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Abstract: A simple relationship between the Hamaker constant and the Hansen solubility parameters
for non-polar liquids is derived by combining a Hamaker constant/surface tension relationship
derived by Israelachvili and a Hansen solubility parameters/surface tension relationship derived by
Abbott. With this relationship, one can easily estimate the Hamaker constant of non-polar liquids
on the basis of the database of the Hansen solubility parameters. This is an entirely new method for
calculating the Hamaker constant without recourse to data on the frequency-dependent dielectric
permittivity of those substances (which are required for the rigorous Lifshitz theory) and laborious
numerical calculations.

Keywords: Hamaker constant; Hansen solubility parameter; surface tension; cohesion energy;
cohesive energy

1. Introduction

When two molecules or atoms are approaching each other, attractive intermolecular
or interatomic forces, which are called the van der Waals forces, are acting between these
two molecules or atoms. There are three types of intermolecular van der Waal interactions:
(i) the Keesom interaction due to permanent electric dipole–dipole interaction between
two polar molecules; (ii) the Debye interaction, which is the permanent dipole-induced
dipole interaction between polar and nonpolar molecules; and (iii) the dispersion interac-
tion between quantum mechanically fluctuating dipoles induced within the interacting
molecules. The van der Waals attractive interaction energy acting between two molecules
separated by a distance r is proportional to 1/r6, as shown later in Equation (1), making it
extremely short-ranged. Among these three van der Waals interactions, the contribution of
the dispersion interaction is the largest for non-polar molecules. Unlike strong covalent
interactions, however, the van der Waals dispersion interaction does not exhibit saturation,
lacks directionality, and demonstrates additive behavior. Therefore, a significantly large van
der Waals attractive interaction is expected to operate between two approaching colloidal
particles, which are composed of a large number of molecules.

Hamaker [1] considered attractive interaction forces of the same nature as the van
der Waals intermolecular dispersion forces to act between two approaching colloidal
particles composed of a large number of molecules. Hamaker calculated the van der Waals
dispersion interaction energy between two colloidal particles by summing up the van
der Waals dispersion interaction energies between molecules in one particle and those
in another particle on the basis of the assumption that the intermolecular van der Waals
dispersion interaction energy is additive.

The interparticle van der Waals dispersion interaction energy is found to be proportional to
the Hamaker constant A and to 1/h2 for the case of two parallel plates separated by a distance
h, which is now a long-range attractive interaction [1], as is seen later in Equation (3). It is
further seen from Equation (4) that the Hamaker constant A is proportional to the London–van
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der Waals constant C characterizing the intermolecular van der Waals dispersion interaction
and the square of the number density N of the molecules within the interacting particles.
Lifshitz [2] later developed a rigorous continuum theory of the van der Waals interaction
between colloidal particles without recourse to the additivity approach of Hamaker and derived
the exact expression for the Hamaker constant, expressed later in Equation (5). Note that
while the Hamaker theory [1] accounts only for the van der Waals dissipative interactions, the
Lifshitz theory [2] takes into account all of the above-mentioned three types of the van der Waals
interactions as well as hydrogen-bond interactions.

The theoretical estimation of the Hamaker constant of substances based on Lifshitz’s
rigorous theory, however, requires data on the frequency-dependent dielectric permittivity
of those substances and involves laborious numerical calculations [2–4].

According to the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory for the stability
of colloidal suspensions [5,6], the Hamaker constant A plays a crucial role in determining
the stability of colloidal suspensions [3,5–8]. That is, the van der Waals force acting between
colloidal particles is an attractive force in colloidal dispersion systems and is characterized
by the Hamaker constant A, serving as an aggregation enhancement factor that promotes
the aggregation of dispersed systems. The magnitude of the Hamaker constant, which has
the dimension of energy, typically falls within the range of 10−20–10−19 J for non-polar
liquids, corresponding to 10–100 times the thermal energy kT, where k is the Boltzmann
constant and T is the absolute temperature. Further, it is important to note that the Hamaker
constant of a substance is related to its cohesion energy and surface tension [3].

The Hamaker constant is practically important, particularly in the field of drug de-
livery systems (DDS). The Hamaker constant A, quantifying the van der Waals forces at
the nanoscale, plays a crucial role in formulating and optimizing nanocarriers for drug
delivery. Understanding the Hamaker constants aids researchers in designing nanosized
drug carriers with enhanced stability, controlled release, and improved bioavailability. The
intermolecular dispersion forces, influenced by the Hamaker constant A, impact the inter-
action between drug-loaded nanoparticles and biological interfaces, ultimately affecting
the efficiency of drug delivery.

