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Abstract: In this research, the influence of confined space size on the temperature distribution
characteristics of internal window plumes from well-ventilated compartment fires was studied.
Theoretical analysis was firstly used to establish a mathematical model for the smoke after ejecting
from the window in the space. The study considered fire heat release rate and vertical height as
dependent variables. Numerical simulations and experimental methods were carried out to study
the temperature variations. A critical distance L2 was obtained. Results show that when the space
D between the vertical retaining wall and the building façade is greater than L2, the variation of D
has little influence on radial temperature. Once D is less than L2, the radial temperature distribution
inside the confined space will tend to be consistent, and the temperature in the confined space sharply
increases as D decreases. In addition, a dimensionless model was derived to quantify the relationship
between temperature rise and vertical height. The experimental and numerical simulation results
were processed, which are in good agreement with the model. The study can provide a framework
for managing building safety.

Keywords: confined space; temperature distribution; window plume; well-ventilated compartment fires

1. Introduction

Nowadays, high-rise building fires often occur, causing serious casualties [1–4]. The
fire can spread vertically through the inner vertical shaft, atrium, or through the external
windows and openings on the building’s exterior facade [5,6]. In modern high-rise build-
ings, with more traditional concrete exterior walls being replaced by glass curtain walls,
the gaps between glass curtain walls and floor slabs or the channels of double-shin facades
have added new ways for the vertical spread of fire [7–9]. Currently, almost every city has a
large number of commercial streets, which, due to the narrow width of the streets, can form
street valleys. When a fire occurs on one side of the building, it may have an impact on the
buildings on the other side of the street. The above two types of buildings have a common
feature, belonging to channel type of confined spaces. In a fire scenario, smoke overflows
through the window, and its subsequent flow might be restricted by solid boundaries, such
as vertical and retaining walls on both sides. The temperature distribution characteristics
and smoke movement in such buildings are limited by the space width and length. In
addition, the spread pattern and impact range of plumes are different from those in open
spaces. Therefore, it is necessary to study these important issues.

Due to the complexity of the fire, there are many factors that influence window plumes
in confined spaces. Oleszkiewicz et al. [10–13] conducted a full-scale experiment to study
the influence of vertical retaining wall on the window fire plume. Qualitative research
was conducted on the changes in plume morphology, flame, and radiation intensity. The
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research results indicate that window plumes are more likely to overflow from wider
windows. When the window width is small, the heat flow formed by the exterior facade
is small. Delichatsios and Lee Yee-ping [14,15] introduced a feature length and studied
the effect of vertical barriers on the ejecting flame height. They proposed a flame height
correction model when the distance between vertical barriers is less than the feature’s length.
Tang et al. [16,17] investigated the building facade ejecting fire behavior under different
external boundaries. A series of fire experiments were carried out to obtain parameters of
flame ejecting behavior, and a dimensionless prediction model was established to describe
flame extension. Lu et al. [17] employed experiments to investigate the side wall effects on
flame ejecting behavior. Two side walls were positioned symmetrically at the two sides of
the compartment window. The compartment ventilation and side wall constraint conditions
were varied by changing the window dimensions and the side wall separation distances.
Dimensionless characteristic parameter theoretical prediction models were brought up.
Akito et al. [18,19] conducted small-scale experiments to investigate the effect of vertical
retaining walls on the temperature distribution outside the window. They found that the
plume shape outside of the window would change when the distance from the vertical
retaining was small.

Generally, building room firess can be divided into under-ventilated and well-ventilated
compartment fires based on different ventilation conditions and fire loads [20]. The heat
release rate of the fire (the fire HRR) in a well-ventilated compartment is related to the
combustion degree and fire load density. The fire room is considered to be in two regions,
namely, the dual region model. The upper layer in the room is the hot smoke layer, and
the lower layer is the cold air layer. It is believed that the boundary height between
the two layers is consistent at all positions, and the parameters such as temperature,
pressure, density, and smoke concentration inside the two layers are also uniform [20].
The heat release rate of the under-ventilated compartment fires is mainly directly related
to the ventilation factor and combustion degree. Under-ventilated compartment fires are
generally in the newly ignited room where flashover occurs [20]. In this condition, internal
combustion is intense, and it can be taken as a single area with only a high-temperature
smoke layer. The type of fire combustion is usually determined by fire HRR. For under-
ventilated conditions, Q is more than 1500A

√
H. For well-ventilated conditions, Q is less

than 1500A
√

H (Q is the fire HRR in the combustion chamber, A is the opening area, H is
the opening height, same as below).

