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Abstract: The field of sleep research is both broad and rapidly evolving. It spans from the diagnosis
of sleep-related disorders to investigations of how sleep supports memory consolidation. The study
of sleep includes a variety of approaches, starting with the sole focus on the visual interpretation of
polysomnography characteristics and extending to the emergent use of advanced signal processing
tools. Insights gained using artificial intelligence (AI) are rapidly reshaping the understanding of
sleep-related disorders, enabling new approaches to basic neuroscientific studies. In this opinion
article, we explore the emergent role of Al in sleep research, along two different axes: one clinical
and one fundamental. In clinical research, we emphasize the use of Al for automated sleep scoring,
diagnosing sleep-wake disorders and assessing measurements from wearable devices. In fundamental
research, we highlight the use of Al to better understand the functional role of sleep in consolidating
memories. While Al is likely to facilitate new advances in the field of sleep research, we also address
challenges, such as bridging the gap between Al innovation and the clinic and mitigating inherent
biases in AI models. Al has already contributed to major advances in the field of sleep research,
and mindful deployment has the potential to enable further progress in the understanding of the
neuropsychological benefits and functions of sleep.
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1. Introduction

Since the first studies of sleep, the field of sleep research has massively evolved. Be
it for clinical or basic research purposes, sleep research today relies heavily on cutting-
edge sensors that record complex signals of the human body, generating large amounts
of data. Polysomnography (PSG), the golden standard tool for sleep assessments, typi-
cally generates time-domain signals of electroencephalography (EEG), electromyography
(EMG), eye movements (electrooculography—EOG), and often additional signals, such
as electrocardiography (ECG) or respiration patterns. All these rich signals are routinely
collected overnight in sleep clinics and research laboratories to assist in the study of sleep
functions and dysfunctions. In addition, wearable devices, although they are not the norm,
are becoming more and more mainstream and are even considered in clinical evaluations
of patients with sleep-wake disorders [1]. These measurements collect large amounts of
data that contain rich patterns of activity, to which the human eye is often oblivious.

To exploit the richness of sleep-related measurements, signal processing and artificial
intelligence (Al) techniques have been introduced in the field of clinical and fundamental
sleep research. Al has brought major changes to several domains in recent years, primarily
those of (medical) imaging and language processing. Al techniques can be grouped into two
large fields: feature-based or ‘traditional” machine learning and deep-learning techniques.
For feature-based techniques, before the actual Al algorithm can be applied, relevant
features must be extracted from the data, from which the algorithm will then learn. In the
case of EEG or, more broadly, time-series data, such features may, for instance, consist of
power in specific frequency bands, EEG sensors in predefined scalp locations, or scale-free
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properties of EEG signals. The extracted features can then be used to perform a task of
supervised or unsupervised learning. Supervised learning needs labels assigned to the data
to guide learning, while unsupervised approaches can uncover patterns in a label-agnostic
manner. The choice of the learning approach depends on the availability of labels, such
as the category of presented stimuli, patient groups, diagnosis, etc., and the aim of the
analyses. For example, supervised learning could be better suited for discriminating neural
responses to external stimuli when the identity of the stimuli is known and can be used as
labels [2]. By contrast, if the goal is to identify subgroups in a patient population without a
priori assumptions, unsupervised learning could be a more suitable approach [3].

When Al algorithms are based on deep learning, minimally preprocessed data are
usually provided as input to a neural network, such as a convolutional neural network
(CNN), which then performs the task of classifying the input signals, for example, via
successive convolutional operations [4]. CNNs were initially used in the domain of image
classification [5] and have more recently been adapted for time-domain signals [6]. The
most prominent models that have emerged in recent years exploit the temporal and spatial
properties of EEG signals [7], as well as the temporal dynamics and structure of sleep
recordings [8]. As expected, these powerful techniques have entered the field of sleep
research and have the potential to push the field toward exciting new venues.