The history of Hansen solubility parameters, on the other hand, dates back to 1967
when Charles Hansen introduced this concept [9,10]. Hansen proposed a method to deter-
mine the solubility of substances with the help of the Hansen solubility parameter. Since
the Hansen solubility parameter is widely adopted in fields such as chemistry, engineering,
and materials science, it has become a valuable tool for substance design and product
development, providing insights into compatibility for various applications.

The Hansen solubility parameter δ, which was introduced by Hansen [9,10], is a cru-
cial parameter in the field of intermolecular interactions. The Hansen parameter provides
a comprehensive framework for understanding the compatibility between different sub-
stances on the basis of their molecular interactions (see, e.g., [11]). That is, this parameter
quantifies the cohesive energy density of a substance, representing the contributions from
the dispersion forces δD, polar forces δP, and hydrogen bonding forces δH. These forces
determine whether a substance will dissolve or mix well with another substance. The data
for the Hansen solubility parameters for a large number of substances have so far been
accumulated, and their extensive databases are now available for practical use [9,10].

The Hansen parameter is also important in the field of DDS. The Hansen parameters,
characterizing the solubility and compatibility of materials, play a vital role in tailoring the
formulations of drug carriers and biomaterials. By accounting for the dispersion, polar, and
hydrogen bonding forces, one can precisely choose materials that enhance drug solubility,
bioavailability, and targeted delivery. The Hansen parameters guide the selection and
combination of polymers, coatings, and encapsulants, ensuring optimal compatibility with
therapeutic agents. This understanding facilitates the development of DDS platforms that
exhibit improved drug stability and controlled release profiles. The Hansen solubility
parameter is thus a measure indicating the interaction between organic solvents and solutes
based on molecular polarity and intermolecular forces. Comprising dispersion forces,
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dipole–dipole interactions, and hydrogen bonding, it helps understand how substances
interact. This parameter facilitates the prediction of interactions between specific solvents
and materials, contributing to material design and optimizing chemical processes.

The Hansen parameter has been increasingly recognized not only in the field of solu-
tion chemistry but also in the field of colloid and interface science. For example, the Hansen
parameters are highly useful when selecting the most suitable dispersant for dispersing
colloidal systems. Fairhurst et al. [12] demonstrated the crucial importance of choosing the
right solvent to disperse sub-micron particles for optimal product performance. Utilizing
solvent relaxation NMR, they effectively evaluated the suitability of the solvent. This
technique, responsive to intermolecular forces, functions as a dependable indicator of dis-
persion stability. Employing a systematic relaxation measurement approach, they obtained
the Hansen solubility parameters for particle surfaces, facilitating precise solvent selection
and blending to align with the particle interface. For the case of surface-modified zinc oxide
and aluminum oxide particles, this approach clears subtle distinctions in particle surfaces.
Saita et al. [13] reported that optimizing stabilizers and solvents is crucial for nanoparticle
inks. They used the Hansen solubility parameters for oleylamine-capped silver nanopar-
ticles and found that the Hansen solubility parameter approach quantitatively predicts
the dispersibility of these nanoparticles, correlating with the sintered film morphology
for electronic applications. This method contributes to the optimization of stabilizers and
solvents for creating stable nanoparticle inks in the field of printed electronics.

As mentioned earlier, the Hamaker constant can be estimated with the help of the
rigorous Lifshitz theory [2–4] but it requires tedious numerical calculations. The purpose
of the present paper is to derive a simple relationship between the Hamaker constant A
and the Hansen solubility parameters δ (δD, δP, and δH) for non-polar liquids. By using
the obtained A/δ relationship, one can easily estimate the value of the Hamaker constant
A of non-polar liquids based on the rigorous Lifshitz theory without recourse to data
on the frequency-dependent dielectric permittivity of the liquid and laborious numerical
calculations. This will be an entirely new method for estimating the Hamaker constant of
non-polar liquids.

2. The Relationship between the Hamaker Constant and the Hansen
Solubility Parameters
2.1. Hamaker Constant and Surface Tension

The potential energy u(r) of the van der Waals dispersion interaction between two
similar molecules at a separation r between their centers in air, which can be regarded as a
vacuum, is given by [1,3,7,8] as

u(r) = − C
r6 (1)

with

C =
3α2hν

4(4πε0)
2 (2)

where C is the London–van der Waals constant, α and ν are, respectively, the electronic polar-
izability and the characteristic frequency of the molecule, ε0 is the permittivity of a vacuum,
h is the Planck constant, and hν corresponds to the ionization energy of the molecule.

