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Abstract: To realize the development of a long plasma source with a uniform electron density
distribution in the axial direction, the spatial distribution of plasma under a multi-cusp magnetic
field was analyzed using a KEIO-MARC code. Considering a cylindrical plasma source with an axial
length of 3000 mm and a cross-sectional diameter of 100 mm, in which the filament electrode was
the electron source, the electron density distribution was calculated using the residual magnetic flux
density, Bres, and the number of permanent magnets installed at different locations surrounding
the device, Nmag, as design parameters. The results show that both Bres and Nmag improved the
uniformity of the electron density distribution in the axial direction. The maximum axial electron
density decreased with increasing Nmag and increased with increasing Bres. These trends can be
explained by considering the nature of the multi-cusp field, where particles are mainly confined to
the field-free region (FFR) near the center of the plasma column, and the loss of particles due to radial
particle transport. The use of multiple filaments at intervals shorter than the plasma decay length
dramatically improved axial uniformity. To further improve axial uniformity, the filament length and
FFR must be properly set so that electrons are emitted inside the FFR.

Keywords: multi-cusp magnetic field; axially long plasma source; plasma spatial distribution; KEIO-
MARC

1. Introduction

With regard to improving the plasma confinement performance of a plasma source,
one of the primary methods involves applying a multi-cusp magnetic field to the plasma
confinement region. A multi-cusp magnetic field is generated through the placement of
multiple permanent magnets around the vessel wall in a circumferential configuration.
Assuming a cylindrical vessel is being used, a magnetic field with components exclusively
within a plane perpendicular to the cylinder axis is generated. This magnetic field config-
uration is widely used in plasma sources because of its role in confining the plasma and
reducing particle loss. The applications of multi-cusp magnetic fields encompass a broad
spectrum of topics [1–12]. The most common application resides in the field of ion source
development, where these fields have yielded enhancements in the confinement of hot
and bulk electrons [13,14]. In the context of nuclear fusion research, investigations into
plasma–wall interactions have been conducted by employing an AIT-PID (Aichi Institute of
Technology Plasma Irradiation Device, Aichi, Japan) equipped with a multi-cusp magnetic
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field plasma source [15–18]. Furthermore, one potential method for studying atomic pro-
cesses is an experiment in which ion/electron beams are injected into plasma confined by a
multi-cusp magnetic field. The attenuation of the injected beam depends on ntσL, where
nt, σ, and L denote the density of the target plasma particles, the reaction cross-section,
and plasma length, respectively. Consequently, an extended plasma length in the axial
direction becomes essential to facilitate the precise observation of beam attenuation caused
by collisions between the plasma and the beam. Given that the number of plasma–beam
collisions per unit volume and unit time is expressed as ntnb<σv>, using the beam density
nb and the beam velocity v, the importance of the spatial distribution of the target plasma
density must also be noted. Specifically, high-density target plasma with a uniform density
distribution enables the clear observation of the impact of the injected beam on the target
plasma. To control the spatial distribution of plasma density, it is critical to understand the
mechanism of particle loss. Under conditions of relatively high electron temperatures and
negligible volume recombination, the axial distribution of electron density is significantly
dependent on radial losses. In systems with axial magnetic fields, collisions during Larmor
motion produce radial losses. Conversely, the axial field strength within the multi-cusp
magnetic field is practically zero, which differs in the radial loss mechanism from plasma
experiments characterized by an axial magnetic field [19,20]. Particularly noteworthy is the
mechanism that determines the spatial distribution of the plasma within a multi-cusp mag-
netic field in an axially long plasma source, which has not yet been understood. Therefore,
the purpose of this paper is to analyze the spatial distribution of axially extended plasma
in a multi-cusp magnetic field via numerical simulation and to suggest a methodology
necessary for achieving a uniform plasma distribution.

