) time, and trajectories found in the construction
of the instanton rotate back to real time in a straightforward manner. The conventional
interpretation is that one takes a constant τ slice of the instanton that has vanishing extrinsic
curvature—i.e., is “static”—and, then, simply takes the analytically continued solution,
τ → −it, with the same initial conditions at τ = it = 0. The corresponding real time
trajectories can be found, for example, in [19,20]. The round Euclidean bubble transforms
into a hyperbolic expanding Lorentzian bubble, which rapidly expands into the false
vacuum. The HM transition, however, is more fundamentally quantum. There is no analytic
continuation and no “initial data surface”, as the whole universe has literally jumped into
a new vacuum state; rather, the new (unstable) local stationary point itself represents a new
configuration of the universe that then rolls down into a new region of parameter space in
a manner similar to (at least initially) the rolling of an inflationary universe.

In both the HM and bubble nucleation cases, the original computations assume the
maximal symmetry of the solutions: the bubble nucleates in a constant curvature back-
ground and preserves SO(D) symmetry (in D-dimensions); the HM instanton is simply the
difference in action between de-Sitter (dS) solutions with different Λs. Given that first-order
phase transitions in nature are typically initiated by impurities, it is clear that we need to
make this picture more realistic by breaking some of these symmetries. While the general
problem would require a full numerical calculation in GR, adding a black hole breaks a little
of the symmetry while retaining most of the calculational control, allowing a more-general
instanton to be constructed and the action computed [20–23].

Before proceeding with a summary of this picture, it is worth noting that, while
quantum mechanical tunnelling is well tested and experimentally verified, quantum field
theory tunnelling is not. As such, the approximation of taking only the suppressed exponent
and the semi-classical saddle point (on which gravitational calculations rely) is based on
parallels with other field theory computations, and the Euclidean approach for bubble
nucleation has been challenged [24]. For the purposes of this presentation, we note these
criticisms, but view analytic continuation of the “time” co-ordinate as a tool—to be used
when helpful and appropriate.
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1.1. Tunnelling à la Coleman

In this subsection, we review the classic picture developed by Coleman and others
describing vacuum decay via the mathematical tool of analytically continuing to imaginary
(Euclidean) time. Coleman’s intuitive picture was to view the bubble (approximately) as a
spherical bubble of true vacuum inside the false vacuum, where the bubble wall has an
energy density equal to its tension. The energetics of the bubble, then, are a gain in energy
from the interior being in a true vacuum, thus at lower energy than the false one, countered
by the energy cost of the thin wall. We are, therefore, balancing area and volume. We can
then find the instanton via a “Goldilocks” argument. Bubbles will fluctuate into existence,
but if they are too small, the large surface-area- to-volume ratio causes them to re-collapse.
On the other hand, while a very large bubble has a better area-to-volume ratio, the overall
cost, or action, of creating it lowers the probability. There is, therefore, a “just right” size,
where the action has an (unstable) stationary point— the Goldilocks bubble—which is the
instanton. In terms of a formula, the energy differential is the cost of the wall less the gain
in falling into true vacuum (a more-detailed derivation can be found in [13] and a heuristic
discussion also including gravity in [25]):

δE = 2π2R3σ − π2

2
εR4 (1)

where σ is the tension of the wall and ε is the difference in energy between the true and false
vacuum, assumed small. This energy shift is stationary at R = 3σ/ε, which corresponds
beautifully to a calculation of the full Euclidean field equations. Substituting this value of
R at the stationary point of (1) gives the bounce action as

B =
π2R3

2
(4σ − εR) =

27π2σ4

2ε3 (2)

which then gives the leading-order, or saddle point, contribution to the amplitude for
tunnelling P ∼ e−B .

Of course, this is not the full story: energy gravitates; therefore, we should include the
impact of an infinite volume of false vacuum. This was worked out in the paper of Coleman
and de Luccia (CDL) [15] using the thin wall approximation described above. As before,
the instanton is a solution of the Euclidean Einstein equations with a spherical bubble
separating true and false vacuum solutions. Computing quantum processes with gravity is
always delicate, as we do not have a consensus on a working theory of quantum gravity.
Here, we will be taking the partition function approach of Gibbons and Hawking [16]
and work within the saddle point approximation. It is worth noting that this focus on the
gravitational side of the problem does not address questions such as thermal corrections to
the scalar (Higgs) potential.