Hamaker [1] noticed that since the additivity of the van der Waals dispersion inter-
actions holds quite well, the van der Waals dispersion interaction energy between two
particles in a vacuum may thus be calculated approximately by a summation (or by an
integration) of the dispersion interaction energies for all molecular pairs formed by two
molecules belonging to different particles, as shown in Figure 1.
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Figure 1. The van der Waals interaction between two colloidal particles resulting from the van der
Walls interaction between molecules in particle 1 and those in particle 2.

Hamaker [1] calculated the van der Waals dispersion interaction energy V(h) per unit
area between two parallel plates at separation h between their surfaces across a vacuum
by summing up the intermolecular interaction energy u(r) given in Equation (1), with the
result that

V(h) = − A
12πh2 (3)

In Equation (3), the parameter A is the Hamaker constant defined by

A = π2CN2 (4)

where C is the London–van der Waals constant given in Equation (2).
Hamaker’s classical theory [1] of the van der Waals attractive interaction accounts

only for the additive London dispersion interaction between molecules but ignores the two
other intermolecular van der Waals interactions, that is, the Keesom interaction between
two permanent electric dipoles and the Debye interaction between permanent and induced
electric dipoles, unlike the theory by Hansen [9], which considers not only the dispersion
interaction but also polar interactions and hydrogen-bonding interactions. Lifshitz [2] later
presented a modern continuum theory of the van der Waals interaction energy, showing that
the interaction energy between two parallel plates takes the same dependence on the plate
separation h (Equation (3)) if the retardation effect may be neglected. Lifshitz derived the
following rigorous expression for the Hamaker constant A for the van der Waals attractive
interaction between two identical particles on the basis of the continuum approach:

A =
3h

16π2

∫ ∞

0
dω

∫ ∞

0

x2[
{εr(iω)+1}2

{εr(iω)−1}2 ex − 1
]dx (5)

where εr(iω) is the frequency ω-dependent relative permittivity of the particles, and i is the
imaginary unit. The following approximate expression for the Hamaker constant has also
been proposed [3]:

A =
3hν

16
√

2

(
n2 − 1

)2

(n2 + 1)3/2 +
3
4

kT
(

εr − 1
εr + 1

)2
(6)

where n is the refraction index. In Equation (6), the first term on the right-hand side is the
interaction at the main ultraviolet frequency ν corresponding to electronic absorption. It
accounts for the London dispersion force, while the second term, which is proportional
to the absolute temperature T, is the interaction at zero frequency and contains both the
Debye and Keesom interactions.

In order to find the relationship between the Hamaker constant A and the surface
tension γ of a liquid, we consider two cylinders with two flat surfaces of unit area in contact
with each other and those separated by a distance h (Figure 2). It follows from Equation (3)
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that the energy required to bring the two cylinders from infinity into contact (at h = hmin) is
given by

V(hmin) = − A
12πh2

min
(7)

where hmin is the closest separation distance between the surfaces of the two approaching
cylinders and it has the same order of magnitude as the molecular diameter. Conversely,
the energy required to separate these two cylinders from contact at h = hmin into infinity
(h = ∞) is given by the negative of V(hmin) (Figure 2).
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Figure 2. The surface tension γ, the wok of cohesion 2γ, and the decrease in the van der Waals
dispersion interaction energy V(hmin) between two cylinders due to their contact at h = hmin.

This energy V(hmin) is the cohesion (or cohesive) energy and is equal to the work to
generate two unit surfaces of the substance, which amounts to 2γ, γ being the surface
tension of the substance, so that we obtain

γ =
A

24πh2
min

(8)

