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Abstract: Human activity recognition (HAR) remains an essential field of research with increasing
real-world applications ranging from healthcare to industrial environments. As the volume of
publications in this domain continues to grow, staying abreast of the most pertinent and innovative
methodologies can be challenging. This survey provides a comprehensive overview of the state-of-
the-art methods employed in HAR, embracing both classical machine learning techniques and their
recent advancements. We investigate a plethora of approaches that leverage diverse input modalities
including, but not limited to, accelerometer data, video sequences, and audio signals. Recognizing the
challenge of navigating the vast and ever-growing HAR literature, we introduce a novel methodology
that employs large language models to efficiently filter and pinpoint relevant academic papers. This
not only reduces manual effort but also ensures the inclusion of the most influential works. We
also provide a taxonomy of the examined literature to enable scholars to have rapid and organized
access when studying HAR approaches. Through this survey, we aim to inform researchers and
practitioners with a holistic understanding of the current HAR landscape, its evolution, and the
promising avenues for future exploration.

Keywords: human activity recognition(HAR); survey; machine learning; wearable sensors; datasets;
daily and industrial activities

1. Introduction

Human activity recognition (HAR) pertains to the systematic identification and classi-
fication of activities undertaken by individuals based on diverse sensor-derived data [1].
This interdisciplinary research domain intersects computer science, engineering, and data
science to decipher patterns in sensor readings and correlate them with specific human
motions or actions. The importance of HAR is underscored by the rapid proliferation of
wearable devices, mobile sensors, and the burgeoning Internet of Things (IoT) environment.
Recognizing human activities accurately can not only improve user experience and au-
tomation but also assist in a myriad of applications where understanding human behavior
is essential.

The applications of HAR are multifaceted, encompassing health monitoring, smart
homes, security surveillance, sports analytics, and human–robot interaction, to name just
a few. For instance, in the healthcare sector, HAR can facilitate the remote monitoring
of elderly or patients with chronic diseases, enabling timely interventions and reducing
hospital readmissions. Similarly, in smart homes, recognizing daily activities can lead
to energy savings, enhanced comfort, and improved safety. In the realm of sports, HAR
can aid athletes in refining their techniques and postures, providing feedback in real time.
Moreover, in security and surveillance, anomalous activities can be promptly detected,
thereby ensuring timely responses. In summary, HAR holds transformative potential across
numerous sectors, shaping a more responsive and intuitive environment [2].
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An example of HAR involves the use of wearable devices, such as smartwatches or
fitness trackers, to monitor and classify user activities, as shown in Figure 1. These devices
are often equipped with a range of sensors, the most prevalent being accelerometers and
gyroscopes, which measure linear accelerations and angular velocities, respectively. Raw
sensor data are captured at defined intervals, resulting in a time-series dataset [3–6]. For in-
stance, an accelerometer would produce a triaxial dataset corresponding to acceleration
values along the x, y, and z axes. Prior to feature extraction, several preprocessing steps are
typically undertaken. In typical HAR applications, the proper predictor selection and data
normalization are proven critical for the performance of machine learning algorithms in
the field of HAR [7]. The raw time-series data are often noisy and may contain irrelevant
fluctuations. Hence, they undergo filtering, commonly using a low-pass filter, to eliminate
high-frequency noise [8]. Subsequently, the continuous data stream is segmented into over-
lapping windows, each representing a specific timeframe (e.g., 2.56 s with a 50% overlap).
The windowing technique facilitates the extraction of local features that can encapsulate
distinct activity patterns. For each window, multiple features are computed. Temporal
domain features such as mean, variance, standard deviation, and correlation between axes
are commonly extracted. Traditional algorithms such as support vector machines (SVMs),
decision trees, random forests, and k-nearest neighbors (k-NN) have been extensively
applied. However, with the advent of deep learning, methods like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) have also found prominence
due to their ability to model complex temporal relationships. Once trained, the model can
classify incoming data into predefined activity classes such as walking, running, sitting,
or standing. The granularity and accuracy of the classification are contingent on the quality
of the data, the features extracted, and the efficacy of the chosen algorithm. In summation,
HAR through wearable devices encompasses a systematic pipeline from raw sensor data
acquisition to refined activity classification, leveraging advanced computational methods
and algorithms.
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Figure 1. Generic flow of processes in human activity recognition tasks.