The gravitational action with a thin wall is

SE = − 1
16πG

∫
M+∪M−

d4x
√

g(R − 2Λ) +
1

8πG

∫
∂M+∪∂M−

d3x
√

hK +
∫
W

d3x
√

hσ (3)

and the CDL procedure is to construct a geometry that interpolates between the true
and false vacua across the wall, using the Israel junction conditions to calculate the wall
trajectory. To illustrate briefly, consider tunnelling from positive (false) to zero (true)
vacuum energy. A Euclidean de-Sitter space has the geometry of a four-sphere with radius
ℓ =

√
3/8πGε, and zero vacuum energy is just flat Euclidean R4:

ds2 =

{
dρ2 + ℓ2 sin2(ρ/ℓ)dΩ2

III false (de-Sitter)
dr2 + r2dΩ2

III true
(4)



Particles 2024, 7 147

The polar coordinates are chosen to centre on the wall, which sits at r0 = ℓ sin(ρ0/ℓ) = R,
which has an induced metric:

hab = gab − nanb (5)

where the normal na is proportional to dρ or dr. The energy momentum of the wall is σhab,
which is related to the jump in extrinsic curvature via the Israel junction conditions:

K+
ab − K−

ab = − 1
R

(
1 −

√
1 − R2

ℓ2

)
hab = −4πGσhab (6)

Writing σ̄ = 2πGσ, this is solved by

R0 =
4σ̄ℓ2

1 + 4σ̄2ℓ2 (7)

which can, then, be substituted into the Euclidean action to obtain

BCDL = SE(instanton)− SE(dS) =
πℓ2

G
16σ̄4ℓ4

(1 + 4σ̄2ℓ2)2 (8)

Noting the expressions for ℓ and σ̄, we see that this expression

BCDL =
27π2σ4

2ε3(1 + 6πGσ2)2 (9)

has the correct G → 0 limit (2).

1.2. Seeded Tunnelling

The description of tunnelling given above is extremely idealised with maximal sym-
metry and no inhomogeneity; however, most first-order phase transitions are triggered by
impurities in the system. Taking this idea on board, Refs. [20–23] considered a gravitational
impurity, in the guise of a black hole, that breaks the maximal symmetry, but retains
enough symmetry to allow analytic analysis in the case of the thin wall. Black-hole-seeded
tunnelling in Einstein gravity is recapped in this subsection to set the stage for the inclu-
sion of the GB term. We show the comparison rate between Hawking evaporation and
tunnelling, as well as the HM instanton.

The instanton geometry now becomes that of a thin wall solution interpolating be-
tween two different Schwarzschild black holes with different cosmological constants.
The problem of finding the geometry of a wall in the presence of a bulk black hole re-
duces to a Birkhoff theorem, which was first generalised to arbitrary Λ and black hole
curvature in [26] (and arbitrary dimension in [27]), where a domain wall was also included
in the analysis. The integrability of the vacuum Einstein equations shows that the general
solution is comprised of two exact Schwarzschild (A/dS) geometries separated by a do-
main wall, which follows a possibly dynamical trajectory R(λ) centred with respect to the
black holes.

ds2 =

 f+(r)dτ2
+ + dr2

f+(r)
+ r2dΩ2

II R > R(λ)

f−(r)dτ2
− + dr2

f−(r)
+ r2dΩ2

II R < R(λ)
(10)

with
f±(r) = 1 − 2M±

r
− Λ±

3
r2 (11)

It is straightforward to find solutions to the Israel junction conditions, and typically, for
each seed mass M+, there is an allowed range for M− for the given vacuum energy differ-
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ential. Although the methodology for computing the action is slightly distinct depending
on the sign of Λ, the final result for the instanton action is relatively simple [21]:

B =
A+

4G
− A−

4G
+

1
4G

∮
dλ
{(

2R f+ − R2 f ′+
)

τ̇+ −
(

2R f− − R2 f ′−
)

τ̇−
}

(12)

It is, then, easy to see that, for each M+, there is a unique M− that minimises this
action, hence dominates the tunnelling amplitude. In [21], it was shown that, for small M+,
this minimal M− vanishes; hence, these instantons are perturbed CDL bubbles, whereas,
for larger M+, there is a remnant black hole, with a mass determined by M+, Λ+ and Λ−,
this latter instanton being independent of Euclidean time. As a static solution, the action of
these instantons is particularly simple and is just the entropy change in the geometry:

Bs = S+ − S− (13)

which corresponds neatly to a Boltzmann suppression for a tunnelling that decreases entropy.
In [20,22,23], the thick wall versions of these instantons were constructed numerically

to explore the impact on Higgs vacuum tunnelling, with the result that the black hole
could potentially drastically increase the probability of vacuum decay. In the case of a
black-hole-seeded phase transition, the key comparison is with the rate of evaporation of
the black hole, which is proportional to 1/M3, thus might be expected to be dominant at
all scales; however, the prefactor of this power law, computed by Page [28], is suppressed,
so the question is more subtle. In fact, when computing the area difference between seed
and remnant black holes, the mass screened by the thick Higgs bubble is significantly less
than the mass of the seed black hole, so the entropy difference is, to a good approximation,

B = π(r2
s − r2

r ) ∼ 4π(Ms + Mr)(Ms − Mr) = 8πMsδM (14)

Estimating the instanton prefactor using the scale of the black hole seed gives this
branching ratio as [25]

ΓD
ΓH

∼ 88M3/2
√

πδMe−4πMδM (15)

which is sketched in Figure 1 and corresponds well with the figures in [20,23], which were
obtained by numerical evaluation.