Note here that the closest distance between two flat surfaces may seem to be exactly
the molecular diameter (Figure 3). Upon closer examination, however, due to the microscale
surface structure caused by the arrangement of molecules, the closest distance between
the two flat surfaces becomes smaller than the molecular diameter. Note also that the
continuum theory by Lifshitz [2] can be applied only for distances much larger than the
molecular dimension so that the determination of hmin, which should have the same order
of magnitude as the molecular diameter, requires Hamaker’s molecular approach [1] as
well as the continuum approach [3].
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Israelachvili [3] rigorously derived the expression for hmin as follows: Let us obtain
the value of hmin following Israelachvili [3]. Consider an idealized planar close-packed
liquid surface. Each surface molecule (of diameter σ) will have only nine nearest neighbors
instead of twelve. Thus, when it comes into contact with a second surface, each surface
atom will gain 3u(σ) = −3C/σ6 (see Equation (1)) in binding energy. For a close-packed
liquid surface, each surface molecule occupies an area of σ2sin60◦, and the bulk density N
of molecules is N =

√
2/σ3. Thus, the surface energy should be approximately given by

γ =
Excess energy per surface molecule 3C/2σ6

Surface area occuoied by one surface molecule
√

3σ2/2

=

√
3C

σ8 =

√
3CN2

2σ2 =

√
3A

2π2σ
2 =

A

24π

(√
π

12
√

3
σ

)2 ≈ A

24π(σ/2.5)2 (9)

where the definition of the Hamaker constant A = π2CN2 (Equation (4)) has been used. We
thus obtain

γ =
A

24π(σ/2.5)2 (10)

which means that the value of hmin should be σ/2.5 instead of the actual molecular di-
ameter σ. This value σ/2.5 is substantially less than the molecular diameter σ. Further,
Israelachvili [3] found that if the value of σ ≈ 0.4 nm (i.e., σ/2.5 ≈ 0.16 nm), which is a
typical value of liquids, is used in Equation (10), the surface tension γ calculated with
Equation (10) for non-polar liquids is in excellent agreement with experimentally measured
values of their surface tension.

Israelachvili [3] thus found that the value of hmin = 0.165 nm is an excellent approxi-
mation for all non-polar liquids, viz.

γ =
A

24π(0.165 nm)2 (11)

We employ Equation (11) for the relationship between A and γ for non-polar liquids in the
present paper.

2.2. Hansen Solubility Parameter and Surface Tension

The Hansen solubility parameter δ is defined as [9,10]

δ2 =
E

Vm
(12)

where E is the cohesive energy and Vm is the molar volume of the substance molecule. As
mentioned in the Introduction, δ has three components, viz.

δ2 = δ2
D + δ2

P + δ2
H (13)

Several empirical relationships between the Hansen solubility parameters δD, δP, and δH
and the surface tension γ of non-polar and polar substances have been proposed [10,14–17]. We
use the following latest formula derived by Abbot [10]:

γ = 0.0146
(

2.28δ2
D + δ2

P + δ2
H

)
V1/5

m (14)

where the surface tension γ is given in units of (mN m−1), the Hansens solubility parameters
δD, δP, and δH in units of (MPa1/2), and the molar volume Vm in units of (10−6 m3 mol−1).

It must be noted here that Equation (14) for the relationship between the surface
tension γ and the Hansen solubility parameters δD, δP, and δH is applicable for all liquids,
that is, polar liquids and non-polar liquids, while on the other hand, Equation (11) for the
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relationship between the surface tension γ and the Hamaker constant A are applicable
only for non-polar liquids. We thus confine ourselves here to the relationship between
the Hamaker constant A and the Hansen solubility parameters δD, δP, and δH for non-
polar liquids.

3. Results and Discussion

We now have two equations for γ of a non-polar liquid, that is, Equation (11) for the
A/γ relationship and Equation (14) for the δ/γ relationship. From these two equations, we
immediately obtain the following relationship between the Hamaker constant A and the
three components of the Hansen solubility parameter δD, δP, and δH:

A = 0.03
(

2.28δ2
D + δ2

P + δ2
H

)
V1/5

m (15)

where the Hamaker constant A is given in units of (10−21 J) and the three Hansen solubility
parameters δD, δP, δH, and the molar volume Vm are given in the same units as those given
in Equation (14). For the case of completely non-polar liquids with δP = 0 and δH = 0,
Equation (15) further reduces to

A = 0.0683δ2
DV1/5

m (16)

Table 1 compares the exact values of the Hamaker constant A obtained from the
rigorous Lifshitz theory [2–4] and those from the Hansen solubility parameters δD, δP,
and δH (Equation (15) or Equation (16)) for seven non-polar liquids, that is, n-Hexane,
n-Heptane, n-Octane, n-Decane, n-Dodecane, n-Tetradecane, and n-Hexadecane.

