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Abstract: Ember accumulation on and around homes can lead to spot fires and home ignition.
Post wildland fire assessments suggest that this mechanism is one of the leading causes of home
destruction in wildland urban interface (WUI) fires. However, the process of ember deposition and
accumulation on and around houses remains poorly understood. Herein, we develop a deep learning
(DL) model to analyze data from a series of ember-related wind tunnel experiments for a range of
wind conditions and roof slopes. The developed model is designed to identify building roof regions
where embers will remain in contact with the rooftop. Our results show that the DL model is capable
of accurately predicting the position and fraction of the roof on which embers remain in place as a
function of the wind speed, wind direction, roof slope, and location on the windward and leeward
faces of the rooftop. The DL model was augmented with explainable AI (XAI) measures to examine
the extent of the influence of these parameters on the rooftop ember coverage and potential ignition.

Keywords: wildland fire; ember; spot fire; rooftop; wildfire prediction; deep learning model

1. Introduction

Wildfires are becoming an increasing risk to people living in wildland urban inter-
face (WUI) communities due to the climate change induced growth in the number and
severity of wildfires [1–3]. For example, 17 of the 20 largest wildfires recorded in Califor-
nia, USA, have occurred in the past 10 years [4]. WUI fires can cause significant home
destruction and loss of life. Recent examples include the Camp Fire in California, USA [4]
(85 fatalities and 18,800 destroyed structures), the Black Friday Fires in Victoria, Aus-
tralia [5] (173 fatalities), and the 2019/20 bushfire season in New South Wales, Australia [6]
(26 fatalities, 8000 structures destroyed).

One of the largest contributors to home destruction is spot fires caused by embers
(also known as firebrands) landing on and around structures leading to their ignition [7–9].
Embers can be formed from burning vegetation [10,11] or structures [12,13] and range
in size from around 1 mm to almost 0.5 m [14]. Once embers have detached from a
burning object, they can be lofted into the atmosphere by the buoyant fire plume and then
transported ahead of the main fire front [15]. This process is typically modeled using either
a plume dynamics model [16], a computational fluid dynamics (CFD) simulation [17,18],
or wind tunnel testing [19].

Research in this area has primarily focused on the so-called ember dragons [13,20,21]
that generate embers from burning wood particles and then fire them at structures using
an air jet. These dragons have been used to examine accumulation and ignition for a range
of geometries, including in front of obstacles [22], along fences [23], and various building
components [24]. These studies have provided significant insight into the conditions under
which ember accumulation can lead to spot fire ignition.

However, these studies lack full dynamic and geometric similarity as they do not
model the full structure and wind field. Recently, experimental studies of ember accu-
mulation on and around structures where full flow similarity was achieved have been

Fire 2024, 7, 153. https://doi.org/10.3390/fire7050153 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire7050153
https://doi.org/10.3390/fire7050153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0002-3576-2617
https://orcid.org/0000-0001-7190-7791
https://doi.org/10.3390/fire7050153
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire7050153?type=check_update&version=1


Fire 2024, 7, 153 2 of 18

published [25–27] that highlighted the complex interaction of the turbulent wind flow and
the building geometry that leads to ember accumulation. For example, Ref. [26] showed
that only a very small percentage of embers land on a building rooftop compared to the
number that land on the ground over the same area. When in contact with the roof, embers
either fall off, are blown off, or are blown to rooftop regions that allow embers to come to
rest. These rooftop dead zones, where embers remain at rest despite the wind flow, are
clearly important in understanding structure ignition as they are regions where embers can
accumulate in large enough numbers to ignite rooftop spot fires.

An experimental analysis of rooftop dead zones, referred to as hotspots hereafter, was
presented in [28]. In this study, the roofs of model buildings were covered with model
embers and then exposed to a range of wind speeds and wind angles. Tests were run for
rectangular buildings with gable end roofs of different roof slopes. Care was taken to ensure
dynamic similarity by carefully selecting roof covering and ember materials that have the
same coefficient of friction as full-scale embers on an asphalt shingle roof. Geometric
similarity was achieved by matching the ratio of the building size to the ember size, though
only the larger end of the ember size spectrum was modeled. The tests conducted measured
the rooftop locations where embers remained in contact with the roof surface throughout
the test.