Finally, an alternate description of vacuum decay is given by the HM [18] instanton.
This type of decay applies to potentials that have a very flat barrier to decay, and the
transition occurs from the local false vacuum minimum to the top of the potential barrier,
from which the universe can roll to lower true vacua. The HM rate is, then, given by
ΓF→T ∼ e−B, where B is simply the difference in the Euclidean actions of the two vacuum
de-Sitter spacetimes:

IHM = IT − IF = SF − ST =
π

G

[
ℓ2

F − ℓ2
T

]
(16)

which, again, is a Boltzmann factor related to the drop in entropy incurred by the cosmo-
logical horizon area decreasing. The corresponding process for the black hole Hawking–
Moss (BHHM) instantons was considered in [29,30], where the action includes the black
hole horizon:

BF→T = IT − IF = [SCH + SBH ]F − [SCH + SBH ]T . (17)

By using the reparametrisation:

rc =
2√
3
ℓ cos

(
π
3 − b

)
, rh =

2√
3
ℓ cos

(
π
3 + b

)
, b =

1
3

cos−1

(
3
√

3GM
ℓ

)
. (18)
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the BHHM transition action can be compactly expressed as

B = π
[

4
3
(
ℓ2

F − ℓ2
T
)
− 2

3 ℓ
2
F cos(2bF) +

2
3 ℓ

2
T cos(2bT)

]
(19)

So, for example, as M runs from 0 to its Nariai maximum ℓ/3
√

3, b drops from π/6 to
0 and the action drops from πℓ2 to 2πℓ2/3. It is, therefore, easy to see that, in tunnelling
from a black hole seed to a pure de-Sitter state, the action drops; therefore, black holes
increase the probability of a transition. The full details can be found in [30].

1 10 100 1000 104 105 106
M/MP

104

108

ΓD/ΓH

10-3 10-4 10-5

Figure 1. The approximation for ΓD/ΓH as given in (15) as a function of seed mass for the differential
seed ratio masses indicated.

2. Seeded Decay in Einstein Gauss–Bonnet Gravity: Bubble Nucleation

While most of the phenomenologically relevant computations for vacuum decay
have been discussed in four spacetime dimensions, it is also interesting to consider how
extra dimensions can impact vacuum decay. General considerations of how large extra
dimensions could impact black hole seeded vacuum decay were explored in [23,31,32]
for both noncompact and braneworld-type scenarios in the context of Einstein gravity.
However, allowing for the dimensionality of spacetime to be arbitrary raises the possibility
of including higher curvature terms in the action. Here, we focus on the addition of the
GB term [2–4] as it is the lowest-order Lovelock term [5], which still retains second-order
equations of motion. Further, since the computation of instanton actions frequently involves
a background subtraction, we require a Birkhoff-type theorem, so that we know that the
relevant background is unique. The Lovelock terms satisfy this condition, whereas generic
higher-order terms do not (as well as typically suffering from a lack of well-posedness). In
4D, the GB term is a topological invariant and does not alter the dynamics of the theory;
however, it can potentially change the action, hence is of relevance to a tunnelling process,
where the action determines the probability of decay. We first briefly review the derivation
of the equations of motion from [33] before extending the discussion to include dynamical
bubbles. By expanding in the GB parameter, α, we are able to show that the equations of
motion can be re-cast in the same form as the Einstein equations of motion, albeit with
different details in the coefficients. We recap the computation of the action, then discuss a
test case example in arbitrary dimensions in detail, discussing the impact of the α term. We
finally comment on a peculiarity of EGB black holes in 5D, namely the presence of a “mass
gap” in the black hole family of solutions.
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2.1. Seeded Bubbles in Einstein-Gauss–Bonnet

The gravitational action of Einstein-Gauss–Bonnet (EGB) gravity is

I =− 1
16πG

∫
M

dDx
√

g[R− 2Λ + αLGB]

LGB =R2 − 4R2
ab + R2

abcd

(20)

where α is a dimensionful coupling constant, here taken to be positive. As in the pure
Einstein case described previously, we look for bubble trajectories in the thin wall approxi-
mation, where the vacuum transitions completely and instantaneously across the wall, as
this will capture the impact of the additional GB term on the process.