In summary, it is found that most of the previous research is based on under-ventilated
compartment fires. For modern large office buildings, there are large ventilation openings.
The flow field and heat transfer processes are complex, and the main longitudinal spread
along the building is hot smoke with no flame ejection. However, few theoretical analyses
can be developed for such fires [21], which has always been one of the difficulties in building
fires. Miao et al. [22] conducted experiments and numerical simulations to study window
plumes from a room fire to the cavity of a double-skin façade. Some of their conditions
are based on well-ventilated compartment fires. The objective of the study is to determine
the conditions under which the plume would attach to the interior or to the exterior skin.
Firstly, a simple theoretical model was proposed to calculate the net lateral pressure on
the plume. Then, experimental and numerical simulation studies were conducted. Both
experimental and simulation results showed that for a given cavity width, heat release
rate and geometry of the window opening were the two key factors in determining the
plume trajectory. Li and Bai [23,24] studied the characteristics of window plumes based
on the under-ventilated compartment fires. But, their research focused on the side wind
effect on the flow behavior of the window plume under free working conditions. Therefore,
further research is needed to investigate the general laws in the propagation characteristics
of window plumes in channel-confined spaces under such combustion types.

This research aims to investigate the impact of confined channel space on the temper-
ature distribution of internal window plumes under well-ventilated compartment fires.
Theoretical analyses were first used to establish a mathematical model for the smoke after
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overflowing from the window in the space. Then, numerical simulation and experimental
research were carried out to study the general law of the spread of smoke in confined spaces.
A critical distance L2 was obtained, which can provide a basis for the width of confined
spaces. In addition, a dimensionless model was developed to quantify the relationship
between temperature rise and vertical height, which can measure the degree of harm of
combustion chamber fires to superstructure when the width of confined spaces is small.
The simulation and experimental results are consistent with the model. These findings
mentioned above provide a basis for building fire prevention outside windows.

2. Theoretical Analysis

In order to analyze the impact of confined space size on the propagation characteristics
of internal window plumes, this study first theoretically analyzed the propagation mecha-
nism of plumes. Figure 1 presents a diagram of window plume propagation. After a fire
occurs in the combustion chamber, the smoke ejects through the opening and transitions
from horizontal to vertical due to the buoyancy force. The length L2 in which the smoke
transitions from horizontal to vertical depends on the competitive balance between the
horizontal momentum and vertical buoyancy of the smoke.
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 Figure 1. Schematic diagram of window plume propagation.

When the ejecting smoke changes from horizontal to vertical through the opening, the
airflow rate entrained into the plume is [25,26]:

ment = ρ∞(

√
∆Tf

T∞
gL2)L2L1 (1)

where ρ∞ is the air density, ∆Tf is the smoke temperature rise, T∞ is the ambient temper-
ature, g is the gravitational acceleration, L2 is the distance from the horizontal direction
to the vertical direction when the smoke overflows from the opening, L1 is the feature’s
length [27], which represents the length of the virtual rectangular heat source parallel to
the exterior facade of the building in an open flow.

Due to the entrainment of surrounding air, the upward momentum of smoke ejecting
through the opening can be expressed as:

Ment = mentw (2)
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where w is the upward velocity of the ejecting plume. By substituting Equation (1) into
Equation (2), the upward momentum can be written as:

Ment ∝ ρ∞(

√
∆Tf

T∞
gL2)L2L1(

√
∆Tf

T∞
gL2) (3)

The horizontal momentum of smoke at the opening can be expressed as:

M0 ≈ ρg
∆Tg

T∞
(H − Z0)

2gW (4)

where ρg is the air density, W is the opening width, ∆Tg is the temperature rise in the com-
bustion chamber, Z0 is the distance from the neutral surface to the bottom of the opening.

L2 mainly depends on the competitive balance between horizontal momentum and
buoyancy after smoke overflow:

Ment ∝ ρ∞
∆Tf

T∞
gL2

2L1 ≈ ρg
∆Tg

T∞
(H − Z0)

2gW = M0 (5)

By substituting L1 = (A
√

H)2/5 into the above equation, L2 can be expressed as:

L2 ∝ (
∆Tg

∆Tf
)

1/2

(
ρg

ρ∞
)

1/2
(1 − Z0

H
)(AH4/3)

3/10
(6)

After the plume spreads through the window, the decrease in vertical temperature
inside the confined space is due to the radial and lateral entrainment of the surrounding air.

If a vertical retaining wall is placed outside of the building facade, a passage will be
formed by the building facade and vertical retaining wall. When the distance between the
vertical retaining wall and the building façade D (the distance D) is less than L2, the radial
entrainment will be completely restricted, leaving only the lateral entrainment on both
sides. This study introduces the concept of a virtual ignition source. Based on a previous
research [28], Zv = (d + M0)/0.15Q1/3, where Zv is the distance from the virtual ignition
source to the upper edge of the overflow plume, and d is the thickness of the smoke layer
in the combustion chamber.