Qualitative results showed that the rooftop locations where embers remained in
contact were controlled by the roof slope and the flow separation over the structure. For
example, there was a clear indication of ember scour due to corner vortices when the wind
approached from a 45◦ angle to the long axis of the building. There was also scour on
the leeward side of the rooftop due to flow separation vortices from the roof ridge. An
image analysis of the videos taken during each experiment allowed for the calculation
of the fraction of the rooftop that remained covered with embers. However, these data
were primarily used for the qualitative description of the causes of ember removal and
quantification of particular flow phenomena. The data were not used to develop a predictive
model of ember retention on rooftops.

More recently, there has been an ongoing interest in incorporating artificial intelligence
(AI) by means of deep learning (DL) into the area of wildfires to enhance our understanding
of the associated risks (i.e., home fires, casualties, and environmental effects). For example,
Jain et al. [29] identified 300 relevant research works on integrating AI into wildfire domain
problems. These researchers also noted that the use of AI aligns well with wildland fire
sciences and wildfire management, especially when using sufficient, high-quality data [30].
AI has been used to predict the occurrence of wildfires through historical wildfire data
using various methods, including deep learning (DL) [31–34]. Additional work also noted
such use to predict the probability of fire occurrence by building either a classification
model [35,36], regression model [37–39], or a combination of both categories [40,41].

Currently, there is limited work on specialized problems, such as ember accumulation
on roofs. Thus, integrating modern technological approaches (e.g., AI) can offer a significant
step toward understanding the dynamics and physics behind such a complex problem.
Along the same lines, AI shows the potential to predict wildfires through various methods,
but the complexity and anonymity of the internal workings of AI predictive models can be
seen to limit their acceptability among users.

To overcome the aforementioned limitation, explainable AI (XAI) provides insights
into AI models’ decision-making (prediction) process. Utilizing XAI tools eases the com-
plexities associated with AI models and allows researchers to identify and communicate
the importance of different input variables in influencing a prediction. A prime example of
XAI tools is the SHAP (SHapley Additive exPlanations) [42] summary plot, which provides
feature importance and, most importantly, a direction of feature influence on the prediction
based on the model’s understanding of the given task.

The literature shows that ember accumulation on buildings can lead to home ignition.
This research addresses the overarching question, ‘what building features lead to accumu-
lation of embers?’ Previously published wind tunnel experiments quantified where embers
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can remain in contact with a rooftop. Therefore, the specific research questions for this
project are: ‘Can XAI identify building geometric features that lead to accumulation?’ and
‘can XAI explain why these features are important?’ See Figure 1 for a workflow diagram
of this research project.
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Figure 1. Flow diagram of research project showing motivation, experimental work, and
research questions.

The results shown below demonstrate the following:

1. The DL model is capable of accurately predicting the fraction of the roof that retains
embers as a function of the building geometry and wind conditions;

2. The XAI tools can identify the nature of the relationship between the ember coverage
and the building and wind parameters;

3. There is a distinct difference between the behavior on the windward and leeward
retention processes that was elucidated by the XAI data.

The remainder of the paper is structured as follows. The experimental method used
by [28] is briefly reviewed in Section 2, including a description of the parameter space
tested and the image analysis tools used for data extraction. The DL model development
and explainable AI tools used are described in Section 3. Model results are presented in
Section 4, including a discussion of the model performance, explainable AI metrics, and
limitations of the current study. Conclusions and suggestions for future directions are given
in Section 5.

2. Experimental Methods

A series of experiments were carried out in the Clemson University atmospheric
boundary layer wind tunnel with gable roof buildings with different roof slopes. The roof
pitches used in the experiments were flat roofs and roofs with slopes of 2/12, 4/12, 6/12,
and 10/12. The rooftops of the model houses were covered with model embers before
exposing to the controlled wind load condition. The area of embers retained on the rooftop
during and after experiments was tracked with a camera. These tracking images were then
used for analysis.

2.1. Experimental Conditions

The flow similarity was carefully considered with both geometric and dynamic similar-
ities to make sure that the lab-scale experiments modeled real-world problems. Geometric
similarity was satisfied by matching the scale-down ratio for both model buildings and
model embers. The model building was built with a geometric scale of 1/30. The model
eave height was selected to be 10.1 cm (4 in) with a wall length of 20.3 cm (8 in) by 40.6 cm
(16 in). This scaling ratio of 1/30 was selected to ensure that the cross-section area of the
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model building did not exceed 5% of the total wind tunnel cross-section area. This was
to avoid the acceleration of the flow around the blockage generated by the building [43].
The resulting model building’s dimensions are shown in Figure 2 and Table 1. The model
represents a full-scale building with plan dimensions of 6 m by 12 m (20′ by 40′) with a 3 m
(10′) eave height.
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Table 1. Summary of the geometry of tested buildings.