As before, there is a Birkhoff theorem for EGB gravity in the presence of a brane [6,34,35],
and the brane junction conditions were discussed in [36], although were only explicitly
derived for Z2 symmetry across the wall. The bubble spacetime is again a wall separating
two spherical vacuum solutions with a seed and remnant mass black hole as in (10), but
with dΩ2

II → dΩ2
D−2 as appropriate for a higher-dimensional solution and with the metric

potential now [37–39].

f± = 1 +
r2

2α̃

(
1 −

√
1 +

8α̃Λ±
(D − 1)(D − 2)

+
4α̃µ±
rD−1

)
, (21)

with α̃ = (D − 3)(D − 4)α and µ related to the mass through the Myers–Perry formula [40]:

µ =
16πGM

(D − 2)AD−2
, (22)

and AD−2 being the area of a unit (D − 2)−sphere.
The action of the bubble is the sum of the parts from the bulk on each side given

by (20) together with the wall piece, including both the wall tension and the geometrical
Gibbons–Hawking-type terms, which now include additional EGB contributions [36,41]:

Ibrane =
∫

brane
dD−1x

√
h
(

σ +
1

8πG

(
∆K − 2α

[
2Gab∆Kab − ∆J

]))
(23)

where J is the cubic extrinsic tensor:

Jab =
1
3

(
2KKacKc

b + KcdKcdKab − 2KacKcdKdb − K2Kab

)
. (24)

The generalised Israel junction conditions at the wall are obtained by varying this action:

∆Kab − ∆Khab + 2α
[
3∆Jab − ∆J hab − 2Pacbd∆Kcd

]
= 8πGσhab (25)

with
Pabcd = Rabcd + 2Rb[chd]a − 2Ra[chd]b +Rha[chd]b (26)

the divergence-free part of the intrinsic Riemann tensor. The equations of motion, while
simple for a spacetime reflection symmetric around the wall now become far more involved
when we have the situation of a false–true vacuum and the interior–exterior of the bubble.
Writing the general wall trajectory as R(λ) and computing the extrinsic and intrinsic
curvatures, (25) becomes

− 8πGσR
(D − 2)

= −2σ̄R =

(√
f+ − Ṙ2 −

√
f− − Ṙ2

)[
1 +

2α̃

R2 − 4α̃

3
Ṙ2

R2

]
− 2α̃

3R2

(
f+
√

f+ − Ṙ2 − f−
√

f− − Ṙ2
) (27)
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As with the Einstein case, this equation can be manipulated into a Friedmann-like equation
for R, which is most compactly written in terms of the variable X = (1− Ṙ2)/R2 [33]:

0 = α̃2X3 + α̃X2

(
1
6
−

(S2
+ − S2

−)
2

256α̃σ̄2

)

+
X
4

(
3 −

3(S2
+ + S2

−)

8
−

(S2
+ − S2

−)(3S2
+ − 3S2

− + S3
+ − S3

−)

192α̃σ̄2

)

+
(8 − 3S2

+ − 3S2
− − S3

+ − S3
−)

64α̃
−

(3S2
+ − 3S2

− + S3
+ − S3

−)
2

9216α̃2σ̄2 − 9σ̄2

16

(28)

where, for compactness of notation, we introduce

S± =

√
1 +

8α̃Λ±
(D − 1)(D − 2)

+
4α̃µ±
rD−1 =

√
1 +

4α̃

r2 (1 − f±E) (29)

which is related to the standard Einstein potential fE = 1− µ/rD−3 − 2Λr2/(D− 1)(D− 2).
While one can in principle solve the cubic (28) to find the solution for X (by identifying

the root that is connected to the Einstein solution as α → 0), it proves useful to identify
the O(α) correction to the trajectories by expanding (28) in α̃ to obtain a Friedmann-like
equation for R:

Ṙ2

R2 =
f̄E

R2 − (∆ fE)
2

16R4σ̄2 − σ̄2 +
α̃

3R4

{
3( f̄E − 1)2 +

(∆ fE)
2

4
+ 12R2σ̄2(1 − f̄E) + 8R4σ̄4

}
(30)

where f̄E = ( f+ + f−)/2.
Note that both this O(α) equation, as well as the original cubic in X are quadratic in

Ṙ. This means that, to obtain the real time evolution of the bubble once it has nucleated,
we simply analytically continue back to Lorentzian time, τ → −it, to determine the
real time evolution of the bubble. A “round” Euclidean bubble will correspond to a
hyperbolic Lorentzian solution, where the bubble starts to expand upon formation. A
“static” Euclidean bubble will nucleate to an initially static Lorentzian bubble, but this is
an unstable configuration, so we expect that, on average, half of these bubbles will, then,
expand to complete the phase transition.