In a survey conducted in [9] about vision-based HAR, the authors point out their
findings about related surveys in the topic of HAR. Specifically, the statistics of related
surveys from 2010 until 2019 show that the majority of related surveys are focused on
providing details about specific aspects of HAR [9–12], rather than giving a broader picture
of the topic. We argue that in order to inform the reader about the recent trends in the field,
more work needs to be performed on describing the wider spectrum of methodologies and
settings adopted in every aspect of HAR. This article fills in the gap in the bibliography by
giving an overview of various approaches of HAR, utilizing a large array of sensors and
modalities, enabling the reader to identify the gaps in the literature.

Due to the expansive applications of human activity recognition (HAR) utilizing
machine learning techniques, we structured our survey to distinctly address both sensor-
based and vision-based methods. An additional salient contribution of this article is the
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deployment of large language models (LLMs) to extract pertinent keywords and respond
to questions, thereby facilitating the ranking and filtering of our comprehensive database
of papers. This paper is organized as follows:

1. Introduction: This section delineates the problem of HAR, setting the context for the
remainder of the paper.

2. Related Work: Here, we reference the seminal and recent literature on HAR, under-
scoring the importance of comprehensive literature reviews in the domain.

3. Methodology: In this section, we present our methodology, highlighting our data
sources and the processes we employed to distill key information.

4. Taxonomy of Methods: This section presents a deeper categorization of HAR methods
and distinctly partitions them into sensor-based and vision-based techniques.

5. Datasets: In this section, we catalog the most prevalent datasets employed in
HAR research.

6. Conclusion and Future Directions: Finally, in this section we wrap up the paper by
discussing potential avenues for future research in the realm of HAR.

2. Related Work

A plethora of surveys have emerged to record the advancements, methodologies,
and applications shaping this dynamic domain. These comprehensive reviews offer crit-
ical insights into the evolution of HAR enabled by machine learning and deep learning
techniques. Notably, the surveys by Ray et al. [12] and Singh et al. [13] underscore the
pivotal role of transfer learning and the paradigm shift towards automatic feature extraction
through deep neural networks, respectively, in enhancing HAR systems. Additionally,
the study by Gu et al. [14] fills a crucial gap in the literature by providing an in-depth
analysis of contemporary deep learning methods applied to HAR. Collectively, these works
not only delineate the current state of HAR but also highlight the challenges and future
directions, thereby offering a comprehensive backdrop for understanding the progress and
potential within this field.

The field of human activity recognition (HAR) has seen significant research, particu-
larly in its applications to eldercare and healthcare within assistive technologies, as high-
lighted by the comprehensive surveys conducted by various researchers. The survey by
Hussain et al. [15] spans research from 2010 to 2018, focusing on device-free HAR solu-
tions, which eliminate the need for subjects to carry devices by utilizing environmental
sensors instead. This innovative approach is categorized into action-based, motion-based,
and interaction-based research, offering a unique perspective across all sub-areas of HAR.
The authors present a detailed analysis using ten critical metrics and discuss future research
directions, underlining the importance of device-free solutions in the evolution of HAR.

Jobanputra et al. [16] explores a variety of state-of-the-art HAR methods that employ
sensors, images, accelerometers, and gyroscopes placed in different settings to collect
data. The paper delves into the effectiveness of various machine learning and deep neural
network techniques, such as decision trees, k-nearest neighbors, support vector machines,
and more advanced models like convolutional and recurrent neural networks, in inter-
preting the data collected for HAR. By comparing these techniques and reviewing their
performance across different datasets, the paper complements Hussain et al.’s [15] taxon-
omy and analysis by providing a deeper understanding of the methodologies employed in
HAR and their practical implications, especially in healthcare and eldercare.

Further extending the recording of the advancements in HAR, Lara et al. [10] provide
a survey on HAR using wearable sensors, emphasizing the role of pervasive computing
across sectors such as the medical, security, entertainment, and tactical fields. This paper
introduces a general HAR system architecture and proposes a two-level taxonomy based
on the learning approach and response time. By evaluating twenty-eight HAR systems
qualitatively on various parameters like recognition performance and energy consumption,
this survey highlights the critical challenges and suggests future research areas. The focus
on wearable sensors offers a different yet complementary perspective to the device-free
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approach discussed by Hussain et al. [15], showcasing the diversity in HAR research and
its potential to revolutionize interactions between individuals and mobile devices.