House H cm W cm L cm S cm Roof Pitch

A 10.1 20.3 40.6 0 0/12

B 10.1 20.3 40.6 1.7 2/12

C 10.1 20.3 40.6 3.4 4/12

D 10.1 20.3 40.6 5.1 6/12

E 10.1 20.3 40.6 6.8 8/12

F 10.1 20.3 40.6 8.5 10/12

Model embers were mass produced from pine straw. To satisfy the geometric similarity,
model embers also needed to be scaled down at the same ratio as the model building, i.e.,
1:30. To meet this scale down ratio, the model ember diameter had to be 0.16 mm and
mass production was not practical for this study. The embers that were produced for
this study had a mean length of 5 mm. The results of the embers retained on the rooftop
presented in [28] proved that the size of the embers is significantly smaller than the size
of the buildings and the retained ember area. Therefore, although the model ember sizes
did not meet strict geometric similarity, the results could be reasonably extrapolated to full
scale. The details of the ember production and the explanation of the satisfaction of the
ember’s geometric similarity are presented in [28].

Dynamic similarity was met by equating non-dimensional force ratios at full and lab
scale. The forces in this study are the aerodynamic forces on the house, the aerodynamic
forces on the embers, the ember weight, and the friction between the embers and the roof
material. The material of the fabric that was used to cover the rooftop of the model houses
was selected to have the same friction coefficient as the shingle on the full-scale houses.
This was to make sure that the model embers stayed in contact with the rooftops of the
model houses under the wind load in a similar pattern as in the full-scale case. The process
of testing the rooftop materials for the model houses is described in detail in [28], in which
P60 sandpaper was chosen for covering the rooftop of model houses.

The similarity requirement of the aerodynamic forces on the houses should be satisfied
by matching the Reynold number between full-scale and lab-scale experiments. However,
this is not possible in boundary layer wind tunnels. However, according to [44], the flow
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becomes independent of the Reynolds number if it is larger than 7500. Therefore, provided
the wind speed used in this study was greater than 1.1 m/s, we satisfied dynamic similarity
for the flow over the model buildings.

In a similar way, the aerodynamic forces on the embers are dependent of the Reynold
number, which is about 2000 for full-scale and approximately 140 for model embers.
However, the drag coefficient for embers in the shape of cylinders with a length to diameter
ratio of 8 is approximately constant over those Reynold numbers [45,46]. Although the
Reynolds number matching was not satisfied, the drag coefficient was similar for both the
full-scale and lab-scale scenarios.

Ember weight was reflected through the gravitation force, which is included in the
non-dimensional Tachikawa number [47] as:

K =
ρairu2

0
ρembergL

(1)

where ρair is the density of air, u0 is the wind speed at the eave height, ρember is the ember
material density, g is gravitational acceleration, and L is a characteristic length of the ember.
Knowing the air density and the ember’s properties, the wind speeds in the experiments
were adjusted based on the range of full-scale windspeed during an WUI fire to obtain the
same K number for both full and lab scale.

2.2. Summary of Test Conditions

Six buildings were tested with an identical width of 20.3 cm (8 in), a length of 40.6 cm
(16 in), and a height of 10.1 cm (4 in), but different roof pitches of 0/12 to 10/12 with
2/12 increments. The dimensions of these buildings are demonstrated in Figure 2 and are
summarized in Table 1.

With each building listed in Table 1, the experiments were carried out with 7 different
wind angles of 0, 15, 30, 45, 60, 75, and 90 degrees, where 0 degrees of wind direction is the
case when the long side of the building is perpendicular to the flow, while 90 degrees is
when the short side of the building is facing the wind flow. For each wind direction, each
building was tested with 6 different wind speeds. The wind speed was measured at the eve
height of the building. The wind speeds measured were 2.7, 3.1, 3.3, 3.5, 3.8, and 4.1 m/s
(see Table 2). Hence, for each building listed in Table 1, there were 42 experiments (test
conditions) (see Table 2).

Table 2. Tested condition for each roof pitch.

Wind Angle (Degrees) Wind Speed (m/s)

0, 15, 30, 45, 60, 75, and 90 2.7, 3.1, 3.3, 3.5, 3.8, and 4.1

2.3. Image Analysis

During each experiment, a camera was placed above the roof and was used to record
the roof surface. This was then used to determine the area of the rooftop on which embers
were retained. The experiment was ended when a visual observation confirmed that ember
removal had stopped.