From (30), we can manipulate the equation of motion for R in a fashion similar to [21],
where the effective scale of R was defined in terms of parameters γ and a (the notation
of [21] was α, which we have modified here to avoid confusion). To include the GB
parameter α, define:

σ̄2
e = σ̄2(1 − 8α̃σ̄2/3) ,

1
ℓ2

e
=

2∆Λ(1 − 4α̃σ̄2)

(D − 1)(D − 2)
, γe =

4σ̄eℓ2
e

1 + 4σ̄2
e ℓ

2
e

, (31)

and

a2 = 1 +
2Λ−γ2

e
(D − 1)(D − 2)

[
1 − 4α̃σ̄2 − 2Λ+α̃

(D − 1)(D − 2)

]
(32)

Now, defining R̂ = aR/γe and λ̂ = aλ/γe, the equation of motion takes the form:

(
dR̂
dλ̂

)2

= 1 −
(

R̂ +
Ĉ

R̂D−2

)2

− B̂ − 2Ĉ
R̂D−3

(33)
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where

B̂ =

(
a

γe

)D−3[
µ̄

(
1 − 4α̃σ̄2 − 4Λ̄α̃

(D − 1)(D − 2)

)
+

∆µ

8σ̄2
e ℓ

2
e

]
Ĉ =

(
a

γe

)D−2[ (∆µ)(1 − 4α̃σ̄2)

4σ̄e
− 2α̃

µ+µ−σ̄e

∆µ

] (34)

This format is the same as for the Einstein case, although the coefficients are corrected
by α̃; thus, the principle for solving the instanton equations is the same. The qualitative
picture, of the preferred instanton being a modified CDL bubble with a black hole seed,
but no remnant for a small mass, and a static instanton with a remnant black hole for
larger masses remains; however, the relation between the seed and remnant masses will be
modified by α̃.

2.2. Bubble Actions

While the general cubic equation for X is algebraically involved, we can still derive an
expression for the action of a general instanton in terms of the wall trajectory R(λ), then
specialise to the case where R(λ) = R0 is constant. We also expect that the ratio γe/a will
still broadly represent the scale of the wall motion.

To compute the action, the procedure is the same as for the Einstein case, where we first
compute the action of the background (seed) geometry with the proviso that we compute
at an arbitrary periodicity of Euclidean time, so that we can match to the exterior of the
bubble spacetime. As with the Einstein instanton, this shifting of periodicity means we
have to regularise the resulting conical deficit at the horizon, a procedure detailed in [33].
The result is that we can write the seed action as

Iseed = Ic − SBH(M+). (35)

where SBH is the entropy of the black hole

SBH =
AD−2rD−2

h
4G

(
1 +

2(D − 2)α̃
(D − 4)r2

h

)
(36)

and Ic represents a “large r” contribution, which depends on the asymptotic structure of
the spacetime. While we do not need to know its exact form, as this term will be the same
for both bubble and seed spacetimes, its general form is:

Ic =

{
βAD−2
16πG rD−4

c f ′(rc)
(

r2
c +

2(D−2)α̃
(D−4) (1 − f (rc))

)
Λ ≤ 0

−Scos Λ > 0
(37)

For the bubble geometry, the fact that the bulk integral (20) reduces to a total derivative
on shell means that it only contributes an entropy term at the black hole horizon rh, the same
term as the seed at the large r cutoff rc, together with contributions evaluated on each side
of the wall:

Ibulk,W =− AD−2

16πG

∫
dλRD−4

[
f ′+ ṫ+

(
R2 +

2(D − 2)α̃
(D − 4)

(1 − f+)
)

− f ′− ṫ−
(

R2 + (1 − f−)
)]

.
(38)

Meanwhile, the wall integral (23) can be manipulated using the trace of the Israel
equations to give

IW =
AD−2

8πG

∫
dλ

RD−2

(D − 1)

(
∆K − 6α̃

(D − 3)(D − 4)

[
2Gab∆Kab − ∆J

])
. (39)
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Giving the total wall contribution as

Iwall =
AD−2
8πG

∫
dλRD−2∆

[
− 4(D−2)α̃

(D−4)
R̈
R K1 +

(
Ṙ2

f K0 − ṫR̈
)(

1 + 2(D−2)α̃(1− f )
(D−4)R2

)]
. (40)

Pulling together all these formulae, the instanton action is computed as

IB = Ibubble − Iseed = SBH(M+)− SBH(M−) + Iwall . (41)

In other words, as with Einstein gravity, the instanton action consists of an entropy
differential together with a dynamical wall integral, which was shown in [33] to vanish
for the static instanton. Thus, as for Einstein gravity, the dominant decay process for most
black holes is the static instanton and has a probability of

P ∼ exp[−(Sseed − Sremnant)/h̄] (42)

In 4D, although the GB term has a vanishing contribution to the gravitational dynamics,
it does change the action of a solution due to the modified expression for entropy:

SBH =
πr2

+

G

(
1 +

4α

r2
+

)
=

πr2
+

G
+

4πα

G
(43)

This constant shift is not relevant for the thermodynamics of the black hole [42],
and if tunnelling from a seed to a remnant black hole, these terms will cancel; however,
if we have a topology-changing process such as tunnelling from a seed to no remnant,
then this term will be relevant. Thus, since it is possible to show that a bubble cannot
nucleate with a black hole inside from a pure false vacuum [33], this term always suppresses
topology-changing transitions.