2. Simulation Model
2.1. Plasma Source

A schematic diagram of the plasma source is depicted in Figure 1. The plasma source
was configured with the following dimensions: a diameter of 100 mm and a length of
3000 mm. Throughout the calculations, the potential of the plasma source, including both
ends, was consistently maintained at a floating potential, which was determined by the
electron temperature near the wall. Permanent magnets were placed on the sidewall of
the plasma source parallel to the cylindrical axis. Magnets were not placed at either end
of the plasma source. In the actual fabrication of the device, it is expected that multiple
magnets of realistic sizes would be placed on the wall surface in a straight line parallel to
the cylindrical axis. This would leave a small gap between the aligned magnets, but this
gap was neglected in the numerical calculations in this study.
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Figure 1. Schematic of plasma source with multi-cusp magnetic field.

2.2. Calculation of Multi-Cusp Magnetic Field

The utilization of multi-cusp magnetic fields is one of the methods employed to
improve the confinement of plasma. Furthermore, it serves to establish a uniform radial
distribution of the bulk plasma. While there are many techniques for the generation of a
multi-cusp magnetic field, the configuration based on a line–cusp arrangement represents
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an optimized approach for plasma confinement [21]. Therefore, the line–cusp arrangement
was employed in this study. The magnetic field at each spatial point was calculated using
the principles of magnetic Coulomb’s law, as expressed by the following equation:

dH =
BresdS
4πµ0r2 r̂ (1)

where Bres, µ0, and r̂ denote the residual magnetic flux density, vacuum permeability, and
unit position vector originating from the area element of the magnet surface, respectively. The
dimensions of the magnet, as well as the separation between the poles, were set to 10 mm
and 20 mm, respectively. The magnet surface was divided into a 0.5 mm × 0.5 mm grid, thus
rendering dS equal to 2.5 × 10−7 m2. In practice, a supporting plate would be interposed
between the magnets and the plasma. In this study, the thickness of this support plate was
set to 1 mm. Consequently, the magnets were positioned at a distance of 1 mm away from
the wall. Note that Equation (1) implies a divergence of the magnetic field strength close
to the surface of the magnet, which can be avoided by placing the magnet slightly outside
of the wall. The number of permanent magnets installed around the device, Nmag, is also
an important parameter that determines the characteristics of a multi-cusp magnetic field.
Nmag must be an even number for the line–cusp configuration. Calculations were performed
for all the magnets of the device. Furthermore, since both Bres and Nmag affect the spatial
distribution of the plasma, Bres and Nmag were given separately as independent parameters in
the calculations.

2.3. Calculation of Electron Energy Distribution Function

The Electron Energy Distribution Function (EEDF) in space was analyzed using a
KEIO-MARC (kinetic model of electrons in ion source with multi-cusp ARC discharge)
code [22–26]. KEIO-MARC has been used to estimate the H− production rate in a negative
ion source called an SHI H− ion source [27,28] and improve the performance of a JT-60SA
negative ion source [29] and for comparison with the results of spectroscopic measurements
taken from a QST (National Institute of Quantum and Radiological Science and Technology,
Naka, Japan ) 10-ampere ion source [30].

Input parameters were provided to the KEIO-MARC code pertaining to the chamber
geometry, filament configuration, and multi-cusp magnetic field. In addition, the density
of each background particle (H, H2, H+, H2

+, and H3
+) was determined prior to the

calculations. Although the KEIO-MARC code possesses the ability to accommodate over
500 elastic/inelastic and Coulomb collisions in the context of hydrogen plasmas, this study
simplifies the corresponding analysis by considering only 38 reactions involving the five
aforementioned particles. The fundamental equation governing KEIO-MARC is expressed
as follows [22]:

me
dve

dt
= −e(E + ve × B) + me

(
δve

δt

)
collision

, (2)

where me, ve, e, E, and B are the electron mass, velocity, charge, electric field, and multi-cusp
magnetic field, respectively. Quasi-neutrality was assumed since the Debye length in the
plasma region (Te~6 eV, ne~1015 m−3) is less than 1 mm, which is much shorter than the
system length. Under the assumption of quasi-neutrality, except at the plasma source
surface and filament, the electric field E is exclusively considered within the boundary
regions corresponding to the wall and filament. Sheath boundary conditions are applied to
both ends and the sidewall, featuring a potential (ϕsh) described by

