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Abstract: Glioblastoma (GBM) is the predominant primary malignant brain tumor. Metformin, a well-
known antidiabetic medication, has emerged as a potential therapeutic candidate in the treatment of
GBM. We have herein investigated two aspects of the effect of MTF on GBM cells: the effect of MTF
on GBM cell viability, as previous studies have shown that MTF can selectively affect human GBM
tumors; and the immunomodulatory effect of MTF on GBM, as there is evidence that inflammation
is associated with GBM growth and progression. The human GBM cell line (U87) was exposed to
various doses of MTF (1 mM, 20 mM, and 50 mM), followed by examination of cell viability and
inflammatory mediator secretion at various time points. We observed that MTF treatment exerted a
dose-response effect on glioblastoma multiforme cell viability. It also had an immunomodulatory
effect on GBM cells. Our study identified several mechanisms that led to the overall inhibitory effect
of MTF on human GBM. Further inquiry is necessary to gain a better understanding of how these
in vitro findings would translate into successful in vivo approaches.
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1. Introduction

Glioblastoma (GBM) is the predominant primary malignant brain tumor, notorious
for its dire prognosis, with median overall survival spanning a narrow range from 14.6 to
26.3 months in clinical investigations [1]. Its hallmark traits encompass highly invasive
growth, augmented angiogenesis, and profound local immunosuppression, underpinning
the challenges of effective therapeutic intervention [2,3]. A pivotal factor contributing to
therapy resistance lies in the presence of brain tumor initiating cells (BTICs), a cell subset
adept at self-renewal and diverse cellular differentiation [4].

Metformin, a well-known antidiabetic medication, has emerged as a potential ther-
apeutic candidate in the treatment of GBM. Derived from the legume Galega officinalis,
metformin (MTF) was originally intended to be utilized as an antiviral drug against in-
fluenza. Its hypoglycemic properties were discovered to be one of its side effects [5]. Since
then, it has been used as the standard treatment for type 2 diabetes mellitus (T2DM) as it
decreases glucose production in the liver [6]. MTF has a primary effect at the level of the
cellular respiratory chain [7], which helps explain its effects on various cell types [8].

Aside from its typical use in treating T2DM and metabolic syndrome, MTF has im-
munomodulatory activity that reduces the production of pro-inflammatory cytokines by
macrophages and neutrophils [9]. In fact, MTF’s anti-inflammatory effect, regardless of dia-
betes status, has been shown to be beneficial in patients with COVID-19 [9-11]. MTF is also
the first drug of choice for lowering glucose in diabetic patients with active tuberculosis,
which is characterized by harmful inflammation that destroys granuloma architecture [12].
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MTF exhibits promising anti-neoplastic effects, particularly in gliomas [13]. It has been
shown to inhibit the growth of human GBM cells and enhance the therapeutic response to
this neoplasia [14]. Although its exact mechanism of action is yet to be determined, numer-
ous retrospective studies have identified a trend toward improved survival in glioblastoma
patients treated with MTF [15]. A systematic review of five studies analyzing MTF’s poten-
tial as an antineoplastic agent in brain tumors showed prolonged survival in primary or
secondary glioblastoma patients [16]. Only one of the five studies did not demonstrate that
the use of MTF was associated with overall survival or prolonged free survival, possibly
due to differences in MTF dosage, duration of therapy, and patient population [17]. A very
recent report showed a survival benefit with MTF use in patients with glioblastomas [18].

The primary mechanism of action of MTF involves the inhibition of complex-I within
the respiratory chain, resulting in altered AMPK and mTOR signaling pathways [7,19].
Besides its antioxidant, immunomodulatory, and antiviral capabilities, MTF can induce
cell cycle arrest in certain cell types [20]. An in vitro study evaluating the anti-proliferative
activity of MTF on four human GBM showed statistically significant inhibition of cell
viability after 24 h of MTF treatment and maximal reduction of cell viability after 72 h [21].
In all four tumor-initiating cell (TIC) cultures of GBM, MTF exerted cytostatic inhibition of
growth at concentrations up to maximal inhibitory concentrations (IC50). At higher con-
centrations, cytotoxic effects were observed. Furthermore, MTF significantly reduced the
number of cell divisions [21]. Its impact on GBM spans inhibition of proliferation, invasion,
induction of apoptosis, autophagy, and differentiation of BTICs, thereby augmenting radio-
or chemosensitivity while sparing mature neurons [14,19,22].

The effect of MTF on GBM cell viability, showing that MTF can selectively affect
human GBM tumors, and the immunomodulatory effect of MTF on GBM cells, providing
evidence that inflammation is associated with GBM growth and progression [23-25], have
been reported independently. We herein investigated if these two aspects of the effect of
MTF on GBM were connected. Through investigation of the effect of MTF on glioblastoma
cell viability, we shall begin to explore its potential as a therapeutic agent.