In higher dimensions, the GB parameter will modify the wall trajectory, as well as
the action, so in order to extract the impact of the GB correction, we will explore how
the critical static bubble is impacted by α. The critical static bubble is the instanton with
the lowest action for a given wall tension σ. It connects the modified CDL branch, which
represents the preferred instanton at very low seed masses, where the interior of the bubble
has no black hole, to the static branch, where there is both a seed and remnant black hole;
the critical instanton is, therefore, static, but has no remnant, and the seed mass is fully
determined by the vacuum energies and wall tension.

For simplicity, we will explore tunnelling from a positive vacuum energy with the seed
black hole to the Minkowski vacuum. Therefore, ∆µ = µ+ = 2µ̄, and ∆Λ = Λ+ = 2Λ̄.
Thus, a = 1, and the parameters in (33) simplify to

B̂ =
µ+(1 − 4α̃σ̄2)

2σ̄eγD−2
e

= 2Ĉ (44)

Thus, the static instanton constraints read

1 =

(
R̂ +

Ĉ
R̂D−2

)2

0 = 2

(
R̂ +

Ĉ
R̂D−2

)(
1 − (D − 2)

Ĉ
R̂D−1

) (45)

identical in form to the Einstein case. These are solved by

Ĉ =
(D − 2)D−2

(D − 1)D−1 ; R̂ =
(D − 2)
(D − 1)

(46)
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Hence,

µcrit =
4σ̄eγD−2

e
(1 − 4α̃σ̄2)

(D − 2)D−2

(D − 1)D−1 (47)

from which one can see that the critical instanton seed mass increases with α̃ by expanding
the expressions for the effective parameters σ̄e, γe:

δµcrit
µ0

=
8
3

α̃σ̄2[1 + (D − 2)(1 − 2σ̄γ0)] (48)

where the subscript “0” indicates the values of the various functions at α̃ = 0 and µ0 is the
critical mass at α̃ = 0:

µ0 =
(4σ̄ℓ0)

D−1ℓD−3
0

(1 + 4σ̄2ℓ2
0)

D−2
(D − 2)D−2

(D − 1)D−1 (49)

However, the instanton action is determined by the entropy of the seed mass, which,
in turn, is determined by the horizon radius, which actually decreases as α̃ is switched
on. Thus, the actual incremental change in the action is a combination of these effects
and further complicated by the nature of the polynomial determining the horizon in the
various dimensions. Computing the incremental change in the horizon radius and critical
mass, we arrive at an expression for the entropy shift at small α̃ ≲ µ

2/(D−3)
0 :

δS
S0

=
(D − 2)α̃
r3

0 f ′E(r0)

(
2r0 f ′E(r0)

(D − 4)
+

8µ0σ̄2

3rD−5
0

[1 + (D − 2)(1 − 2σ̄γ0)]− 1

)
(50)

The shift in entropy is proportional to α̃, as expected; the other key dependence is on
σ̄ℓ0, which, in turn, feeds into µ0. As discussed in [22], 2σ̄γ0 < 1; hence, the critical mass
becomes very strongly damped for low σ̄ℓ at large D; hence, the range of α̃ for which (50)
is relevant becomes small. This is reflected in the range for α̃ℓ2

0 in Figure 2.
Exploring the entropy change (50) for various D shows that the shift in entropy with α̃

is positive. Thus, the GB term lowers the tunnelling amplitude. The picture for 5D is more
nuanced, however. In 5D, the horizon radius can be simply found as

rh =
ℓ0√

2

(
1 −

√
1 +

4(α̃ − µ)

ℓ2
0

)1/2

(51)

Clearly, rh → 0 as µ → α̃, i.e., at finite values of µcrit; hence, σ̄, and there is no
horizon for µ < α̃. Thus, we have an interesting “mass gap” in the 5DGB black hole family.
Spacetimes with µ < α̃, i.e., ADM mass below 3πα/4G, do not have a horizon, but instead
have a solid angle deficit as r → 0. This phenomenon has been noticed in the study of
gravitational collapse in EGB gravity [43–45]. This makes 5D crucially different from higher
dimensions, in that, while the entropy of the seed does initially increase with α̃, for low σ̄ℓ0,
we see that the entropy function (calculated exactly, rather than using (50)) turns over and
decreases, eventually dropping to zero as this mass limit is hit. We, therefore, expect that
the semi-classical approximation should not be valid for small seed black holes.