The article by Ramamurthy et al. [17] investigates the effectiveness of machine learning
in extracting and learning from activity datasets, transitioning from traditional algorithms
that utilize hand-crafted features to advanced deep learning algorithms that evolve features
hierarchically. The complexity of AR in uncontrolled environments, exacerbated by the
volatile nature of activity data, underscores the ongoing challenges in the field. The paper
provides a broad overview of the current machine learning and data mining techniques
used in AR, identifying the challenges of existing systems and pointing towards future
research directions.

Building on the discussion of machine learning’s role in HAR, the survey by Dang et al. [18]
offers a thorough review of HAR technologies that are crucial for the development of
context-aware applications, especially within the Internet of Things (IoT) and healthcare
sectors. The paper stands out by aiming for a comprehensive coverage of HAR, categorizing
methodologies into sensor-based and vision-based HAR, and further dissecting these
groups into subcategories related to data collection, preprocessing, feature engineering,
and training. The conclusion highlights the existing challenges and suggests directions for
future research, adding depth to the ongoing conversation about HAR technologies.

Furthermore, the work by Vrigkas et al. [19] focuses on the classification of human
activities from videos and images, acknowledging the complications introduced by back-
ground clutter, occlusions, and variations in appearance. This review is particularly perti-
nent to applications in surveillance, human–computer interaction, and robotics. The authors
categorize activity classification methodologies and analyze their pros and cons, dividing
them based on the data modalities used and further into subcategories based on activity
modeling and focus. The paper also assesses existing datasets for activity classification
and discusses the criteria for an ideal dataset, concluding with future research directions in
HAR. This review complements the broader discussions by Ramamurthy et al. [17] and
Dang et al. [18], by providing specific insights into video and image-based HAR, thereby
enriching the understanding of the challenges and potential advancements in the field.

Finally, Ke et al. [11] offer an in-depth survey focusing on three pivotal aspects: the
core technologies behind HAR, the various systems developed for recognizing human
activities, and the wide array of applications these systems serve. It thoroughly explores
the processing stages essential for HAR, such as human object segmentation, feature
extraction, and the algorithms for activity detection and classification. The review then
categorizes HAR systems based on their functionality—from recognizing activities of
individual persons to understanding interactions among multiple people and identifying
abnormal behaviors in crowds. Special emphasis is placed on the application domains,
particularly highlighting the roles of HAR in surveillance, entertainment, and healthcare,
thereby illustrating the breadth of HAR’s impact.

Saleem et al. [20] broadens the scope by presenting a comprehensive overview that
encapsulates the multifaceted nature of HAR. This research introduces a detailed taxonomy
that classifies HAR methods along several dimensions, including their operation mode (on-
line/offline), data modality (multimodal/unimodal), feature type (handcrafted/learning-
based), and more. By covering a wide range of application areas and methodological
approaches, this study underscores the interdisciplinary nature of HAR, providing a com-
parative analysis of contemporary methods against various benchmarks such as activity
complexity and recognition accuracy. This comparative lens not only deepens the under-
standing of state-of-the-art HAR techniques but also underscores the ongoing challenges
and future avenues for research within the field.

Focusing on the computer vision aspect of HAR, Ref. [21] delves into the specific
challenges and advancements in human action recognition within the broader spectrum
of vision-based methods. This research highlights the paradigm shift towards feature
learning-based representations driven by the adoption of deep learning methodologies.
It offers a thorough examination of the latest developments in HAR, which are relevant
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across diverse applications from augmented reality to surveillance. The paper delineates
a taxonomy of techniques for feature acquisition, including those leveraging RGB and
depth data, and discusses the interplay between cutting-edge deep learning approaches
and traditional hand-crafted methods. Further delving into the realm of computer vision,
the paper by Singh et al. [13] addresses the critical aspect of human action identification
from video, which is a cornerstone in applications ranging from healthcare to security.
Their study provides a meticulous evaluation and comparison of these methodologies,
offering insights into their effectiveness based on accuracy, classifier types, and datasets,
thereby presenting a holistic view of the current advancements in activity detection.