ϕsh =
kBTe

2e
ln

mi
2πme

, (3)

where kB, Te and mi represent the Boltzmann constant, electron temperature, and ion
mass, respectively. At both ends and at the sidewall, electrons characterized by energies
lower than eϕsh are reflected by the sheath, while those with energies higher than eϕsh are
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lost. The update time intervals for the electron orbit calculations, Coulomb collisions, and
elastic/inelastic collisions were set to 10−11, 10−9, and 10−8 s, respectively.

In the simulations reported in this study, it is assumed that the plasma has been
generated through the implementation of a DC arc discharge featuring hot cathodes.
While it is a common practice to position the filament at the periphery of the plasma
source, this study adopts a distinct approach, inserting the filament within the central
region of the plasma source with the aim of achieving a uniform plasma distribution.
For the investigation of reference plasma distributions reported in Sections 3.1 and 3.2,
a solitary filament was employed. In the investigation reported in Section 3.3, multiple
filaments were employed in pursuit of uniform plasma. In this context, a hairpin-shaped
filament was employed. The filament exhibited a composite structure, comprising a linear
segment and a semicircular section with respective lengths and radii of 35 mm and 10 mm
(resulting in a total length of 45 mm). The filament emits electrons from its surface, and
the bulk neutrals in the plasma source are ionized. The energy and emission counts were
determined by the arc voltage and current, set to 100 V and 10 A in this study. It is worth
noting that the thickness of the sheath region is sufficiently shorter than the respective
dimensions of the plasma source so that electrons are instantly accelerated by the arc
voltage. Since quasi-neutrality was assumed in the plasma region, our use of arc voltage for
the initial velocity of the electrons is justified. The initial positions of the emitted electrons
were randomly determined, and the electrons were emitted perpendicular to the filament
surface; the total scattering cross section of the hydrogen molecule for a 100 eV electron is
2.54 × 10−20 m2 [31]. The higher the hydrogen molecular pressure, the greater the decrease
in the electron density in the axial direction. Subsequently, electron energy is lost mainly
through collisions. In this study, the hydrogen molecular pressure was set to 0.2 Pa. Under
a hydrogen molecular pressure of 0.2 Pa and a temperature of 500 K, the electron mean
free path λ was estimated to be 1.36 m. Since λ is shorter than the system length of 3 m,
the decay in electron density in the axial direction is significant. The temperatures and
densities of the background particles are comprehensively documented in Table 1.

Table 1. Temperature and density of the background particles.

Particle Temperature (K) Density (m−3)

H2 500 2.9 × 1019

H 1000 2.9 × 1017

H+ 5800 1.0 × 1017

H2
+ 1000 1.0 × 1015

H3
+ 1000 1.0 × 1015

The KEIO-MARC code calculates the trajectories of electrons emitted from the filament
and secondary electrons produced through ionization, considering the magnetic field and
collisions between particles. The calculations continue until EEDF, fe(E), reaches a steady
state. The EEDF at each point in space is evaluated based on the position and velocity
of each electron. The electron density, ne, and the averaged energy, 〈E〉, are calculated
as follows:

ne =
∫ Emax

0
fe(E)dE, (4)

< E >=
1
ne

∫ Emax

0
fe(E) E dE, (5)

where Emax is the calculated maximum energy (150 eV in this paper) and 〈E〉 is evaluated
as the averaged energy of hot electrons emitted from the filament and the bulk plasma. The
electron temperature Te was calculated from the gradient of the Electron Energy Probability
Function (EEPF) defined by fe(E)/√E. in the low-temperature region (<10 eV). The typical
results calculated using KEIO-MARC for the axial distribution of the EEDF and the EEDF
at z = 1000 mm are shown in Figures 2a and 2b, respectively.
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Figure 2. Typical calculated EEDF (a) axial distribution on the centerline (x = y = 0 mm) and
(b) z = 1000 mm. The dashed red curve shows the Maxwell distribution fit to the EEPF in the region
below 10 eV.