When the distance D is less than L2, assuming that the velocity of air entrained on
both sides of the plume v = αw, the internal ignition source plume model in a confined
space is derived.

Where α is a constant and is taken to be 0.51 [29], 2b is the width after the plume ejects
from the window.

Consider a micro element in the vertical direction of the internal plume in a confined
space, as shown in Figure 2. According to the mass balance of the control volume, the mass
flow rate through plane z (z is the height from a certain point to the virtual ignition source,
z = Z − H + ZV) is:

mz =
∫ +∞

−∞
ρgw · Ddy =

∫ b

−b
ρgw · Ddy = 2ρgw · Db (7)

The mass flow rate of air entrainment through both sides is:

dmz = mb = 2ρ∞v · Ddz (8)

The mass flow rate through plane z + dz is:

mz+dz = mz +
dmz

dz
dz (9)
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Figure 2. Internal micro-element model of a confined space.

According to the Boussinesq approximation, the variation in density is small relative
to the ambient reference density everywhere except in the buoyancy term. By substituting
Equations (7) and (8) into Equation (9), it can be obtained:

d(wb)
dz

= αw (10)

According to the momentum balance of the control volume, the momentum at plane z:

→
Mz =

∫ ∞

−∞
ρgw2 · Ddy =

∫ b

−b
ρgw2 · Ddy = 2ρgw2Db (11)

At plane z + dz:
→
Mz+dz =

→
Mz +

d
→
Mz

dz
dz (12)

The upward force acting on the control volume should be equal to:

→
F = 2(ρ∞ − ρg)g · Db · dz (13)

From the conservation of momentum of the controlled volume, the upward force can
be expressed as:

→
F = d

→
Mz (14)

By substituting Equations (11) and (13) into Equation (14), it can be obtained:

d(w2b)
dz

=
∆ρ

ρg
gb (15)
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where ∆ρ = ρ∞ − ρg, by using the ideal gas law:

∆ρ

ρg
=

∆T
T∞

(16)

where ∆T = T − T∞, by substituting Equation (16) into Equation (15):

d(w2b)
dz

=
∆T
T∞

gb (17)

Energy flux at plane z:

Qz =
∫ ∞

−∞
ρ∞Cpw∆T · Ddy =

∫ b

−b
ρ∞Cpw∆T · Ddy = 2ρ∞Cpw∆T · bD (18)

where CP represents the specific heat capacity of the gas. Energy flux through plane z + dz:

Qz+dz = Qz +
dQz

dz
dz (19)

Considering the outer boundary of the plume as adiabatic, according to the law of
energy conservation, it can be obtained that:

d(w∆Tb) = 0 (20)

Integrating Equation (20):

b∆T =
K
w

(21)

By substituting Equation (21) into Equation (17):

d(w2b)
dz

=
gK
T∞

· 1
w

(22)

where K is an unknown constant, since the vertical velocity and temperature difference is
only the function of height, therefore it can be assumed that:

b = Y1 · zs1 (23)

w = Y2 · zs2 (24)

∆T = Y3 · zs3 (25)

Among them, Y1, Y2, Y3, and s1, s2, s3 are constants. Substitute Equations (23) and (24)
into Equation (10):

d
dz

(Y2Y1zs2+s1) = αY2zs2 (26)

By integrating Equation (26) and comparing the index of z:

s1 = 1 (27)

By substituting Equations (23) and (24) into Equation (22), it can be obtained that:

d
dz

(Y2
2 Y1z2s2+s1) = gk

z−s2

Y2T∞
(28)

s2 = 0 (29)

Y1 = α/(1 + s2) = α (30)



Fire 2024, 7, 158 7 of 23

Y2 = [
gK
T∞

· 1
α
]
1/3

(31)

Therefore, half the width after the plume ejects from the window b, and the upward
velocity of the ejecting plume w can be expressed as follows:

b = αz (32)

w = [
gK
T∞

· 1
α
]
1/3

(33)

The fire HRR Q1 of the virtual ignition source can be calculated by:

Q1 =
∫ b

−b
ρ∞Cpw∆TDdy = 2ρ∞Cpw∆TbD (34)

K =
Q1

2ρ∞CpD
(35)

Previous researchers have verified this through experiments. Due to the adiabatic
outer boundary of the plume, Q1 is equal to the heat release rate QV overflowing from the
window [29].