The image of the recording was then downloaded onto a computer and processed
using the Matlab Image (MatLab R2023b) analysis toolbox. For each test condition (experi-
ment), the image was cropped to show only the roof and then converted into a black and
white image. The conversation was performed by applying an algorithm to differentiate
the area covered by embers and the area of ember removal (see [28] for more details on this
process). An example of an original image of the roof after an experiment and the black
and white image is shown in Figure 3 below.
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approaching at a 45◦ angle from the upper-left corner of the building.

The area of retained embers on the roof was identified by a black color, where a black
pixel has a value of 1 while the white pixel has a value of 0. Therefore, the total fractional
area of retained embers on the rooftop can be quantified by summing the total value of the
black pixels and dividing it by the total number of pixels in the image.

2.4. Qualitative Result

A total of 252 separate tests were conducted in this study for six roof slopes, seven
wind directions, and six wind speeds. Some broad qualitative behaviors were observed. For
example, it is clear that the ember removal was significantly impacted by the structure of
the flow separation over the building. This can be seen in Figure 3, which shows significant
ember removal along the path of the corner vortex that forms when the wind approaches a
building at a 45◦ angle. It was also observed that increasing the roof slope did not always
increase ember removal due to the flow separation over the roof ridge. A more detailed
description of the experimental results is presented in [28], which presented data for the
fraction of the entire roof surface on which embers were retained. However, while general
results were discussed in [28], the paper does not develop a predictive model for ember
retention and only addresses retention on the entire roof, despite the qualitative differences
in ember retention on the windward and leeward sides of the rooftop. This paper seeks
to address these shortcomings by breaking the experimental dataset into leeward and
windward retention fractions and reanalyzing the data using deep learning techniques. The
dataset analyzed consists of 504 separate roof segments with the retention fraction being
controlled by the wind speed, wind angle, roof slope, and windward/leeward roof location.

3. Deep Learning (DL)

DL represents a subset of AI inspired by the human brain’s structure. The foundational
work by McCulloch and Pitts in 1943 [48] laid the basics of understanding how the brain’s
neuron’s function and since then has inspired the development of artificial neural networks
(ANN). An ANN capitalizes on training neural networks with deep and fluid architectures
to contain the unique structure of a series of processing layers. An ANN with multiple
hidden layers can be formally termed a DL model.

A typical DL model consists of multiple layers of artificial neurons that process
information by passing inputs through weighted sums and nonlinear activation functions.
In each layer, each neuron receives input from all neurons in the preceding layer, forming
a matrix-vector multiplication. Below is the general formula for a matrix-vector product,
where a is an (M × N) matrix, and the subscripts are the trained parameters of the preceding
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layers. From the above matrix multiplication, one can say that the output coming from the
dense layer will be an N-dimensional vector.

(Ax) =

 a11 · · · a1n
...

. . .
...

am1 · · · amn


x1

...
xn

 =

 a11x1 + a12x2 + . . . + a1nxn
...

am1x1 + am2x2 + . . . + amnxn

 (2)

Additionally, activation functions within these layers introduce nonlinearity, enabling
the network to learn complex patterns and relationships in the data beyond what linear
processes can achieve. Common activation functions include the Rectified Linear Unit
(ReLU), which reduces the likelihood of vanishing gradients during training, thereby
supporting deeper network architectures. The sigmoid function is another commonly used
activation function that maps any input value to an output that ranges between 0 and 1,
making it particularly suitable for tasks where the output is a probability or a fraction within
this range. Figure 4 shows the above-mentioned activation functions’ identity functions. It
should be noted that other examples of activation functions can be found elsewhere [49].
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Finally, dropout layers can be critical in enhancing a DL model’s generalization capa-
bilities, preventing overfitting [50]. In the dropout layer, a random subset of neurons is
omitted during the training phase, which prevents the model from becoming overly depen-
dent on any single feature and reduces the risk of overfitting. This technique effectively
encourages the network to improve performance and reliability when exposed to new,
unseen data. Together, dense layers, activation functions, and dropout layers constitute
essential components that empower DL models to tackle various predictive modeling tasks.