As described above, the filament was inserted at z = 1500 mm, with an arc voltage
of 100 V. Therefore, the EEDF exhibited a peak of approximately 100 eV at z = 1500 mm,
as shown in Figure 2a,b. The electrons were initially accelerated by the sheath potential
formed around the filament and then lost their energy through collisions with the bulk
particles. The amount of energy lost in collisions is unique to each of the various types of
elementary processes that occur in collisions. Therefore, several energy peaks appeared
in the EEDF in the relatively high-energy region. As shown in Figure 2a, high-energy
electrons were found even at both ends of the plasma source, indicating that some electrons
reached both ends without experiencing a significant loss of energy. As shown in Figure 2b,
the EEDF became continuous in the relatively low-energy region; thus, Te was calculated
from the gradient of the EEDF.

3. Simulation Results

A typical multi-cusp magnetic field distribution is shown in Figure 3. Here, Bres and
Nmag are set to 0.75 T and 8, respectively.
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Figure 3. Typical multi-cusp magnetic field distribution of the cross-section. The Bres and Nmag are
0.75 T and 8, respectively. The solid black curve indicates a filament.

In the multi-cusp magnetic field, the strength of the magnetic field increases from the
center to the wall and is greatest near the wall. The charged particles in the plasma are
reflected at the wall’s surface owing to the magnetic field gradient. Note that Bz is almost
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zero except near the edge of the plasma source. A region with a weak magnetic field is
distributed around the center; it is called the field-free region (FFR). The FFR is one of the
significant parameters that characterizes a multi-cusp magnetic field because the plasma is
mainly distributed inside of it. In this study, the FFR was defined as the diameter of the
circular cross section where the magnetic field strength is less than 5 mT in the line–cusp
magnetic configuration. The typical electron density distribution of the cross section is
shown in Figure 4.
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Figure 4. Typical electron density distribution of the cross-section. The Bres and Nmag are 0.75 T and
8, respectively. The region within the dashed circle represents a field-free region.

Electrons were mainly distributed in the FFR, as represented by the black dashed circle
in Figure 4. However, electrons were lost on the surface of the magnets, forming a line–cusp
configuration. The plasma was uniformly distributed within the FFR. Thus, the multi-cusp
magnetic field played a key role in generating uniform plasma in the radial direction.

3.1. Effect of the Radial Magnetic Flux Density Bres on Plasma Axial Distribution

Bres is effective in improving plasma confinement. Analyses were performed in which
the value of Bres was varied from 0.25 T to 1 T. In this section, Nmag and the position of the
filament z f il were fixed at 10 and 1500 mm, respectively. The distributions of ne, Te, and 〈E〉
on the centerline (x = y = 0 mm) in the axial direction are shown in Figure 5.
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The electron density peaked at the filament position (z = 1500 mm) and decreased as
the distance from the filament increased (Figure 5a). However, it increased over the entire
volume of the plasma source as the Bres increased. On the other hand, electron temperature
was independent of Bres, with a maximum value of approximately 5.5 eV at the filament
position, and decreased by approximately 1 eV at both ends of the plasma source. The
average electron energy 〈E〉 tends to be similar to Te, with a weak dependence on Bres. The
electron density distribution is considered to depend on the FFR and losses at the boundary
wall. Note that the electron losses due to volume recombination can be neglected in the
calculations being discussed. The size of the FFR depends on Bres, as shown in Figure 6a.
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Figure 6. Dependence of (a) FFR, (b) maximum electron density nmax, (c) radial electron loss, and
(d) decay length LD on Bres. FFR is defined as the diameter of the circular cross-section, where the
magnetic field strength is less than 5 mT.