Q1 =
2
√

2g
3

(kQ/km)ρgCpd1.5W∆T1.5
g T−0.5

∞ (36)

where KQ and Km is the profile factor coefficients, and are taken to be 0.9 and 1.35 [29]. By
substituting Equation (35) into Equation (33):

w = [
gQ1

2ρ∞CpDT∞α
]
1/3

(37)

By substituting Equations (23) and (25) into Equation (21):

Y1Y3zs1+s3 = K
z−s2

Y2
(38)

It can be obtained that:
S3 = −1 (39)

Y3 =
K

Y1Y2
(40)

By substituting Equations (30), (31), (35), (39), and (40) into Equation (25), the tempera-
ture rise ∆T can be expressed as:

∆T = (
Q1

2ρ∞CpαD
)

2/3
· (T∞

g
)

1/3
z−1 (41)

3. Experiments

This chapter mainly introduces the experimental research on the influence of confined
space size on the temperature distribution characteristics of internal window plumes from
well-ventilated compartment fires. Among them, Section 3.1 introduces the construction of
the scaled experimental platform, and Section 3.2 introduces the main conclusions obtained
from the experiment.

3.1. Experimental Setup

This study built a 1:8 scaled experimental platform based on similarity criterion. The
main body of the model experimental platform was 2.8 m long, 0.6 m wide, and 1.2 m
high. The main structure was made of galvanized steel plate. The main body of the
experimental platform was designed into three layers. The bottom layer is the combustion
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chamber, which consists of rooms of two different sizes. The length, width, and height of
the small combustion chamber are 0.5 m, 0.5 m, and 0.4 m, respectively. The length, width,
and height of the large combustion chamber are 1 m, 0.5 m, and 0.4 m, respectively. The
surrounding walls of the combustion chamber and adjacent room walls were covered with
fireproof cotton for fire prevention and insulation. The combustion chamber was equipped
with adjustable windows, and the window size could be changed by pushing and pulling
the fireproof board. In addition, the combustion chamber can be supplemented with air
through the additional tuyere at the rear of the experimental platform. The second part of
the model experimental platform is a vertical retaining wall, which is mainly composed of
fire dampers and supports. The length and height of the vertical retaining wall correspond
to the main body of the experimental platform, and a fireproof glass is installed in the
central part of the retaining wall as an observation window to observe the combustion
inside the combustion chamber. The distance D can be changed by easily moving the
vertical retaining wall. As shown in Figure 3.
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the small-scale model, (a) Overall schematic diagram, (b)Front view of building façade, (c) Electronic
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Figure 4 shows the side view and top view of the measurement point arrangement
of the temperature measurement system inside the confined space. A total of six sets
of thermocouples were arranged inside the confined space, with two sets closest to the
combustion chamber, each set containing nine thermocouples, two sets of thermocouples in
the middle, each set containing six thermocouples, the outermost two sets of thermocouples,
each set containing two thermocouples. The horizontal spacing of each thermocouple is
8 cm, and the vertical spacing is 12 cm. The number of thermocouple sets along the radial
direction of the building facade also decreases as the distance D decreases.
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The combustion pool in the study used fuel discs, each with a combustion area of
0.01 m2. By combining different numbers of fuel discs, the change in fuel combustion area
can be achieved. The mass measurement system used in the experiment was an electronic
balance, and the combustion rate of the combustion pool was calculated by recording the
mass changes of the electronic balance. The temperature measurement system used in the
experiment was K-type thermocouples and T-type thermocouples with 0.5 mm diameter,
which were used to measure the temperature changes inside the confined space.

There were two types of fuel pool combustion areas designed in the experiment: one is
0.1 m × 0.1 m, and the other is 0.1 m × 0.2 m. There were two fuels used in the experiment,
one is methanol, and the other is n-heptane. The fire HRR Q was calculated using the mass
loss method [30]. Q = η × m × hc, η is the combustion efficiency, reflecting the degree of
incomplete combustion of combustibles, with a value of 0.3–0.9. m is the mass combustion
rate of combustible materials. hc is the average calorific value of the combustible material.
The calorific value of methanol is 22,703 kJ/kg, and the calorific value of n-heptane is
44,600 kJ/kg. After calculation, the fire HRR Q of the three working conditions are 6.81,
9.08, and 17.84 kW, respectively. As shown in Table 1.

Table 1. Test conditions and calculation results of the fuel thermal properties of the oil pool.

Working
Condition Fuel Fuel Pool

Size (m2)
Mass Combustion
Rate (kg/s·m2)

Fire HRR Q
(kW)

SF1 methanol 0.1 × 0.1 0.03 6.81
SF2 methanol 0.1 × 0.2 0.02 9.08
SF3 n-heptane 0.1 × 0.1 0.04 17.84
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The width of the building facade opening W in the experiment were 0.2 m, 0.3 m,
and 0.5 m, respectively. The height H was 0.4 m. By changing the distance D, the size
of the confined space was adjusted. Four types of distance D were set, in descending
order of 32 cm, 24 cm, 16 cm, and 8 cm, respectively. The ambient temperature during the
experiment was 10 ◦C. The working condition numbers for 36 working conditions were
EGK1-EGK36, as shown in Table 2. It can be calculated that all operating conditions are
well-ventilated compartment fires.