3.1. Deep Learning Model Description

This section describes the development and validation of a DL model that can predict
the accumulation of embers on a flat roof. This research utilized a comprehensive image
database of ember accumulation on roofs conducted at Clemson University’s wind tun-
nel [28]. Subsequently, images were processed and analyzed to determine the total number
of black and white pixels. The black pixels represent the accumulated embers, while the
white pixels represent the areas from which embers were removed due to the imposed
wind. The next step was building a DL model to predict the accumulation of embers based
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on the image analysis. Lastly, we implemented an explainability tool (i.e., SHAP) [42] to
address the key factors influencing the accumulation of embers based on three scenarios.

1. Using the complete ‘Full’ database of roof images, including leeward and windward
sections;

2. The database is segmented into two datasets based on the side feature;
3. Lastly, the third segment of the windward dataset is selected for further examination.

In all three scenarios, the same model was initiated to observe the changes in the key
influencing features and the changes in the roof settings on the accumulation of embers
(which is tied to the possibility of ignition). Observing such changes offers explanations to
better understand the DL model’s predictiveness, which, in turn, enhances the building’s
fire safety and provides a safer roof setting to lessen the accumulation of embers on
flat roofs.

3.2. Database Preprocessing

The collected database consisted of 504 roof images with various settings. Each image
in the database illustrated ember accumulation under various features (conditions). Hence,
the ember accumulation was selected as the target feature (output). The number of black
pixels in the image represents the accumulation of embers (see Figure 3b). That is, the
model did not take the images as its input but rather the fraction of the roof surface that
remained covered with embers. The selected features as input included roof slopes, wind
direction (denoted as an angle), wind speeds, and the side feature, which specifies whether
the scenario was on the windward or leeward side of the roof.

The preprocessing stage started by importing and analyzing the images to extract the
features from the images. Factors such as side, roof angle, and wind speed data were directly
extracted from the source database using identifiable patterns related to the experimental
setup. On the target (output) front, ember accumulation, the developed model calculated
the accumulated embers on the rooftop by counting the number of black pixels in each
roof image. The number of black pixels was then divided by the total number of pixels
(white and black pixels) to normalize the target feature between 0–1. The above-mentioned
extracted data were recorded and structured in matrix arrays as an input database for the
model to make predictions.

3.3. Model Architecture

After a series of tuning steps, the designed DL model consisted of four dense layers,
which allowed the model to learn and identify relationships between various features and
the target label (the fraction of the roof surface covered in embers). The input dense layer
contained 504 neurons with an input dimension mirroring the dimensionality of the input
database and 128 for the leeward and windward datasets. Subsequent (hidden) layers
were progressively smaller, with 64, 32, and 16 neurons respectively. Finally, the model
architecture ended with a final dense layer with a single neuron, making a funnel-like
ANN model structure for data processing—see Figure 5. The ‘ReLU’ activation function
was selected for the input and hidden layers to introduce nonlinearity into the learning
process. However, the ‘linear’ activation function was selected for the output layer since
the target feature was a continuous fraction between 0 and 1 [51]. To combat overfitting,
we implemented a dropout layer with a 20% rate to randomly ignore a subset of neurons
during training.
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3.4. Dataset Partitioning and Model Training and Evaluation

During the model’s training phase, a systematic analysis of selecting 200 epochs,
with a batch size of five, provided the model with enough iterations to learn and balance
the computational efficiency. Adopting the Adam optimizer [52,53], which is known
for its adaptive learning rate properties, facilitates more accurate and practical model
updates. This optimizer was instrumental in guiding the model toward an optimal set of
weights, ensuring that each update was meaningful and conducive to the model’s overall
learning curve.

The model’s performance was validated against a subset of the dataset to confirm
the effectiveness of the learning process. This step was critical to ascertain that the
model advanced beyond mere memorization of the training data. The dataset was di-
vided into training and validation/testing sets, with a 70:30 ratio between the training
and validation/testing data. It is noteworthy that the dataset was split using ‘sklearn
train_test_split’ [54] in a random manner, with a condition of ensuring a non-changed
data distribution. Upon completion of the training phase, the model’s predictions were
evaluated against actual values in the validation set. The employed performance metrics
were the coefficient of determination (R2) and the mean absolute error (MAE) [55–57]. The
R2 score measures the quality of the model’s predictions of the actual data variance. The
MAE, on the other hand, quantifies the average magnitude of errors in the predictions.