In Figure 2, we show the variation in entropy of the seed black hole (which directly
translates into the instanton action) as α̃ is switched on for both 5 and 6 dimensions.
Although the generic picture is that the entropy increases as α̃ increases, the one exception
is for D = 5 and smaller σ̄. As discussed above, caution should be used in pushing to too
low a σ̄.
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Figure 2. The shift in entropy of the critical instanton in 5 (left) and 6 (right) dimensions as a function
of α̃/ℓ2 for the given bubble wall tensions indicated, σ̄ = 0.1, 0.125, 0.15, 0.175, respectively.

3. Seeded Decay in Einstein Gauss–Bonnet Gravity: Hawking–Moss

In this section, we briefly review Hawking–Moss tunnelling with a GB term [33],
expanding on the distinctiveness of the 5D results. The HM instanton is a transition from a
false vacuum to a higher vacuum energy, from which the universe can roll to lower true
vacua. While it is not possible to tunnel from no black hole to a black hole for bubbles, this
can happen for BHHM transitions.

The HM and BHHM transition probabilities are easy to compute, as one is comparing
the actions for Schwarzschild GB de-Sitter geometries, where the cosmological constants
are determined by the vacuum energy in the false vacuum (denoted by the subscript F) and
the vacuum energy at the local maximum of the potential (denoted T) that the universe
instantaneously jumps to in this transition. The action of a Schwarzschild GB dS geometry
was shown in the previous section to be

ISGBDS = −SCH − SBH (52)

i.e., minus the sum of the entropies of the cosmological and black hole horizons; thus, the
tunnelling rate, dominated by the Boltzmann factor, ΓF→T ∼ e−B, is given by

BF→T = IT − IF = [SCH + SBH ]F − [SCH + SBH ]T

=
AD−2

4G

[
r(D−2)

CF + r(D−2)
BF − r(D−2)

CT − r(D−2)
BT

+
2(D − 2)α̃
(D − 4)

(
r(D−4)

CF + r(D−4)
BF − r(D−4)

CT − r(D−4)
BT

)] (53)

where (for example) rCT stands for the cosmological horizon radius of the nucleated
universe at the top of the potential and rBT for the black hole horizon radius in the
seed universe.

In general, in 4D, the GB term does not affect the BHHM transition; however, it will
suppress tunnelling from a black hole seed to a pure GB de-Sitter state. This gives a lack of
continuity in the most-likely instanton, where tunnelling to an infinitesimally small mass
black hole is preferred over tunnelling to the pure vacuum, although one should not apply
this semi-classical approach for black holes around the Planck scale. On the other hand, note
that, now, tunnelling from a pure de-Sitter false vacuum to a Schwarzschild–de-Sitter (SdS)
spacetime at the top of the potential is allowed as an HM transition. For these (topology-
changing) configurations, the action is now lowered by δI ∼ 4α/G − 2πℓM relative to
the pure (black-hole-free) HM transition; thus, again, there is a preferred transition to a
vanishingly small mass black hole universe. While one might imagine that this small black
hole would rapidly evaporate, there is a conflict in constructing a semi-classical solution
with a Planckian-scale black hole.
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In higher dimensions, the impact of seeded decay in BHHM transitions can be com-
puted straightforwardly from (53) (once the horizon radii are found), and the results are
shown in Figures 3 and 4 for 5D and 6D, respectively. An interesting feature appears in 5D
due to the “mass gap” for black hole solutions. As already noted, in D = 5, there is a lower
limit to the mass a black hole can have, as the horizon radius rh → 0 as M → 3πα/4G. Below
this mass, the solution does not have a horizon, but, instead, contains a solid angle deficit
as r → 0. This causes the dependence of the HM tunnelling amplitude with seed mass to
have a discontinuity in its derivative (though it is doubtful this is physically relevant).

Looking in a bit more detail, the black hole horizon radius is given by (51), where
α̃ = 2α and µ = 8GM/3π. Thus, as the critical mass MC = 3πα/4G is approached,
the black hole horizon radius vanishes as

rb ∼
√

2α

Mc

√
M − MC (54)

giving rise to the kink in the plot. Since there is no black hole horizon for spacetimes with
mass less than this critical value, there is no entropy contribution from the solid angle
deficit at the origin. The only way the mass contributes to a varying action is through its
impact on the cosmological horizon radius.