Complementing these discussions, the survey by Gu et al. [10,14] focuses on the
advancements and challenges in HAR, particularly through the lens of deep learning.
This is especially pertinent given the rapid evolution of deep learning techniques and
their significant potential in enhancing HAR systems. By offering a detailed review of
contemporary deep learning methods applied in HAR, this study addresses a critical need
for an in-depth exploration of the field, highlighting the ongoing developments and future
directions. The study by Ray et al. [12] emphasizes the role of transfer learning. Transfer
learning is known for its ability to enhance accuracy, reduce data collection and labeling
efforts, and adapt to evolving data distributions.

The summarized overview provided in Table 1 encapsulates the breadth and depth
of research in the domain of human activity recognition (HAR), revealing a diverse array
of focuses, from device-free solutions to the nuanced application of deep learning tech-
niques. Notably, several surveys, such as those concentrating on device-free, wearable
device, and sensor-based HAR, not only dissect the current methodologies and systems
but also rigorously compare various techniques, underscoring the field’s multifaceted
nature. These comparisons offer valuable insights into the strengths and weaknesses of
different approaches, guiding future research directions. Interestingly, while the majority
of the surveys delve into comparative analyses, a select few, particularly those focusing
on machine learning, video-based HAR, and deep learning applications, choose to empha-
size the discussion of challenges, recent advances, and future directions without directly
comparing techniques. This distinction might reflect the rapidly evolving landscape of
HAR, where the emphasis is increasingly shifting towards understanding the underlying
complexities and potential advancements rather than solely focusing on methodological
comparisons. The recurring mention of future directions across all categories highlights a
collective acknowledgment of the untapped potential and unresolved challenges within
HAR. The emphasis on vision-based and video-based HAR underscores the growing impor-
tance of visual data in understanding human activities, which is a trend further amplified
by the advent of deep learning and transfer learning. Specifically, the impact of transfer
learning, as discussed in the surveys, signifies a transformative shift towards leveraging
pre-existing knowledge, thereby enhancing efficiency and accuracy in HAR applications.
This comprehensive table of surveys not only provides a snapshot of the current state of
HAR research but also sets the stage for future explorations.

The surveys highlight several key future challenges, including integrating data from
various sensors to recognize complex behaviors beyond simple actions like walking [14,17,18].
They note the high cost and effort in gathering labeled data and the limitations of generative
models like AEs and GANs in human activity recognition (HAR) [14,17]. Additionally,
they emphasize the need to account for simultaneous and overlapping activities, which are
more common in daily life than singular tasks [10,18,21].
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Table 1. Summary of survey papers on human activity recognition.

Categories Main Focus Future Directions Discussed Comparison of Techniques

Device-free

Comprehensive survey of human
activity recognition focusing on

device-free solutions;
taxonomy proposed.

Yes Yes

Multiple

Survey of HAR methods in
eldercare and healthcare using

IoT; compares various data
collection methods and machine

learning techniques.

Yes Yes

Wearable Device

Survey of HAR using wearable
sensors; general architecture,

taxonomy, key issues, challenges,
and system evaluation.

Yes Yes

Machine Learning

Overview of machine learning
techniques in activity

recognition; discusses challenges
and recent advances.

Yes No

Sensor-based and
Vision-based

Comprehensive review of HAR
technology; classification of

methodologies and evaluation of
advantages and weaknesses.

Yes Yes

Vision-based

Detailed review of human
activity classification from videos

and images; categorization of
methodologies and

dataset analysis.

Yes Yes

Video-based

Extensive survey of video-based
human activity recognition;

covers core technology,
recognition systems,

and applications.

Yes No

Multiple
Overview of HAR categorizing
methods; comparative analysis
of state-of-the-art techniques.

Yes Yes

Multiple

Analysis of human action
recognition systems; focus on

feature learning-based
representations and

deep learning.

Yes Yes

Transfer Learning
in HAR

Impact of transfer learning in
HAR and other areas; reviews

related research articles focusing
on vision sensor-based HAR.

Yes Yes

Video-based

Survey of human action
identification from video;

comparison of hand-crafted and
automatic feature

extraction approaches.

Yes Yes

Deep Learning
in HAR

Extensive survey on deep
learning applications in HAR;

detailed review of contemporary
deep learning methods.

Yes No
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3. Methodology

The field of human activity recognition (HAR) has witnessed an exponential growth
in published research, resulting in an immense corpus of literature. The recent emergence
of large language models (LLMs) offers a promising avenue for processing such exten-
sive corpora with remarkable precision in condensed time frames. In this section, we
elucidate our methodology. We commence by outlining the origins of our paper sources,
underscoring that our analysis, while primarily based on scraped data, is not limited to
them. Subsequently, we delineate the techniques employed to mine keywords from textual
content and to respond to specific queries. This section culminates with an account of
our approach to filtering and refining the selection of papers, ensuring our review is both
comprehensive and discerning. In this particular work, we cut off works prior to 2020 and
cover works up to the year of authoring this paper, 2023.