Table 1. A comparison between the values of the Hamaker constant A estimated from the Lifshitz
theory and those from the Hansen solubility parameters δ (δD, δP, and δH) for seven non-polar liquids,
that is, n-Hexane, n-Heptane, n-Octane, n-Decane, n-Dodecane, n-Tetradecane, and n-Hexadecane.

Liquids
Vm

(10−6 m3

mol−1)

δD
(MPa1/2)

δP
(MPa1/2)

δH
(MPa1/2)

γ
(mN m−1)

Experimental
(25 ◦C)

γ
(mN m−1)
(Equation

(14))

γ
(mN m−1)
(Equation

(11))

A
(10−21 J)
Lifshitz
theory

A
(10−21

J)
(Equation

(15))

n-Hexane 131.6 14.9 0 0 20.4 19.6 20.0 41 40

n-Heptane 147.4 15.3 0 0 22.1 21.2 20.9 43 43

n-Octane 163.5 15.5 0 0 23.5 22.2 21.9 45 45

n-Decane 195.9 15.7 0 0 25.7 23.6 23.4 48 48

n-Dodecane 228.6 16.0 0 0 27.1 25.3 24.4 50 52

n-Tetradecane 261.3 16.2 0 0 28.3 26.6 24.8 51 55

n-Hexadecane 294.1 16.3 0 0 29.2 27.6 25.3 52 57

The values for Vm, δ (δD, δP, and δH), and experimental γ are taken from Ref. [16] and those for A obtained via
the Lifshitz theory from Refs. [3,4].

Table 1 demonstrates that Equation (15) is an excellent approximation for the Hamaker
constant of non-polar liquids with δP = 0 and δH = 0. One can easily estimate the values of
the Hamaker constant A for non-polar liquids without recourse to data on the frequency-
dependent dielectric permittivity εr(iω) of those substances required for the rigorous Lifshits
theory [2] and to laborious numerical calculations. Equation (15) (or Equation (16)) provides
an entirely new method for calculating the Hamaker constant A of non-polar liquids. The
Hamaker constant A of completely non-polar liquids is found to be proportional to the
square of the dispersion component of the Hansen solubility parameter (δD

2) and to the
fifth root of the molar volume (Vm

1/5).
Figure 4 illustrates how the Hamaker constant A depends on δD and Vm for completely

non-polar liquids with δP = 0 and δH = 0. The seven small spheres lying on the three-
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dimensional curved surface in Figure 4 correspond to the seven non-polar liquids, that is,
n-Hexane, n-Heptane, n-Octane, n-Decane, n-Dodecane, n-Tetradecane, and n-Hexadecane.
Any non-polar liquid may be expressed as a point lying on this three-dimensional surface.
On the basis of Figure 4, one can thus predict the precise value of the Hamaker constant of
a substance, the value of which is not available.
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4. Conclusions

The purpose of the present paper is to bridge quantitatively the Hansen solubility
parameter δ, which is one of the key factors in solution chemistry, and the Hamaker
constant A, which is one of the key factors in colloid and interface science. The principal
result of the present paper is Equation (15) (or Equation (16) for completely non-polar
liquids) for the relationship between the Hamaker constant A and the Hansen solubility
parameters δD, δP, and δH for non-polar liquids. The Hamaker constant A plays an essential
role in determining the stability of colloidal suspensions, and one needs the values of the
Hamaker constant to evaluate the stability of colloidal suspensions. The precise values of
the Hamaker constant can be estimated based on the rigorous Lifshitz theory [2,3]. This
estimation, however, requires laborious numerical calculations involving numerical data
on the frequency-dependent dielectric permittivity of substances. In the present paper,
we provide a simple expression (Equation (15)) for calculating the Hamaker constant for
non-polar liquids based on the Hansen solubility parameters δ (δD, δP, and δH) on the basis
of the database of the Hansen solubility parameters [9,10] and the molar volume Vm of the
substance molecule, avoiding difficulties associated with the rigorous Lifshitz theory.

In the present paper, we propose a new method for calculating the Hamaker constant
A of nonpolar liquids. With the help of the values of the Hamaker constant A of a non-polar
liquid, one can calculate the Hamaker constant for the van der Waals interaction between
two colloidal particles dispersing in this non-polar liquid based on the following relation:

A121 =
(√

A1 −
√

A2

)2
(17)

where A1 is the Hamaker constant for the van der Waals interaction between these two
colloidal particles across a vacuum and A2 is that for the interaction between the two
non-polar liquids across a vacuum.
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