The dependence of the maximum electron density (nmax) is summarized in Figure 6b.
The radial losses plotted in Figure 6c were calculated based on the total number of electrons
that reached the sidewall of the plasma source. The uniformity of electron density was of
interest in this study. The distribution of ne appears to be linear on the logarithmic axis.
Therefore, the distribution of ne was assumed to decrease exponentially when moving
away from the filament. To quantitatively evaluate the plasma decay length (LD), the axial
distribution of ne was fitted with an exponential function, as follows:

ne(z) = nmaxexp

−

∣∣∣ z − z f il

∣∣∣
LD

. (6)

The FFR decreased with an increase in Bres. This is considered to narrow the region
over which the plasma is distributed and increase nmax. In addition, the radial electron
losses were reduced. This effect also contributes to an increase in ne, resulting in improved
LD. Therefore, an increase in Bres is important for obtaining uniform electron density in the
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axial direction. However, the effect of Bres on preventing the axial decay of 〈E〉 is negligible,
and other approaches are required.

3.2. Effect of the Number of Magnets Nmag on Plasma Axial Distribution

Next, we discuss the effect of the number of magnets Nmag on the plasma axial
distribution. An analysis was performed using a Nmag of 6–12 and a Bres of 0.75 T. The axial
distributions of ne, Te, and 〈E〉 as functions of Nmag are shown in Figure 7.
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Figure 7. Axial distributions of (a) ne, (b) Te, and (c) 〈E〉 on the centerline (x = y = 0 mm) as functions of
Nmag. The position of the inserted filament and the residual magnetic flux density are zfil = 1500 mm
and 0.75 T, respectively.

The electron density ne decreased when moving away from the filament, as shown
in Figure 5. The maximum value of ne decreased with increasing Nmag. The electron
temperature Te followed the same tendency as that shown in Figure 5. On the other hand,
the 〈E〉 distributions have roughly the same peak value near the filament, but the axial
decay is mitigated by the increasing Nmag. Similar to Figure 5, this tendency can also be
interpreted using the FFR and radial transport losses. Figure 8 shows the dependence of
the (a) FFR, (b) nmax, (c) radial electron losses, and (d) LD on Nmag. Here, the distributions
of ne were again assumed to decrease exponentially when moving away from the filament,
except in the case of Nmag = 6.

Increasing Nmag weakened the radial component of the multi-cusp magnetic field and
expanded the FFR. This also expanded the area over which the plasma was distributed,
resulting in a decrease in nmax. In addition, as the size of the FFR increased, the radial
gradient of the multi-cusp magnetic field increased, and thus the lifetime of the electrons
extended, resulting in the mitigation of the decay of 〈E〉. The radial electron losses decreased
slightly with increasing Nmag. An increase in Nmag decreased the distance between adjacent
magnets and increased the maximum magnetic field strength near the chamber wall [5].
The slight decrease in radial loss was due to this effect. The LD increased with increasing
Nmag. Although it is difficult to reduce electron losses significantly by increasing Nmag,
this action extends the electron lifetime and improves axial uniformity. Therefore, Nmag is
another important factor for obtaining axially uniform plasma.
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5 mT.

For Nmag = 6 in Figure 7, an asymmetric electron density distribution was obtained at
around zfil (=1500 mm). In this case, the size of the FFR was approximately 20 mm, and the
outer half of the filament was located outside the FFR, which has a strong radial magnetic
field. Thus, some of the emitted electrons were immediately trapped in the multi-cusp
magnetic field. This generated a magnetic field gradient (grad-B) drift, and electrons were
transported in one direction. Figure 9a,b show the electron density distributions on the YZ
cross section for Nmag = 6 and 12, respectively.
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For Nmag = 6, the electrons emitted from the filament were transported in one direction
toward z = 3000 mm. At the location of the filament, the magnetic field and magnetic
field gradient vectors were in the negative direction along the X-axis and along the Y-
axis, respectively. Then, electrons were transported along the Z-axis via grad-B drift.
Consequently, the electron density distribution was asymmetrical in the axial direction.
This is a serious impediment to axially uniform plasma generation. In contrast, the FFR
increased from 20 to 55 mm as Nmag increased from 6 to 12. Thus, electrons were emitted
inside the FFR, and the asymmetry was mitigated. Therefore, in axially long plasmas, it
is necessary to place the filaments deeper or to adjust the FFR by Bres and Nmag to emit
electrons inside the FFR.