4. Results and Discussion

This section represents the outcomes of the data exploratory and XAI analyses. The dis-
cussion will focus on displaying the Pearson and Spearman correlation matrices. However,
the ‘side’ feature is binary; hence, it will be discussed using the Point-biserial correlation.
Subsequently, we focus on the model performance during the training, testing, and vali-
dating phases. Following that, we illustrate the results from the SHAP summary plots by
focusing on the three segments of datasets used in this analysis, namely, the full images
database, a second dataset that includes the leeward roof side of the images, and finally,
the dataset that comprises only the windward side of the roof images.
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4.1. Correlations

The Pearson correlation coefficients heatmap, which demonstrates the strength and
direction of a linear relationship between the fraction of black pixels and all other features,
is shown in Figure 6. This heatmap identifies which variables have the largest and lowest
degrees of linear correlation with regard to the fraction of black pixels (fraction of the roof
surface that retains embers), which is indicative of ember accumulation.
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Figure 6. Pearson correlation heatmap.

One can observe a mix of negative and positive correlations in the last row. The most
notable negative correlation appears between wind speed and the fraction of accumulated
embers, with a coefficient of −0.59. This strong inverse relationship suggests that increasing
the wind speeds contributes to less ember accumulation. In addition, the coefficient between
the roof slope and the fraction of black pixels is −0.35, indicating that the steeper roofs
experience less ember accumulation. The correlation between the angle and the fraction of
black pixels accounted for only −0.2, representing a relatively weak negative correlation.
We opted not to discuss the ‘side’ feature in the Pearson correlation matrix because it can
only be used for continuous features.

The Spearman correlation coefficients heatmap is shown in Figure 7. This shows the
degree of monotonic relationship between the fraction of black pixels and the other features.
Similar to the Pearson correlation coefficient, the most significant negative correlation is
between wind speed and the fraction of black pixels, accounting for around −0.83. The
roof slope accounted for a Spearman correlation of −0.55 with the fraction of black pixels,
suggesting that roofs with greater slopes tend to have less ember accumulation, which is in
line with the monotonic but not necessarily linear trend this measure captures. The angle
presents a milder negative Spearman correlation of −0.33 with the fraction of black pixels,
indicating a less strong yet inverse relationship. Like the Pearson correlation, the Spearman
correlation heatmap cannot be used for binary features; hence, it will be discussed in
the Point-biserial correlation. A cross-examination between the Spearman and Pearson
correlation matrices shows that the Spearman coefficient is higher in magnitude than the
Pearson’s.
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Figure 7. Spearman correlation heatmap.

Lastly, the Point-biserial correlation is a special case of the Pearson correlation that
can be applied when one variable is categorical with two categories, and the other data are
continuous. As seen in Figure 8, the heatmap shows a positive correlation of 0.24 between
the leeward side variable and the fraction of black pixels and a negative −0.24 for the
windward side. Moreover, the leeward side is the only positive correlation observed, which
indicates an increase in ember accumulation on the side of the structure that does not face
the wind compared to the windward side.
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4.2. Model Evaluation

This section presents the model evaluation process. First, a visual comparison through
a line plot, illustrating the model’s predictions versus actual outcomes, was applied
to the full database to evaluate the overall predictive performance. Then, we utilized
two evaluation metrics: R-squared (R2) and mean absolute error (MAE). These metrics
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were adopted to evaluate the model performance for predicting ember accumulation on
roofs. Lastly, in addition to the full database, these metrics were implemented into the
model to provide insight into the accuracy and precision of our model across the leeward
and windward datasets.

4.2.1. Full Database Model Performance

Figure 9 visually illustrates the model’s prediction versus the actual outcome. As one
can see, the model accurately predicted the fraction of ember coverage (represented by
the black pixels). In addition, the R2 evaluation metric showed a value of 95.5%, which
signifies a high level of accuracy. This indicates that the model can predict the fraction of
black pixels within 95.5% of the original fraction of ember accumulation. Similarly, the
MAE showed a 0.05 error, representing the average magnitude of the errors in the model’s
predictions. This combination of a high R2 and a low MAE demonstrates the model’s robust
predictive capability, making it a potentially valuable tool for applications requiring precise
ember accumulation forecasts.
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Figure 9. An illustration of the accuracy of the model prediction. The red line represents exact
agreement.

4.2.2. Leeward and Windward Datasets

The model’s results varied when segmenting the database into two segments based on
the side feature, whether the images were for the leeward or the windward roof section. On
the leeward front, the R2 accuracy remained stable at around 93.4%, and the MAE dropped
slightly to 0.050. Alternatively, the windward dataset’s R2 accuracy dropped to around
87.7%. In addition, the MAE evaluation showed an increase in error to 0.08.