In this opinion article, we provide an overview of recent advances that Al algorithms
have brought into the field of sleep research either in clinical or fundamental neuroscience
(Figure 1). We start with a section on clinical sleep research, where we elaborate on investi-
gations performed in sleep clinics (i.e., sleep scoring), where Al can assist in automating
medical tasks, and in improving the diagnosis and prognosis of sleep-wake disorders. We
then proceed with a section on how Al can assist in bringing sleep research outside sleep
laboratories via wearable technologies. Then, we present highlights of fundamental neuro-
science research, and we elaborate on the potential that Al techniques have for detecting
patterns in EEG signals related to sleep functions such as memory consolidation. In the last
section of this article, we discuss future directions for bridging Al and sleep research, as
well as the challenges that will need to be addressed.

Augmc-.zntlng <_:I|n|cal Moving outside Hypothesis testing
diagnosis sleep labs
Sleep wake disorders Wearables Memory & cognition

Figure 1. Overview of domains where Al can assist in sleep research.

2. Al in Clinical Sleep Research
2.1. Al as a Helper: The Case of Automating Sleep Scoring

Today, the diagnosis of most sleep-wake disorders requires patients to spend a night
at the hospital or in a sleep lab, where they undergo a PSG recording. PSG signals are
then temporally labeled into different stages that make up the architecture of sleep, in
the so-called sleep scoring. Sleep scoring is a time-consuming and tedious process that
relies heavily on clinical expertise. Trained clinicians spend hours visually inspecting and
scoring overnight PSG recordings. However, this task comes with several caveats. First, it
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is time-consuming, as clinicians must visually assess every 30 s epoch of the full night PSG
recording. Second, it is also prone to subjectivity, since physiological features in sleep may
differ across patients, and it can be hard to detect and interpret them. This variability may
often also result in low inter-rater reliability in sleep scoring [9-11]. Al-based research over
the last years has made impressive progress in automating the manual procedure of sleep
scoring, reducing time demands and increasing objectivity. Different algorithms, ranging
from relatively simple classifiers [12] to deep convolutional neural networks [13], have
been proposed and have shown impressive results in sleep scoring PSG signals, recorded
in both research and clinical settings.

In the first category, sleep scoring algorithms start by extracting features of PSG
signals, such as EEG power spectra or EOG/EMG entropy, computed over 30 s intervals,
and then use supervised learning algorithms to classify sleep stages. One notable example
in this category is the YASA algorithm [14], which is based on a gradient boosting decision-
tree architecture. This algorithm has been validated on over 30,000 h of PSG recordings
from several laboratories and provides results on par with human experts [14]. In the
second broad category, sleep scoring algorithms based on deep neural networks instead
exploit the temporal characteristics of PSG signals and only require minimal preprocessing,
without pre-selecting specific features [15]. One notable example of such algorithms is
the U-Sleep artificial neural network, which was trained on more than 15,000 PSGs from
multiple clinical studies, achieving a remarkably high performance and across-center
generalization [15]. Recent work has shown that this algorithm is particularly powerful,
demonstrating resilience to the sleep scoring guidelines of the American Academy of
Sleep Medicine (AASM) [16], as it performs equally well at sleep scoring even when non-
recommended and non-conventional channels are used as input [17]. Overall, these studies
show the strong potential of Al techniques to automate the tedious task of sleep scoring
and to render it more objective and resilient across sleep experts.

2.2. Al for Augmenting Clinical Diagnosis: The Case of Sleep-Wake Disorders

Another field where Al can not only assist but potentially also augment human capac-
ities is the diagnosis of sleep-wake disorders. About one-third of the human population
will be affected by sleep-related troubles at some point in their lives [18]. Sleep-wake
disorders manifest with a large variety of symptoms and causes. The main two categories
of sleep-related problems can be grouped around two families of symptoms: daytime
sleepiness and difficulties falling asleep at night. These symptom families may seem dis-
tinct but are intermixed, as difficulties falling asleep may also result in daytime sleepiness.
Similarly, very distinct sleep-wake disorders can share several symptoms, which makes
their diagnosis challenging. Another challenge in the clinical routine today is that certain
sleep-wake disorders, such as insomnia disorder, do not have objective biomarkers. The di-
agnosis of insomnia disorder relies on subjective self-reports and questionnaires [19]. These
caveats make the landscape of sleep-wake disorders heterogeneous and their diagnosis an
open challenge.