3.1. Data Sources

To amass a comprehensive dataset for our survey, we mined data from prominent
academic research repositories. These included IEEEXplore, from which we extracted
8005 papers; arXiv, contributing 271 papers; and MDPI, accounting for 1300 papers. All
the data procured are publicly accessible. The specific attributes scraped for each paper,
contingent upon availability, encompass the paper title, its publication year, the number of
citations, and most notably, the abstract. An overview of the distribution of paper number
can be represented graphically in the pie chart in Figure 2. Given the assumption that
an abstract encapsulates a paper’s content prior to a full perusal, our extraction efforts
prioritized it. A succinct overview of the information available from each repository is
furnished in Table 2. The data collection procedure is presented in Figure 3.

Figure 2. Pie chart representation of the number of papers scraped from our paper sources.

Figure 3. Overview of the data collection, filtering, and compilation pipeline.
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Table 2. Available extracted information from the pool of academic research paper repositories.

Repository
Name Title # Citations Abstract Year

IEEEXplore Yes Yes Yes Yes
arXiv Yes No Yes Yes
MDPI Yes No Yes Yes

The analysis encompassed three main sources: IEEE, MDPI, and ArXiv. The IEEE
repository is the most extensive, comprising 8005 papers. The distribution of publications
in IEEE (Figure 4b) demonstrates a consistent growth over the years, with citations ranging
from none to a substantial 2659, showcasing the varied impact of these works. MDPI
contributes 1300 articles, though detailed yearly trends were not discernible due to data
constraints. ArXiv, while the smallest with 270 articles, offers unique insights, particularly
from its submission year trends (Figure 4a). Collectively, this triad of sources offers a
comprehensive glimpse into the academic landscape of the topics in question. The citation
distribution is markedly right-skewed (Figure 4b), indicating that a large portion of the
IEEE papers garner a relatively low number of citations. This pattern is characteristic of
many academic publications, where only a fraction of works achieve broad recognition and
accrue a high citation count. The presence of a few papers with exceptionally high citations
suggests the existence of seminal works that have profoundly impacted the field. These
outliers, albeit few, underscore the importance of breakthrough research and its far-reaching
implications in the academic landscape. The majority of papers, however, reside within a
modest citation bracket, emphasizing the collective contribution of incremental research to
the broader knowledge base.

(a) (b)

Figure 4. Statistics for the paper sources for IEEE and arXiv. (a) Distribution of ArXiv papers by
submission year. (b) Average and Median number of citations per year for IEEE papers.

3.2. Use of Natural Language Processing

In our methodology, we harnessed the capabilities of natural language processing
(NLP) to enhance the comprehensibility and assessment of scientific abstracts. Specifically,
we employed the Voicelab/vlt5-base-keywords(https://huggingface.co/Voicelab/vlt5
-base-keywords (accessed on 12 December 2023)) summarization transformer to extract
salient keywords. Furthermore, to facilitate a deeper understanding of the content, we inte-
grated a question answering transformer (https://huggingface.co/consciousAI/question-
answering-roberta-base-s-v2 (accessed on 12 December 2023)). Our approach involved
constructing an input context by amalgamating the paper’s title and abstract. This compos-
ite text was then posed with a series of pertinent questions designed to assess the abstract’s
writing quality and information richness. Through this approach, we aimed to create an
efficient tool for academic researchers to quickly ascertain the relevance and quality of a
given scientific paper.