2. Material and Methods
2.1. Cell Viability Assay

The human GBM cell line U87 (ATCC) at a density of 1 x 10° cells/mL was exposed
to various doses of MTF (1 mM, 20 mM, and 50 mM), followed by examination of cell
viability at various time points (1, 24, 48, and 72 h). The MTF doses and time points that
were incorporated as part of our assessment align with previous study designs in which
MTF treatment was associated with concentration-dependent growth inhibition [21].

For evaluation of cell viability, we used the LIVE/DEAD cell imaging kit (Invitrogen),
which uses the incorporation of the fluorescent dyes Syto6 and propidium iodide to distin-
guish between live and dead cells, respectively. Images were acquired using a fluorescence
microscope (Motic, Schertz, TX, USA), and the number of live vs. dead cells was processed
with Image] (NIH, Bethesda, MD, USA). Three composite fluorescent microscopy images
were taken from locations within the same well. The average of the three composite images
was used to determine live vs. dead cell counts. The quantification of live or dead cells was
performed blindly by two individuals to minimize human error and observer bias. Flow
cytometry was also used to further assess MTF’s effect on U87 cell viability using an Accuri
C6 flow cytometer and was analyzed using the Accuri C6 Plus software.

2.2. Immune Response Evaluation

We then proceeded to perform a multiplex ELISA using the Human Cytokine 29 Plex
(Millipore, Macquarie Park, Australia), which detects simultaneously 29 cytokines (EGF,
G-CSF, GM-CSF, IFN-o2, IEN-y, IL-1«, IL-13, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-
8, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IP-10, MCP-1, MIP-1x, MIP-13,
TNF-«, TNF-f3, VEGE, and Eotaxin/CCL11). Supernatants were collected from U87 cell
cultures following exposure to 1 mM, 20 mM, and 50 mM MTF for 1, 24, 48, and 72 h. Cell
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supernatant was collected from treated cells and centrifuged to remove cellular debris, and
the multiplex plate was run on a Luminex MagPix instrument (Millipore) following the
manufacturer’s instructions.

2.3. Statistical Analysis

Statistical group analysis (two-way ANOVA) was performed using GraphPad Prism 10
(GraphPad Software, San Diego, CA, USA). Statistical significance was defined as p-values
of <0.05.

3. Results
3.1. Metformin Treatment Has a Dose-Response Effect on Glioblastoma Multiforme Cell Viability

Our data showed that MTF decreased GBM cell viability in a dose-dependent manner.
Compared to untreated cells, GBM cultures treated with 50 mM of MTF resulted in a
significantly higher percentage of dead cells after 72 h (Figure 1). Cells that were treated
with a higher concentration of MTF (50 mM) showed a higher percentage of dead cells
compared to those that were treated with lower concentrations (i.e., 1 mM and 20 mM) at a
given time point (Figure 1). The percentage of dead to live cells increased as the exposure
time increased beyond 24 h in the 1 mM and 2 mM MTF-treated groups (Figure 1B).
Furthermore, cell viability evaluated by flow cytometry confirmed a significant decrease in
the viability of U87 cells treated with MTF for 72 h (Figure 1C). Untreated cells were used
as a control.
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Figure 1. Quantitative data on the human GBM cell line (U87) (A) dead cell counts and (B) percentage
of dead cells after exposure to MTE. The human GBM cell line (U87) was exposed to three different
doses of MTF (1 mM, 20 mM, and 50 mM), and cell counts were performed at various time points (1,
24,48, and 72 h). * p < 0.001 Two-way ANOVA. (C) Flow cytometry analysis of live vs. dead cells at
72 h after MTF treatment of U87 cells.

3.2. Metformin Has an Immunomodulatory Effect on GBM Cells

From a total of 29 analytes evaluated, we observed a reduction in the secretion of some
inflammatory biomarkers upon exposure to MTF: VEGF, GM-CSF, and MCP1. VEGF in
particular showed a significant reduction upon exposure to all three MTF concentrations
(1 mM, 20 mM, and 50 mM) compared to the untreated control group (0 mM). This reduction
in the immunoinflammatory profile of GBM cells was correlated with an increase in MTF
concentration at 72 h (Figure 2A). Some others, like IL-8, IL-1b, Eotaxin, GCSFE, and TNF-«,
showed a reduction mainly upon exposure to 50 mM of MTF (Figure 2B).
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Figure 2. Immunomodulatory effect of MTF. Decreased secretion of mediators upon MTF exposure
compared to control: (A) VEGF, GM-CSF, and MCP1. Decreased secretion of mediators upon exposure
to 50 mM of MTF compared to control (B) IL-8, IL-1b, Eotaxin, G-CSF, and TNF-a. ANOVA * p < 0.05;
*%

p <0.001.