Table 2. Experimental conditions of narrow and restricted space window plume model.

Working
Condition

The Fire HRR
Q (Kw)

Opening Size
The Distance D (cm)

Height H (m) Width W (m)

EGK1

6.81

0.4
0.5 32

EGK2 0.3 32
EGK3 0.2 32
EGK4

0.4
0.5 24

EGK5 0.3 24
EGK6 0.2 24
EGK7

0.4
0.5 16

EGK8 0.3 16
EGK9 0.2 16
EGK10

0.4
0.5 8

EGK11 0.3 8
EGK12 0.2 8
EGK13

9.08

0.4
0.5 32

EGK14 0.3 32
EGK15 0.2 32
EGK16

0.4
0.5 24

EGK17 0.3 24
EGK18 0.2 24
EGK19

0.4
0.5 16

EGK20 0.3 16
EGK21 0.2 16
EGK22

0.4
0.5 8

EGK23 0.3 8
EGK24 0.2 8
EGK25

17.84

0.4
0.5 32

EGK26 0.3 32
EGK27 0.2 32
EGK28

0.4
0.5 24

EGK29 0.3 24
EGK30 0.2 24
EGK31

0.4
0.5 16

EGK32 0.3 16
EGK33 0.2 16
EGK34

0.4
0.5 8

EGK35 0.3 8
EGK36 0.2 8

3.2. Experimental Results

Table 3 shows the characteristic length L2 calculated by Equation (6) when there is
no vertical retaining wall outside the building opening. The vertical temperature was
measured using thermocouples inside the confined space. Figure 5 shows the relationship
between the vertical plume temperature inside the confined space and the distance D (Z
represents the height to the ground). Due to the same conclusions obtained, this study only
displays the temperature distribution of conditions EGK1-EGK12. When the distance D is
greater than L2, the temperature inside the confined space remains basically unchanged
as D decreases. When the distance D is less than L2, the temperature inside the confined
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space increases sharply as D decreases. The main reason is that when D is less than L2,
the vertical retaining wall restricts the plume’s entrainment of air radially (radial to the
direction of the building facade), affecting the decrease in temperature.

Table 3. Value of characteristic length L2 with no vertical retaining wall outside the building.

The fire HRR Q (kW) 6.81 9.08 17.84

Opening width W (m) 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2
L2 (m) 0.199 0.154 0.148 0.190 0.159 0.136 0.163 0.129 0.109
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When the distance D is less than L2, the experimental data of different fire HRR were
summarized and fitted to obtain the relationship between temperature rise and vertical
height inside the confined space. Q1 of the virtual ignition source varies with different
opening sizes, and the average value is taken in this study, as shown in Figure 6. It can be
observed that ∆T and z are inversely proportional, which is consistent with Equation (41).

To eliminate the influence of fire HRR and obtain the general law of temperature rise
and height, the vertical plume temperature rise and fire HRR are dimensionless, as shown
in Figure 7. The fitting results are as follows:

Θ/(Q∗
1)

2/3 =
∆T∞
T∞

( Q1
T∞ρ∞cP

√
g )

2/3 = 0.63(αD)−2/3z−1 (42)
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4. Numerical Simulation

This chapter mainly introduces the numerical simulation research on the influence
of the size of enclosed spaces on the temperature distribution characteristics of window
plumes in well-ventilated compartment fires. Among them, Section 4.1 introduces the
construction of the numerical model, and Section 4.2 introduces the independent analysis
of the grid. Section 4.3 verifies the reliability of numerical simulation.

4.1. Fire Scenarios

Fire Dynamics Simulator (FDS) is usually used to simulate fire environment [31], a
specialized software for fire dynamics simulation that was developed based on the theory
of large eddy simulation (LES).

After the initial stage of the fire, the range of spread is approximately 4 floors high.
Based on the spread of the fire and the limitations of computer resources, the length, width,
and height of typical high-rise buildings in this study are 6 m, 20 m, and 32 m, respectively,
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as shown in Figure 8. The length, width, and height of the room on fire are 6 m, 20 m,
and 5 m, respectively, and the window height is 5 m. The width of the window can be
adjusted according to different research conditions. A total of three window widths W
were designed, which were 10 m, 4 m, and 2 m, in descending order. A vertical retaining
wall was installed on the outer side of the building facade. The distance D between the
building facade and the vertical retaining wall can also be adjusted. In this study, a total
of 6 distances, D, were set, which were 10 m, 8 m, 6 m, 3 m, 2 m, and 1 m. The fire source
was located in the middle of the burning room, with an area of 1 m × 1 m. According to
relevant regulations, the fire HRR of common buildings were calculated, and in order to
enrich data, the fire HRR Q were 10 MW and 6 MW respectively. Working conditions are as
shown in Table 4. It can be calculated that all conditions were well-ventilated compartment
fires. In the simulation, the ambient temperature was set to 20 ◦C, without considering the
influence of surrounding wind. To reduce the influence of boundaries on the simulation
results, an an extension of 1.5 m was made in the length direction according to the different
distances between retaining wall and the building facade in the simulation. For example,
when D is 10 m, the length, width, and height of the entire calculation domain are 18 m,
20 m, and 32 m, respectively. The boundaries of the grid are all set to open. The soot yield
applied for the combustion model is 0.024.