To further analyze our collected data, we proceed to the investigation of the keywords
of our data. Concretely, we extract keywords from the title-abstract string concatenation

https://huggingface.co/Voicelab/vlt5-base-keywords
https://huggingface.co/Voicelab/vlt5-base-keywords
https://huggingface.co/consciousAI/question-answering-roberta-base-s-v2
https://huggingface.co/consciousAI/question-answering-roberta-base-s-v2
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and then for each keyword, we extract their vector embeddings. Afterwards, we project
them onto the 2D plane using the T-SNE method [22], and then cluster them using K-
Means clustering. We can see a clear trend emerging in Figure 5, with the most dominant
neighborhoods being occupied by the keywords “Human Action Recognition”. We can
also see that during the years 2020–2023, deep learning and transfer learning are obvious
choices of approach for solving the problem of HAR. Other regions represent model
proposal names as are seen on the far left side of the plane. The most repeated keywords
that are close to the centroid that corresponds to “Sensor-Based” methods, are words that
refer to accelerometers, IMUs, WiFi, and radars, hence we make the choice of focusing on
those sensors. Another keyword that influenced our choice of encompassing vision-based
methods is the centroid that corresponds to “Video and Image Processing” as well as the
multiple occurrences of computer vision convolutional neural network-based methods.
Finally, it should be noted that K-Means clustering was implemented after the projection of
the embeddings onto the 2D plane and not vice-versa. We intentionally did this, so there is
a clear distinction of the regions.

Figure 5. Projection on the 2D plane of the keyword embeddings using the t-SNE method [23].
The red dots represent the respective keyword closer to its corresponding centroid. Each point on the
plot corresponds to a vector representation of the keyword embeddings, which is reduced to 2D for
better visualization. The different colors differentiate the embeddings’ clusters.

We filter our papers using the aforementioned models by asking the following template
questions. We refer the reader to Appendix A for a detailed demonstration of the question
answering module. The first criterion of filtering is the date of publication of the paper
under examination; specifically, we are filtering out papers whose publication year is before
2020. Afterwards, we prompt the LLM to extract keywords and compare it to the column
that corresponds to the scraped keywords, if available. Once the keywords are extracted,
we proceed to ask a series of questions about the paper itself. As context we provide the
LLM the string concatenation of the title and its abstract. We deliberately use these two
components as input, as we assume that the title and the paper abstract contain just as
much information as we need to infer whether it proposes a survey or a new methodology.
The previous two steps have proven useful to discard the majority of irrelevant papers.

3.3. Data Compilation

In this subsection, we describe the methodology we adopted in order to obtain our
data for our research. An overview of the pipeline is presented in Figure 3. First of all, we
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initiate our raw data search with prompting our search with the keywords “human activity
recognition” and “human-robot interaction” and we limit our search by constraining to
results from 2020 until the present. Once the search is complete, we end up amassing
a large volume of papers from the public sources mentioned in Table 2, where most of
the retrieved papers may be irrelevant for our purposes. As a first stage of filtering, we
introduce the natural language processing method, as described in the Section 3.2, resulting
in a volume of papers of about 500 articles. From the remaining pool of articles, we
consequently proceed to manually refine our search within the collected data and leave out
the irrelevant by reading the papers’ abstracts. The criterion was that we keep every article
that introduces either a methodology, a dataset or a survey in the topic of HAR. Finally,
after the conclusion of this step we end up with 159 papers.

3.4. Taxonomy Method

In this subsection, we outline the various comparison metrics that have been employed
to taxonomize the literature we have collected. Our focus is on providing a comprehensive
classification of the various HAR methods, ensuring that they encapsulate the breadth and
depth of our research. This approach is crucial for establishing a clear understanding of
the criteria and standards we have used to categorize and analyze the collected works.
The inclusion of these metrics serves not only to enhance the clarity and rigor of our
taxonomy but also aids in offering a structured and methodical overview of the literature
for our readers.

• Cost Under this metric, we investigate the computational cost associated with train-
ing and deploying each method discussed in the literature. This metric is critically
assessed based on the deep learning approach utilized in each method. Our empirical
evaluation takes into account several key factors: the memory requirements essential
for training and deploying, the complexity encountered during the inference process,
and the usage of ensemble methods by the authors. By scrutinizing these elements,
we aim to provide a thorough and nuanced understanding of the computational
costs, offering insights into the practicality and efficiency of each method in real-
world scenarios. This metric is of vital importance, as it is crucial for HAR methods
to be cost-effective, as they are deployed in memory- and computing-constrained
embedded systems.

• Approach We focus on identifying the machine learning models adopted by the
authors to address the problem at hand. This aspect is crucial for understanding the
benefits and shortcomings of each method. By identifying the types of deep learning
models used, we enable readers to discern the benefits and drawbacks inherent to
each approach. Such an understanding is pivotal for researchers and practitioners
alike, as it not only provides a clear picture of the current state of the field but also
aids in identifying potential areas for future exploration and development. We aim
to offer a comprehensive overview that not only informs but also inspires readers to
bridge gaps and contribute to the evolution of the future literature.