Although Al is not currently used in clinical assessments of sleep-wake disorders,
it has the potential to assist in several ways. Al algorithms can be used for the analysis
of PSG signals with two goals: first, to reduce subjectivity in data analysis by providing
homogeneous assessments and second, to increase sensitivity and uncover patterns that
may be hidden from the human eye [20](Zubler and Tzovara 2023). Several studies have
demonstrated the potential of deep learning in assisting in the diagnosis of sleep-wake
disorders based on PSG signals, with a notable example of a recent application of neural
networks trained to perform automatic sleep scoring and then to identify patients with
narcolepsy type 1 via the resulting hypnodensity graphs [8]. Future work can investigate
additional disorders and explore the potential of deep learning algorithms for extracting
fine-grained patterns that may additionally reflect the co-occurrence of multiple sleep-wake
disorders or comorbidities with psychiatric or neurological disorders.
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Apart from assisting in the diagnosis of individual patients, Al techniques also have
the potential to enable a data-driven characterization of patient phenotypes across patient
groups. Unsupervised learning has been used to disentangle the heterogeneous landscape
of sleep-wake disorders. Clustering has been mainly used within individual disorders, such
as central disorders of hypersomnolence [21,22], insomnia disorder [23,24], or obstructive
apnea [25-27], with the goal of identifying unique patient profiles within a given group,
based on available clinical markers. For central disorders of hypersomnolence, previous
studies have identified clear clusters of patients with narcolepsy type 1, which typically
manifests with a high prevalence for cataplexy, low hypocretin, and a high number of sleep
onset rapid eye movement (REM) periods [21,28]. By contrast, patients with narcolepsy
type 2 and idiopathic hypersomnia are intermixed, as can be expected based on the current
clinical criteria [21]. Studies on obstructive sleep apnea have found heterogeneous patient
clusters, mainly separated along demographic information such as age, body mass index, or
disease severity. Similarly, studies on insomnia disorder have identified insomnia subtypes
based on total sleep time, REM sleep, non-rapid eye movement (NREM) sleep, and the
patient’s sex [23,24].

To date, clustering on the full spectrum of sleep-wake disorders remains limited [3].
A recent study analyzed a wide range of clinical variables for a cohort of more than
6000 patients with sleep-wake disorders and showed that within central disorders of
hypersomnolence, patients with narcolepsy type 1 were relatively easy to discriminate,
while patients with narcolepsy type 2 and idiopathic hypersomnia were intermixed, as
one would expect, based on previous studies which focused on such sub-groups [21].
The study additionally showed that when moving to the full spectrum of sleep-wake
disorders, it is more challenging to disambiguate individual disorders, other than patients
with breathing-related disorders and patients with narcolepsy type 1 [3]. These results
clearly show the complexity of the current landscape of sleep-wake disorders and call
for additional biomarkers to characterize them [29]. Overall, studies using unsupervised
learning highlight the complexity of the full landscape of sleep-wake disorders and suggest
that new diagnostic criteria may be needed to characterize them.

2.3. Al for Moving Sleep Outside Sleep Labs: The Case of Wearables

As the fields of sleep research and medicine evolve, new technologies necessarily
follow. One key direction of research that has flourished in recent years is that of wearable
devices employed to study sleep [1]. Wearable devices have the potential to fundamentally
change the study of sleep-wake disorders and the assessments of sleep hygiene, as they
can be used at the patient’s homes, bringing the study of sleep outside the lab and closer to
the patients” daily lives [30]. As wearable devices operate continuously, they generate large
amounts of data, which makes the use of Al-based techniques for their analysis a necessity.