Table 4. Simulation table.

Working
Condition

Fire HRR Q
(MW)

Window
Height W (m)

The Distance
D (m)

Working
Condition

Fire HRR Q
(MW)

Window
Height W (m)

The Distance
D (m)

SGK1

10

10

1 SGK19

6

10

1
SGK2 2 SGK20 2
SGK3 3 SGK21 3
SGK4 6 SGK22 6
SGK5 8 SGK23 8
SGK6 10 SGK24 10
SGK7

4

1 SGK25

4

1
SGK8 2 SGK26 2
SGK9 3 SGK27 3
SGK10 6 SGK28 6
SGK11 8 SGK29 8
SGK12 10 SGK30 10
SGK13

2

1 SGK31

2

1
SGK14 2 SGK32 2
SGK15 3 SGK33 3
SGK16 6 SGK34 6
SGK17 8 SGK35 8
SGK18 10 SGK36 10
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In order to better obtain the temperature and velocity distribution inside the confined
space, temperature, and velocity measurement points have been set up in the confined space.
A total of twelve measurement points were set up inside the confined space perpendicular
to the direction of the building facade, with a spacing of 0.5 m between the first four columns
and 1 m between the last 8 columns. Each column has a total of thiry-two measurement
points in the vertical direction, with a spacing of 1 m. As the distance D decreases, the
number of measurement points in the direction perpendicular to the building facade also
decreases. As shown in Figure 9.
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4.2. Grid Analysis

Usually, the method of calculating the characteristic diameter D* of the fire source is
used to determine the mesh accuracy in order to preliminarily and judge the flow field.
In the user manual, the characteristic diameter D* of the combustion source is calculated
based on the grid size δx. The ratio (D*/δx) is used as a criterion for selecting the size
of the grid. When the range of this ratio is between 4 and 16, the simulation calculation
results are relatively good, and the range of grid size is from 0.0625 D* to 0.25 D* [32]. The
corresponding relationship is as follows:

D∗ = (
Q

ρ∞CpT∞
√

g
)

2
5

(43)

IIn current study, a grid size of 0.2 m (approximately 0.01 D* and 0.085 D* for 6 MW
and 10 MW, respectively) was considered reasonable. To justify the rationality of grid
size, we selected other grid sizes of 0.1 m × 0.1 m × 0.1 m, 0.3 m × 0.3 m × 0.3 m,
0.4 m × 0.4 m × 0.4 m for comparison. Taking an typical 6 MW and 10 MW fire in the
building mentioned above (the length, width, and height are 6 m, 20 m, and 32 m, respec-
tively) as an example. The length, width, and height of the room on fire are 6 m, 20 m, and
5 m respectively. The distance D between the building facade and the vertical retaining
wall is 10 m. The numerical simulation domain’s length, width, and height are 18 m, 20 m,
and 32 m, respectively. The vertical temperature at a distance of 0.8 m from the building
facade is shown in Figure 10. We observe that the numerical result is independent of the
mesh size at less than 0.2 m, there is no significant improvement in simulation results for
0.1 m. Therefore, the grid size of 0.2 m is considered appropriate.
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Figure 10. Vertical temperature at 0.8 m away from the building facade.

4.3. Validation of Modelling

In order to verify the reliability of FDS for this study, this article uses numerical
simulation software FDS to establish a 1:1 numerical model with the experimental platform,
and other parameters are basically consistent with those in the experiment. The location
and characteristics of the fire source, as well as the setting of environmental parameters,
are consistent with the relevant parameters of the experiment. The numerical simulation
model and the setting of some parameters in the model are shown in Figures 11 and 12,
respectively. Due to the consistent conclusions, this presentation takes working conditions
1 and 7 as an example. Temperature is the most critical parameter for studying plume
propagation. As shown in Figure 13, through comparison, it was found that the simulation
results of the same size of the vertical temperature inside the confined space are basically
consistent with the experimental results (EGK represents experimental data and ESGK
represents numerical simulation data), indicating that numerical simulation can effectively
combine with the experiment and make up for the shortcomings of the experiment.
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5. Results

This chapter mainly introduces the main results obtained from numerical simulation.
Among them, Section 5.1 introduces the radial (perpendicular to the building facade)
temperature distribution; Section 5.2 introduces the vertical temperature distribution.