3.3. Effect of Increasing the Number of Filaments on the Axial Plasma Distribution

Finally, we will discuss the number of filaments (Nfil). In the previous subsections,
only one filament was inserted at z = 1500 mm. However, it is difficult to generate a uniform
plasma with a single filament in a 3 m plasma source. Therefore, multiple filaments were
used. The axial distribution of the plasma was analyzed by placing up to six filaments at
equal intervals. The axial distributions of ne, Te, and 〈E〉 as functions of Nfil are shown in
Figure 10.
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Figure 10. Axial distributions of (a) ne, (b) Te, and (c) 〈E〉 on the centerline (x = y = 0 mm) as a function
of the number of filaments Nfil. The residual magnetic flux density and the number of magnets are
0.75 T and 8, respectively.

The insertion of multiple filaments increases the maximum electron density and
mitigates axial non-uniformity. Here, the coefficients of variation (defined by the standard
deviation per average value) of the axial electron density distribution were improved from
0.34 to 0.21, 0.17, 0.15, 0.13, and 0.13 upon increasing Nfil from 1 to 2, 3, 4, 5, and 6 (the
corresponding filament intervals were 100, 75, 60, 50, and 43 cm), respectively. Furthermore,
the axial non-uniformity was improved for 〈E〉 distribution. The decay length LD, defined
in Equation (6), is the distance over which nmax decreases by a factor of 1/e ≈ 37%. Indeed,
by placing the filaments at intervals approximately equal to LD (=98 cm in this case), the
uniformity of the electron density distribution was only within 37%. By placing filaments
at appropriate intervals, the hot primary electrons that ionize the neutral particles are
freely distributed throughout the plasma source, resulting in uniform plasma. If an even
more stringent requirement is imposed on the uniformity of the axial electron density
distribution, the filaments should be placed at intervals even shorter than those of the LD.
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4. Conclusions

The spatial distribution of axially long plasmas in a multi-cusp magnetic field was
analyzed using a KEIO-MARC code. Considering a cylindrical plasma source with an axial
length of 3000 mm and a cross-sectional diameter of 100 mm, in which the filament electrode
is the electron source, the electron density distribution was calculated using Bres and Nmag
as design parameters. The results showed that both Bres and Nmag improve the uniformity
of the electron density distribution in the axial direction. Bres was important for reducing
radial electron losses. As a result, ne increased at each axial point, and non-uniformity was
mitigated. Nmag also plays a key role in mitigating the axial non-uniformities of ne and
〈E〉 distributions. However, increasing Nmag caused the plasma to be distributed over a
wider area, and the maximum value of nmax decreased. Both Bres and Nmag increase the
decay length and mitigate axial non-uniformity, but with a tradeoff consisting of higher
electron density.

We considered a plasma source with a diameter of 10 cm, indicating that the area size
of the FFR in the plasma confinement region needs to be taken into account. If the FFR is
narrow and the electrons emitted from the filament are trapped by the multi-cusp magnetic
field, the axial distribution of the electron density would be asymmetric owing to grad-B
drift. To avoid an axially asymmetric density distribution, the FFR should be adjusted
by one of or both Bres and Nmag, or the filament should be inserted deeper. Furthermore,
the decay length LD was also shown to be an important parameter in the generation of
a long and uniform plasma in the axial direction. In order to achieve a uniform axial
distribution of ne, Te, and 〈E〉, the filaments needed to be placed at intervals shorter than
LD. For a hydrogen molecular pressure of 0.2 Pa, LD was shorter than the mean free path
of the electrons. LD depends not only on the molecular hydrogen pressure but also on the
multi-cusp field conditions, Bres, and Nmag, as previously mentioned, and these factors
should also be taken into account when determining the filament arrangement.
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