Although the use of wearable devices for studying sleep patterns is relatively new,
there are already several studies showing the potential of these devices to classify sleep-
wake disorders [31,32]. As a notable example, one recent study showed that cardiac and
respiratory signals, which, in principle, are easily accessible with wearable devices, could
identify suspected patients with obstructive sleep apnea [31]. Heart rate variability during
sleep can, for instance, be inferred from cardiac signals and can provide insights into sleep-
wake disorders [33] and potentially even assist in the prediction of long-term cardiovascular
disease outcomes [34]. Additionally, recording and analyzing nocturnal sounds has been
proposed as a possible way to assist in sleep staging [35-37] which, if successful, may
contribute to decoupling sleep investigations from sleep clinics.

One recent study has shown the strong potential of wearable devices to identify sleep
patterns outside the lab, in a large population, using data from a large cohort of participants,
compiled from the UK-Biobank [38]. Based on wearable devices, actigraphy was measured
and used to extract variables related to sleep hygiene, for example, sleep/wake time or
phase. These variables were then used in an unsupervised learning algorithm to identify
distinct phenotypes of sleep habits. The study provides an innovative way to objectively
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characterize sleep hygiene and extract, in a data-driven way, groups of distinct chronotypes
(for example, “night owls” or “early birds”). Additionally, the analysis of wearable data
could identify insomnia-like patterns in the general population without reports of sleep-
wake disorders. Working with large-scale datasets that are collected outside the laboratory
also has the advantage of taking into account temporal regularities and multidien events
that may influence sleep quality and can, in principle, be extracted via smartphones [39].

For the purpose of home monitoring and making sleep assessments available to
the general population, multiple commercial devices have been developed, such as EEG
headbands (e.g., “Dreem”), smart watches (e.g., “Fitbit”, “Actigraph”), or smart rings
(“Oura”). Recent work has assessed if these devices can be used for the purpose of sleep
staging in the general population [40] and has found that overall they achieve reasonable
results, with the best results being registered for headbands, suggesting that they have a
potential to open new venues for large-scale sleep studies.

These studies together show the strong potential of wearable devices, which, hand-
in-hand with Al techniques, can move the study of sleep patterns closer to the patients’
homes.

2.4. Al for Hypothesis Testing: Pattern Analysis for Studying Sleep and Memory

In neuroscience research related to sleep functions, Al techniques have been used
not only for clinical applications but also as powerful tools for data analysis. Namely,
multivariate pattern analysis has become a prominent tool for analyzing EEG signals [2,41].
With multivariate pattern analysis, researchers can extract rich patterns of EEG activity,
which might span across multiple brain regions/electrodes and latencies and remain
undetected with conventional univariate statistical analyses. These methods consist of
training machine learning classifiers to discriminate neural responses to external stimuli.
The trained classifiers are then applied to previously unseen test data to “predict” the
external stimulus that caused them. The above-chance decoding or classification of the
test data suggests that the trained classifiers have learned to represent task-relevant neural
activity. Today, multivariate pattern analysis predominantly relies on ‘traditional’ machine
learning algorithms, for example, linear classifiers, but more recent work has shown that
CNN s can perform the same task with higher accuracy levels [7,42].

Therefore, the classification of EEG signals during sleep is not limited to diagnosing
sleep-wake disorders and splitting sleep into its stages. It is also an effective technique to
understand the functions of sleep. As a notable example, forming long-term memories
is a crucial function of sleep. In rats and rodents, learned sequences of movements are
reactivated neurally during sleep [43]. The so-called ‘offline replay” was first detected
in the hippocampal place cells during sleep [44,45] and also during quiet rest, and it
predicts subsequent behavior [46]. Although the study of replay patterns is relatively
straightforward in animals, using cutting-edge recording methods (i.e., by tracking the
same cells during wakefulness and sleep), in humans, it is more challenging, as access
to individual neurons is rare. Al techniques, such as multivariate pattern analysis, have
helped bridge this gap. They make it possible to train classifiers that discriminate whole-
brain patterns of interest (i.e., responses to external stimuli) during wakefulness and then
evaluate how these patterns manifest offline, during sleep.