Notably, the training evaluation metrics followed a similar trend to the testing results,
with the complete database dropping slightly, which can be explained by the consider-
able number of samples the model used for training. Table 3 tabulates the training and
testing/validating evaluation metrics for the original database and the segmented datasets.

Table 3. Comparison of the evaluation metrics for the three segments of datasets.

Evaluation Metric Full Leeward Windward Full Leeward Windward

Training Testing/Validation

R2 98.8% 99.2% 99.2% 95.5% 93.4% 87.7%

MAE 0.025 0.023 0.02 0.050 0.056 0.077

4.2.3. SHAP Explainability Tools

The second goal of this study was to identify the impact of the selected parameters
on roof ember accumulation by utilizing the SHAP explainability tool [42]. SHAP is a
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model-agnostic tool designed to provide an explainable layer to AI models, which are
typically black boxes because users cannot observe how such models reached a prediction.
SHAP offers a visual representation of how much each selected feature contributes to the
model’s final prediction and the direction of its impact.

More specifically, such an explainability tool achieves both broad and detailed inter-
pretations by calculating Shapley values, which consider every combination and interaction
between features in the database rather than directly using the database features [58].
Shapley values are based on game theory, which requires two essential parts, namely, the
‘game’ and the ‘players’, where each player is a feature, and each game is a prediction. The
‘game’ represents the model’s outcome, while the players represent the database features.
Shapley values quantify the impact of each player on the game, or in other words, each
feature’s contribution to a prediction.

In regression models, to calculate the effect of a feature on prediction, Shapley val-
ues require training the model in all feature subsets S ⊆ F as shown in Table 4 [42]. To
determine that specific feature effect, the fS∪{i} model is trained using that specific fea-
ture, and then another model fs is trained on another feature. Subsequently, based on the
input, comparisons are to be made between predictions from the two associated models[
fS∪{i}

(
xS∪{i}

)
− fs(xS)

]
. This comparison accounts for the fact that the impact of exclud-

ing a feature is influenced by the presence of other features in the model. Such differences
are calculated for every subset of features, Shapley values are subsequently derived, and
the average is taken and utilized as feature importance.

Table 4. Summary of Shapley value calculations used in the XAI models [42].

SHAP

∅i = ∑
S⊆F\{i}

|S|!(|F|−|S|−1)!
F!

[
fS∪{i}

(
xS∪{i}

)
− fs(xS)

]
F: set of the selected features;
xs: the values of the input features in the set S.
|S|!: the number of permutations of feature values that appear before i-th feature value.
(|M| − |S| − 1)!: the number of permutations of feature values that appear after the i-th
feature value.

Note: The difference term in (|M| − |S| − 1)! is the marginal contribution of adding the i-th feature value to S.

SHAP generates a holistic (global) understanding and investigates the impact of each
feature on the model’s target feature via SHAP summary plot. It is typically illustrated
as a dot plot, where each point represents a Shapley value for a feature and an instance.
Features are listed on the y-axis, arranged by their overall importance (usually determined
by the sum of SHAP value magnitudes across all instances). The graph organizes these
factors in descending order, starting with the most influential contributor and moving
down to the least, according to their effect on the model’s output. The x-axis represents the
Shapley values, indicating how each feature contributes to shifting the model output from
the base point.

Moreover, the summary plot added a new layer to determine the direction of the
impact of the feature on the model prediction. The color coding of dots provides that
additional layer where high feature values, represented by red dots, contribute to higher
predictions. In addition, the density of the dots across the x-axis can also inform about
the variability of a feature’s effect. A wide spread of dots across the Shapley values range
indicates a significant impact on the prediction, while a narrow spread suggests a lower
influence. This section demonstrates the results obtained from implementing the SHAP
explainability tool by means of a summary plot into the DL model.

Figure 10 shows that wind speed was the most critical feature contributing to the
prediction, followed by the roof slope and wind angle. In addition, the windward and
leeward categories were the lowest contributors to the predictions. On the color-coding
front, all the top three influencing features showed that higher values [represented by the