• Performance In this segment of our analysis, we turn our attention to the evalua-
tion performance of the various methods within the datasets they were validated on.
We categorize performance into three distinct tiers: low, medium, and high. A per-
formance is deemed ’low’ when scores fall below 75%, ‘medium’ for those ranging
between 75% and 95%, and ’high’ for scores exceeding 95%. However, it is crucial
for our readers to understand that these performance degrees are indicative and not
absolute. This is because different methods are often evaluated using diverse metrics,
making direct comparisons challenging. Therefore, while these performance cate-
gories provide a helpful framework for initial assessment, they should be interpreted
with an understanding of the varied and specific contexts in which each method is
tested. Our intention is to offer a guide that aids in gauging performance, while also
acknowledging the complexities and nuances inherent in methodological evaluations.
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• Datasets This component of our taxonomy is essential, as it provides a clear insight
into the environments and conditions under which each method was tested and
refined. By presenting this information, we aim to give readers a comprehensive
understanding of the types of data each method is best suited for, as well as the
potential limitations or biases inherent in these datasets.

• Supervision In the ’Supervision’ section, we report the nature of supervision employed
in the training of the methods we have examined. This aspect is pivotal, as the type of
supervision has a significant impact on several facets of the developmental process,
most notably in the cost and effort associated with data labeling. Methods that utilize
supervised learning often require large datasets, which in turn necessitate extensive
input from human annotators, thereby increasing costs. Conversely, methods based
on unsupervised learning, while alleviating the need for labeled data, often confront
challenges in maintaining a consistent quality metric. Such methods are also more
prone to collapsing during training. By outlining the supervision techniques used,
we aim to provide insights into the trade-offs and considerations inherent in each
approach, offering a comprehensive perspective on how the choice of supervision
influences not just the method’s development but also its potential applications and
efficacy in real-world scenarios.

3.5. Budget

In this subsection, we analyze the costs for conducting our experiments. Since most of
the queries were carried out through API calls, it is worth mentioning the overall financial
cost. Given the cost (https://openai.com/pricing (accessed on 28 March 2024)) of using
the OpenAI’s platform for using the chat completion API, it costed us around USD 8.5.
Most of the cost was dominated from the chat completion (USD 30/106 tokens), whereas
the embedding generation cost was nearly negligible (USD 0.02/106 tokens). As far as
the computational cost is concerned, the most critical aspect of our implementation is
the clustering, which has a space complexity of O(N(M + K), where N is the number of
samples in our available dataset, M is the embedding dimensionality, which for this use
case, was set to 256, and K the number of clusters, which was set to 28.

4. HAR Devices and Processing Algorithms

In the domain of human activity recognition (HAR), a synergistic interplay between so-
phisticated algorithms and high-fidelity sensors is quintessential for achieving accurate and
reliable recognition outcomes. This section meticulously delineates the pivotal constituents
underpinning HAR, segregated into two focal subsections. The initial subsection expounds
on the diverse array of sensors employed in HAR, shedding light on their operational prin-
ciples and the distinct types of data they capture, which are indispensable for discerning
human actions and postures. Following this, the subsequent subsection delves into the
algorithms that are instrumental in processing the signals derived from these sensors. It
elucidates the computational techniques and algorithmic frameworks that are adept at
deciphering the intricate patterns embedded in the sensor data, thereby enabling the robust
identification and classification of human activities. Through an in-depth examination
of both the sensor technologies and the algorithmic methodologies, this section aims to
furnish a comprehensive understanding of the technological underpinnings that propel the
field of human activity recognition forward. Figure 6 illustrates the two main categories of
HAR methods that we be discussed for the rest of the paper.

https://openai.com/pricing
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Figure 6. A general hierarchy of HAR methods. Typically, HAR is separated in sensor-based and
vision-based approaches. The two major subcategories are divided into their respective sensors that
are leveraged.