5.1. Radial (Perpendicular to the Building Facade) Temperature Distribution

Figures 14–16 show the radial temperature distribution and window plume propaga-
tion at different heights of the central section of the internal plume in a confined space with
a distance D (D = 10 m) (due to the same conclusions obtained, this study only shows the
working condition of Q = 10 MW). It can be observed that when the distance D is large,
the radial temperature inside the confined space can approximate a Gaussian distribution,
and the spread of the plume varies under different windows. When the window width is
large, the maximum vertical temperature of the plume is close to the wall surface, which is
known as the attached plume. When the window width is small, due to the large horizontal
momentum when smoke overflows from the window, the maximum vertical temperature
of the plume is far from the wall, which is a non-attached plume, is consistent with previous
research conclusions [33–36].

According to Equation (6), the numerical summary of the characteristic length L2 under
free working conditions without vertical retaining walls outside the building window is
shown in Table 5.

Table 5. Value of characteristic length L2 under free working conditions.

Fire HRR (MW) 10 6

Window Width W (m) 10 4 2 10 4 2
L2 (m) 2.18 1.53 1.12 1.97 1.45 1.06
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Figure 14. Plume temperature distribution and smoke spread at different heights when the distance 
D is 10 m. (a) W = 10 m; (b) W = 4 m; (c) W = 2 m. 
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Figure 15. Smoke spread of different window widths when the distance D is 10 m. (a) W = 10 m; (b) 
W = 4 m; (c) W = 2 m. 

Figure 14. Plume temperature distribution and smoke spread at different heights when the distance
D is 10 m. (a) W = 10 m; (b) W = 4 m; (c) W = 2 m.
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Figure 14. Plume temperature distribution and smoke spread at different heights when the distance 
D is 10 m. (a) W = 10 m; (b) W = 4 m; (c) W = 2 m. 
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Figure 15. Smoke spread of different window widths when the distance D is 10 m. (a) W = 10 m; (b) 
W = 4 m; (c) W = 2 m. 
Figure 15. Smoke spread of different window widths when the distance D is 10 m. (a) W = 10 m;
(b) W = 4 m; (c) W = 2 m.

Figure 17 shows the comparison of temperature distribution in the radial direction of
the plume under different distances of the retaining walls and building facades. Due to
the same conclusions obtained, this study only displays the temperature distribution of
SGK1-SGK 6. It can be observed that when the distance D is greater than L2, as D decreases,
the radial temperature of the plume does not change much and still follows the Gaussian
distribution model. When D is less than L2, both the outer side of the ejecting plume and
the side near the building facade are affected by air entrainment, so the radial temperature
distribution inside the confined space will tend to be consistent, and the temperature of the
plume will only change vertically.
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(a) D = 10 m 
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(b) D = 8 m 

Figure 16. Velocity distribution of plumes on different window widths when the distance D is 10 m.
(a) W = 10 m; (b) W = 4 m; (c) W = 2 m.
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(b) D = 8 m 
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Figure 17. Plume temperature distribution under the different distances of the retaining walls and 
building facades. 

Figure 18 shows the spread of smoke under different spaces of the retaining wall and 
building facades. It can be observed that when D is greater than L2, as the spaces decrease, 
it has almost no effect on the air around the plume entrainment. When D is less than L2, 
the retaining wall is close to the outer boundary of the plume, which affects the air 
entrainment of the plume. This also verifies the temperature distribution law obtained in 
the previous text and verifies the accuracy of using Equation (6) to calculate L2. 

 

Figure 17. Plume temperature distribution under the different distances of the retaining walls and
building facades.
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Figure 18 shows the spread of smoke under different spaces of the retaining wall and
building facades. It can be observed that when D is greater than L2, as the spaces decrease,
it has almost no effect on the air around the plume entrainment. When D is less than L2, the
retaining wall is close to the outer boundary of the plume, which affects the air entrainment
of the plume. This also verifies the temperature distribution law obtained in the previous
text and verifies the accuracy of using Equation (6) to calculate L2.
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Figure 17. Plume temperature distribution under the different distances of the retaining walls and 
building facades. 

Figure 18 shows the spread of smoke under different spaces of the retaining wall and 
building facades. It can be observed that when D is greater than L2, as the spaces decrease, 
it has almost no effect on the air around the plume entrainment. When D is less than L2, 
the retaining wall is close to the outer boundary of the plume, which affects the air 
entrainment of the plume. This also verifies the temperature distribution law obtained in 
the previous text and verifies the accuracy of using Equation (6) to calculate L2. 
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building facades.