4. Discussion

As previous studies have shown that MTF can selectively affect the growth of human
GBM [14,21], we decided to explore this effect along with any immunomodulatory effect of
MTF on GBM, as there is evidence that inflammation is associated with GBM growth and
progression [23-25].

We observed maximal cell death at 24 h in a dose-dependent manner at that time
point. Other groups have demonstrated a dose-dependent reduction of U87 cell viability
and cell proliferation with MTF at doses between 1 and 50 mM for 24 h [26]. Beyond
the 24-h mark, another study observed reduced cell viability in GBM TIC cultures in a
time-dependent manner [21], which was the reason for us to expand our time points to 72 h.
We are uncertain why cell death peaked at 48 h, leaving us to hypothesize the possibility
that MTF was first able to target bulk cells and then annihilate the remaining cells by
targeting GB-CSC. A point worth exploring further.
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One of the major drawbacks of in vitro studies suggesting MTF’s inhibitory effects on
glioma cells is that the MTF doses used are significantly higher than the concentrations
measured in the brains of patients [15]. Also, the dosage of MTF that was administered
was much higher than a standard anti-diabetic dose [17]. In vitro studies often used MTF
doses in the millimolar range [21], whereas MTF doses in the brains of diabetic patients
have been measured in the micromolar range [27]. Optimal dosing regimens of MTF as an
adjunct antineoplastic agent are still under investigation. A systematic review discovered
that the dosage of MTF for each study was either different or not indicated at all [16].

MTF has recently been linked to mTOR signaling, a potent cellular proliferation and
protein anabolism activator, via several mechanisms [14,28-30]. This results in a halting
effect of tumor growth progression.

Importantly, MTF has several anti-inflammatory and antioxidant properties (Figure 3).
MTF has been shown to decrease LPS-mediated inflammatory damage to the mouse
nervous system [31]. MTF has also been found to protect against neuronal apoptotic cell
death caused by trauma or even sepsis. This safeguard is hypothesized to be the result
of decreased NF-kB translocation in the cell and leads to corresponding decreases in the
production of inflammatory cytokines such as TNF-a, IL-1B, and IL-6 [32]. We observed
a decrease in MCP-1, IL-1betaA, and TNF-a upon MTF treatment in GBM cells, which
is in line with these hypotheses. These mediators, in turn, contribute to growth and
immunosuppression.
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MCP-1, TNFa, VEGF

Immunomodulatory
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Suppression, therapeutic outcome,
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Figure 3. MTF has an effect on the viability of GBM cells via induction of cell death, as well as an
immunomodulatory effect.

The reduction of IL-8 levels upon treatment with 50 mM MTF may be of outmost
clinical importance. Endothelial cells and GBM cells present in the perivascular niche
secrete enhanced levels of IL-8 and induce cancer stem-like cells to upregulate the IL-8
cognate receptors CXCR1 and CXCR2 [33], which enhance cell migration [34], as well
as cell proliferation and invasion [35]. Vascular endothelial growth factor (VEGF) is the
most abundant and important mediator of angiogenesis in GBM and a target of thera-
peutic approaches [36]. Several studies have found that MCP-1 is associated with tumor
development [37], which explains its increase over time along with VEGF.
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MTF can decrease the activity of M1 macrophages and allow for cell-differentiation
processes to continue. This in turn causes the generation of the M2 anti-inflammatory
subtype of macrophages, which can decrease reactive oxygen species (ROS) production.
The inhibition of ROS production is presumed to be the result of AMPK activation by
MTF [38]. ROS may cause DNA damage and mutagenesis in cells, which can be attenuated
by MTE. Treatment of human fibroblasts with MTF has been shown to significantly diminish
the yH2AX signal, a sensitive molecular marker of DNA damage [39]. It is unknown,
however, if this reduction is simply due to lower levels of ROS, which are attenuated by
MTE, or an indication of MTF’s ability to sensitize cells to chemotherapy. The loss of signal
indicated less DNA damage and less mutagenesis, especially when compared to paraquat
cell cultures [39]. MTF can induce apoptosis in many types of cancer cells via ROS by
interfering with mitochondrial physiology. Overall, the central theme regarding tumor cell
arrest posits that MTF inhibits glycolysis in tumor cells, which invariably starves the cell.
Different cancer cell types, nevertheless, respond in unique ways to MTFE.

5. Conclusions

The findings from our study suggest that MTF decreases the viability of GBM cells in
conjunction with an immunomodulatory effect. These effects were observed to be dose-
dependent and correlated with MTF exposure time. While our study identified several
mechanisms that led to the overall inhibitory effect of MTF on the human GBM cell line,
further inquiry is necessary to gain a better understanding of how this in vitro study would
translate into success in vivo. Furthermore, determining the optimal dosing regimen for
non-labeled use of MTF would also be critical.
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