Fire 2024, 7, 153 14 of 18

red dots] of these features contributed to decreasing the fraction of black pixels. Moreover,
lower values [represented by blue dots] were associated with a higher accumulation of
embers in the fraction of black pixels. This is consistent with the correlation coefficients
data in Figures 6 and 7, which show that all these parameters were negatively correlated
with ember coverage.
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The SHAP summary plots for the separated windward and leeward datasets are
shown in Figure 11. A comparison of the two SHAP summary plots highlights some key
differences between the ember retention on the windward and leeward sides of the rooftop.
First, wind speed played the largest role in the model prediction for the windward side,
followed by roof slope and wind angle. Moreover, the roof slope played the largest role
for the leeward side, followed by wind speed and wind angle. This is consistent with the
theory suggested in [28], which states that the flow separation along the eaves and roof
ridge controls ember removal. For the roof’s leeward side, the flow structure was controlled
by the flow separation along the ridge and was, therefore, significantly influenced by the
roof slope at the ridgeline.
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A second interesting distinction is that the wind angle played a much larger role
in the ember retention on the leeward side compared to the windward side. All but



Fire 2024, 7, 153 15 of 18

three SHAP values for the windward side range between ±0.2, whereas for the leeward
side of the roof, the values range from −0.3 to +0.35. This is again consistent with the
flow separation theory. The structure of the wind flow on the leeward side of the roof is
controlled by the roof ridge angle and the wind angle relative to the ridge line. It is also
worth noting that, on the windward side, many of the large wind angles (red dots) have
positive SHAP values, whereas predominantly small wind angles (blue dots) have positive
SHAP values. Again, this suggests that the retention process on the leeward side of the
rooftop is qualitatively and quantitatively different. This is not clear from the summary
model quality statistics presented in Table 3 and is only shown through a detailed analysis
of the SHAP summary plots.

The results above demonstrate the power of this approach to quantify ember retention
on rooftops during WUI fires and the value of XAI tools for elucidating behaviors that
influence ember retention. However, there is more work needed before this tool can be of
general use in home fire risk assessment. The limitations of the present study are as follows:

1. This work is limited to rectangular floor plan buildings with sloped gable end roofs
and does not account for complex roof shapes. This is due, in part, to the lack of
experimental data for non-rectangular roof buildings. Once building shapes beyond
rectangular are considered, there is a significant increase in the number of parameters.
For example, simply adding a T-shaped building introduces internal and external
roof corners. There are geometric features that have only one dimension (length)
and so much more work would need to be done to assess the influence area of such
features. This would require a much larger dataset of non-rectangular buildings than
is currently unavailable;

2. In general, complicating the roof types/shapes will increase the complexity of the
DL model, which will dramatically increase the already significant computational
resources required for training and testing;

3. Although some explainability tools can be implemented in ANN to extract qualitative
insights and verify domain knowledge, quantified interpretability remains a challenge.
That is, the XAI data must still be interpreted with a domain expert to gain the full
benefit of the analysis.

5. Conclusions

A DL model was used to develop a predictive model for identifying the fraction of a
roof surface that is susceptible to ember accumulation during a WUI fire. The experimental
data of [28] were used as the data source for both training and testing the developed model.
The model was trained and tested on the full dataset and on subsets of the dataset to
distinguish between the windward and leeward halves of the roof. Global measures of the
quality of fit were used to assess the model performance. Both the R2 and MAE parameters
showed very good performance for the model for both the full dataset and the two halves
of the dataset analyzed separately.

Explainability tools (XAI) were then applied to provide insights into the workings
of the model. The SHAP summary plot for the entire dataset shows that the wind speed
is the biggest contributor to the model prediction and, consistent with the Pearson and
Spearman correlation heat maps in Figures 6 and 7, the fraction of the rooftop on which
embers are retained is negatively correlated with the magnitude of the wind speed. When
the dataset was segmented into windward and leeward halves, the SHAP summary charts
were qualitatively and quantitatively different. In particular, the wind angle plays a much
larger role in ember retention on the leeward side of the rooftop. This is consistent with
the theory that the flow structure is controlled by the flow separation along the eaves and
roof ridge and, therefore, that the incident angle between the ridge and the wind is key
to controlling ember retention. This suggests that the AI model is capturing some subtle
features of the flow behavior and ember removal process.

The application of DL and XAI to ember accumulation provides both accurate quan-
titative predictions of the fraction of the rooftop on which embers can accumulate and
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insights into the mechanisms that allow embers to remain in contact with the roof surface.
One drawback of the current study is that the dataset consists only of rectangular floor
plan buildings with sloped gable end roofs. In the future, this work should be expanded to
include more complex building floor plans and roof shapes. While limited experimental
data in the literature [28] can be used to train and test such a model, the size of the datasets
available would limit the accuracy of the model. Additional experiments are required to
expand this dataset. Furthermore, work needs to be done to develop metrics for quantifying
various roof features, such as dormer windows and internal corners, before they could be
implemented into the model presented herein.
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