One notable study in this direction showed that newly formed memories are reacti-
vated during sleep [47]. The study decoded EEG activity during sleep to identify which
images participants had viewed during wakefulness. These patterns reflected that learned
stimuli manifested across REM and NREM sleep neurally, and that their occurrence in the
latter could influence memory performance during subsequent wakefulness [47]. In an
intracranial EEG study, patterns of EEG signals related to presented stimuli were extracted,
and their generalization during both wakefulness and sleep was assessed in relation to
ripples [48]. The study showed that for items that were later remembered, a late period of
their encoding was replayed, and that for items that were forgotten, an early period of their
encoding was replayed [48](Zhang, Fell, and Axmacher 2018). Similar techniques have been
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applied in the so-called targeted memory reactivation studies. In these studies, participants
associate an auditory cue with a following event (e.g., a sequence of finger presses) during
wakefulness, while the auditory cues are presented again during sleep to trigger a reactiva-
tion of previously learned associations. In these studies, machine learning algorithms can
help identify how the targeted memories are reactivated neurally across sleep stages [49].
Multivariate decoding, applied to hemodynamic signals, has also been used to show that
patterns of awake activity that relate to reward are spontaneously reactivated during sleep,
and their reactivation correlates with subsequent memory [50]. Overall, Al techniques have
proven valuable in the detection of neural replay of previous experiences during sleep, as
well as in the study of the role of sleep in consolidating previous experience.

3. Discussion

In this article, we summarized insights that the use of Al techniques has brought
into sleep research. These span from clinical applications, where Al can help improve the
understanding of sleep-wake disorders, to fundamental research, where Al can shed light
on memory and sleep functions. As novel and more powerful Al algorithms are developed,
these will naturally also inform the study of sleep. In parallel to fostering research and
providing major insights, the use of Al is also bringing several challenges that will need to
be addressed in the near future.

The first and foremost challenge is bridging the gap between clinical practice and
AL Traditionally, the two fields have been quite disconnected. In recent years, to achieve
cross-talk across disciplines, new educational programs have been formed whose goal is to
educate Al scientists to directly understand clinical needs. These programs should continue
to expand, and consider adding computational and programming training to medical
curricula. Moreover, funding schemes that enable the translation of research results into
innovative solutions that can be readily used by clinicians can help make novel technologies
more easily accessible. Such efforts are likely to increase in the coming years, resulting in
transdisciplinary interactions and the generation of new knowledge.

Other challenges that need to be addressed pertain to the very nature of Al, namely,
the fact that several powerful Al algorithms often operate with limited transparency. Future
initiatives need to emphasize not only algorithmic performance but also the generation of
interpretable features [42]. Another important current limitation is that of algorithmic bias.
As Al algorithms learn from existing data, they will naturally perpetuate existing biases
that the current datasets inherently contain [51]. Future work can focus on addressing
algorithmic bias, for example, via the use of diverse datasets or training practices in
federated learning [52], whenever diverse datasets are not readily available.

One important note when it comes to algorithmic bias is that Al can also assist in
overcoming human biases. One notable case of bias in the field of sleep studies is sleep
scoring, where perceptual biases result in poor inter-rater agreements, which for certain
sleep stages can be remarkably low [9-11]. Al algorithms that are trained from a consensus
of experts can help automate and objectify sleep scoring [17] and therefore assist in limiting
perceptual biases.

4. Conclusions

AT has already brought major changes to sleep research. Al has provided novel insights
into rendering critical and time-consuming tasks in sleep research, such as sleep scoring,
more objective. It also has the potential to advance the characterization and treatment of
sleep-wake disorders and to assist in out-clinic patient monitoring, in combination with
wearable devices, which is an important milestone for the field of sleep research. Lastly,
Al has brought novel insights into the neuropsychological benefits of sleep for human
cognition and memory. Future efforts need to focus on a cultural exchange, where Al
algorithms can be developed hand-in-hand with advancements in the study of brain and
peripheral functions during sleep.
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