As with the Einstein case, the BHHM action increases with the remnant mass, indicat-
ing a larger remnant black hole slows down the transition, and including a black hole seed
lowers the action, indicating a catalysis of the HM process. Figures 3 and 4 show the modi-
fied BHHM instanton actions in 5D and 6D, respectively. They are qualitatively the same as
for the Einstein case [30], except for the mass gap in 5D. The 6D plot is representative of the
situation for general higher dimensions. In both plots, solid blue lines indicate a transition
to a given remnant mass and the cyan line to no remnant mass. The red line corresponds to
the cosmologically equal area limit and the dots to tunnelling from a pure dS false vacuum.
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Figure 3. B/BHM as a function of seed mass in 5D for parameter values ℓF = 5, ℓT = 4.5, and α = 0.2,
where the mass gap is MC ≈ 0.06MN . The black line indicates MC. (Figure 2 from [33]).
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Figure 4. B/BHM as a function of seed mass in 6D shown for parameter values ℓF = 5, ℓT = 4.5 and
α = 0.2 (Figure 3 from [33]).

The Hawking–Moss instanton is in a very different category to the first-order phase
transition of bubble nucleation. The formation of bubbles, while a quantum process, is
readily understandable as a phase transition through analogy with common physical pro-
cesses, such as boiling water. The Hawking–Moss transition, however, is best understood
with a quantum cosmology interpretation. Instantaneously, the whole universe fluctuates
into what intuitively seems to be a higher energy state (though, see the discussion around
the thermodynamic free energy in [30]). Therefore, there is no immediate Lorentzian con-
tinuation of the process, which is best viewed as a Boltzmann-suppressed jump. Instead,
one imagines that, once the universe has taken this jump, it simply continues to roll down
the far side of the potential in a classical Lorentzian evolution, akin to an inflating universe.

4. Conclusions

In this paper, we reviewed and extended work on seeded tunnelling in Einstein and
EGB gravity. From the Euclidean saddle point approximation, black holes considerably
enhance the probability of vacuum decay, and we showed that these results are robust
to the addition of higher-order Gauss–Bonnet gravitational terms in the action, as well
as extra dimensions. Interestingly, a more-generic higher-order term in the gravitational
action would be problematic from this Euclidean saddle point approach. The saddle
point instanton computation requires a background subtraction, i.e., an evaluation of
a “background” geometry with the same asymptotics as the instanton. We rely on the
uniqueness of the Schwarzschild geometry to perform this subtraction; this arises due to a
Birkhoff theorem for spherically symmetric backgrounds. In the absence of such a theorem,
we no longer have the uniqueness of this background [46,47]. Therefore, it might be that
the simplest solution in a particular higher-order theory is not, in fact, the lowest Euclidean
action solution that one should be using for background subtraction.

The study of bubble nucleation in EGB gravity was presented using the thin wall
approximation, as the aim was to investigate the gravitational aspects of the problem. The
equations of motion obtained by using the thin wall approximation are a good approxima-
tion when the potential barrier is sharp and transitions are rapid and complete. However,
Higgs vacuum decay is, in fact, an extended thick wall region in which the Higgs deviates
from its false vacuum SM value; thus, the Boltzmann suppressed static branch (where the
universal result (42) applies) will be the dominant saddle point decay. Given the apparently
thermal nature of this instanton, a valid concern is that, if the tunnelling is taking place in a
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region around a primordial black hole, then we should be taking into account the thermal
corrections to the Higgs potential.

How to precisely compute the thermal effect, however, is a difficult question, as it
requires going beyond the saddle point and including not only field theory corrections,
but also considering the gravitational impact. There have been several studies on this
problem [48–53], exploring whether the thermal fluctuations stabilise the Higgs potential
and, thus, preclude decay. Qualitative arguments might indicate that tunnelling would be
suppressed or removed, but these do not consider potentially critical pre-factors and do
not address the gravitational aspects of the problem in detail. Alternately, studies using a
Euclidean approach or in lower dimensions leave a more-mixed picture. One problem is
that the thermal corrections to the Higgs potential are only part of the question; one has to
consider the cosmological setting more holistically to obtain a more-physically complete
picture. In [54], the decay was studied allowing for an interstellar medium, which will be
impacted by the radiation from an evaporating black hole. A hot spot forms, surround-
ing the primordial black hole, and provides a constant (on the evaporation/tunnelling
timescale) temperature higher than the universe, but lower than the Hawking temperature
of the black hole. This gives rise to thermal corrections, which tend to suppress decay while
the conical deficits enhance the decay rate. The realistic environment, as well as the gravita-
tional impacts from black holes suggest that the suppression from thermal corrections is
not complete.

Moving to the higher dimensions and higher curvature gravity considered here,
interestingly, the GB term lowers the temperature of a black hole of a given mass relative
to its Einstein value. This would further mitigate any thermal corrections to the Higgs
potential, hence lessening the relevance of such corrections. We also note that, if there are
any couplings of the Higgs to the GB term (analogous to the conformal couplings such as
considered in [55]), then even in 4D, the GB will now acquire some dynamical input into
the different decay channels; this is an interesting and open question.
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