5.2. Vertical Temperature Distribution

The vertical temperature distributions in Figures 19 and 20 show the effect of distance
D on temperature distribution at various heights in a confined space at a certain radial
distance. In order to more clearly see the impact of distance D on temperature distribution
in the confined space, this study takes the temperature distribution at heights of 0.3 m
and 0.8 m (radial distance) from the outer facade of the central section of the plume for
analysis. Due to the same conclusion, this study only takes SGK1-SGK18 as an example for
analysis. Through comparison, it can be found that when the distance D is greater than
L2, the temperature change trend of each point in the confined space increases slowly with
the decrease of D. When D is less than L2, the temperature of each point in the confined
space increases sharply with the decrease of D. The reason for the analysis is that when
D is large, the impact on the horizontal entrainment of surrounding air by the plume is
relatively small. When D is small, the plume seriously affects the horizontal entrainment of
surrounding air, thereby affecting the reduction of smoke temperature.

As mentioned above, when D is less than L2, the radial entrainment will be almost
completely limited, considering only the entrainment on both sides. The plume inside the
confined space is considered to be generated by a virtual ignition source. According to
the derivation, the temperature rise at different heights in the confined space varies with
height, as shown in Equation (41).

Based on the derived plume model of the internal ignition source in a confined space,
simulation data of different ignition source powers were summarized and fitted when
the distance D was less than L2. The relationship between the temperature rise ∆T inside
the confined space and the height z to the virtual ignition source was obtained, as shown
in Figure 21. It also can be observed that ∆T and z are inversely proportional, which is
consistent with Equation (41).
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Figure 19. Temperature distribution at different heights of a radial distance of building facade under 
different confined spaces (radial distance 0.3 m). 

Figure 19. Temperature distribution at different heights of a radial distance of building facade under
different confined spaces (radial distance 0.3 m).
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Figure 20. Temperature distribution at different heights of a radial distance of building facade under 
different confined spaces (radial distance 0.8 m). 
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Figure 21. Temperature rise at different heights in confined space. 

Figure 20. Temperature distribution at different heights of a radial distance of building facade under
different confined spaces (radial distance 0.8 m).
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different confined spaces (radial distance 0.8 m). 
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Based on the derived plume model of the internal ignition source in a confined space, 
simulation data of different ignition source powers were summarized and fitted when the 
distance D was less than L2. The relationship between the temperature rise ∆T inside the 
confined space and the height z to the virtual ignition source was obtained, as shown in 
Figure 21. It also can be observed that ∆T and z are inversely proportional, which is 
consistent with Equation (41). 
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Summarizing all data and the dimensionless model, the vertical plume temperature
rise and fire HRR, as shown in Figure 22. The fitting results are as follows:

Θ/(Q∗)2/3 =
∆T/T∞

(Q∗)2/3 = 1.2(αD)−2/3z−1 (44)

Figure 22. Non-dimensionless value Θ/(Q1*)2/3 versus (αD)−2/3z−1.

It can be found that the trend of the relationship between the dimensionless tempera-
ture rise obtained from numerical simulation and the dimensionless fire HRR changing with
height is basically consistent with the trend obtained from the experiment. The difference
between the coefficients of Equations (42) and (44) may be due to the significant influence of
the surrounding environment during the experiment. The default parameters for numerical
simulation are unchanged for the environment. There are still some differences from the
actual situation.

6. Conclusions and Discussion

This paper conducts experimental and numerical simulation research on the character-
istics of window plume propagation in confined spaces under fuel-controlled combustion
and, based on this, explores the degree of harm of fire propagation. The main conclusions
can be drawn as follows:

1. There is also a critical distance L2 in confined spaces under well-ventilated compart-
ment fires, which can provide a basis for the width of confined spaces. When the
distance D is greater than L2, the radial temperature inside the confined space can
approximate a Gaussian distribution. As the distance D decreases, the radial tempera-
ture change of the plume is not significant, and the temperature increase at each point
is relatively slow. When D is less than L2, the radial temperature distribution inside
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the confined space will tend to be consistent, and the temperature at each point in the
confined space will sharply increase as D decreases.

2. When the distance D is less than L2, based on the internal ignition source plume
model of the confined space, the relationship between dimensionless temperature rise
and vertical height can be obtained. The acquisition of this relationship can provide
guidance for determining the vertical spread of similar building fire hazards.

3. The above conclusion can provide a basis for the fire prevention design of glass curtain
wall buildings and narrow street valleys. However, this paper did not consider the
influence of the location of the fire source in the room on the temperature distribution
characteristics of the internal window plume in the confined space. Further research
can be conducted on the impact of the fire source location on the subsequent window
plume in larger office buildings.
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