4.1. Devices

While some HAR approaches can apply to all sensor modalities, many are specific
to certain types. The modalities can be categorized into three aspects: body-worn sen-
sors, object sensors, and ambient sensors. Body-worn sensors, such as accelerometers,
magnetometers, and gyroscopes, are commonly used in HAR. They capture human body
movements and are found in devices like smartphones, watches, and helmets. Object sen-
sors are placed on objects to detect their movement and infer human activities. For example,
an accelerometer attached to a cup can detect drinking water activity. Radio frequency
identifier (RFID) tags are often used as object sensors in smart home and medical appli-
cations. Ambient sensors capture the interaction between humans and the environment
and are embedded in smart environments. They include radar, sound sensors, pressure
sensors, and temperature sensors. Ambient sensors are challenging to deploy and are
influenced by the environment. They are used to recognize activities and hand gestures in
settings like smart homes. Some HAR approaches combine different sensor types, such as
combining acceleration with acoustic information or using a combination of body-worn,
object, and ambient sensors in a smart home environment. These hybrid sensor approaches
enable the capture of rich information about human activities.

4.1.1. Body-Worn Sensors

Body-worn sensors, such as accelerometers, magnetometers, and gyroscopes, are com-
monly used in HAR. These sensors are typically worn by users on devices like smartphones,
watches, and helmets. They capture changes in acceleration and angular velocity caused by
human body movements, enabling the inference of human activities. Body-worn sensors,
particularly accelerometers, have been extensively employed in deep learning-based HAR
research. Gyroscopes and magnetometers are also commonly used in combination with
accelerometers [24,25]. These sensors are primarily utilized to recognize activities of daily
living (ADL) and sports [26]. Rather than extracting statistical or frequency-based features
from movement data, the original sensor signals are directly used as inputs for the deep
learning network.

4.1.2. Object Sensors

Object sensors are employed to detect the movement of specific objects, unlike body-
worn sensors that capture human movements. These sensors enable the inference of human
activities based on object movement [27,28]. For example, an accelerometer attached to
a cup can detect the activity of drinking water [29]. Object sensors, typically using radio
frequency identifier (RFID) tags, are commonly utilized in smart home environments and
medical activities. RFID tags provide detailed information that facilitates complex activity
recognition [30–33].
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It is important to note that object sensors are less commonly used compared to body-
worn sensors due to deployment challenges. However, there is a growing trend of combin-
ing object sensors with other sensor types to recognize higher-level activities.

4.1.3. Ambient Sensors

Ambient sensors are designed to capture the interactions between humans and their
surrounding environment. These sensors are typically integrated into smart environments.
Various types of ambient sensors are available, including radar, sound sensors, pressure
sensors, and temperature sensors. Unlike object sensors that focus on measuring object
movements, ambient sensors are used to monitor changes in the environment.

Several studies have utilized ambient sensors to recognize daily activities and hand
gestures. Most of these studies were conducted in the context of smart home environments.
Similar to object sensors, deploying ambient sensors can be challenging. Additionally,
ambient sensors are susceptible to environmental influences, and only specific types of
activities can be reliably inferred [34].

4.1.4. Hybrid Sensors

Some studies have explored the utilization of hybrid sensors in HAR by combining
different types of sensors. For instance, research has shown that incorporating both acceler-
ation and acoustic information can enhance the accuracy of HAR. Additionally, there are
cases where ambient sensors are employed alongside object sensors, enabling the capture
of both object movements and environmental conditions. An example is the development
of a smart home environment called A-Wristocracy, where body-worn, object, and ambient
sensors are utilized to recognize a wide range of intricate activities performed by multiple
occupants. The combination of sensors demonstrates the potential to gather comprehensive
information about human activities, which holds promise for future real-world smart
home systems.

4.1.5. Vision Sensors

RGB data are widely recognized for their high availability, affordability, and the
rich texture details they provide of subjects, making them a popular choice in various
applications [18]. Despite these advantages, RGB sensors have limitations, such as a
restricted range and sensitivity to calibration issues, and their performance is heavily
influenced by environmental conditions like lighting, illumination, and the presence of
cluttered backgrounds. The field of vision-based HAR has seen significant interest due to
its real-world applications, and research in this area can be categorized based on the type of
data used, such as RGB [35–37] and RGB-D data [38,39]. RGB-D data, which include depth
information alongside traditional RGB data, provides additional layers of information for
more accurate activity recognition. Furthermore, from depth data, it is possible to extract
skeleton data, which offers a simplified yet effective representation of the human body’s
skeleton. These skeleton data occupy a lower-dimensional space, enabling HAR models to
operate more efficiently and swiftly, which is an essential factor for real-time applications
like surveillance. The most common sensor that can provide RGB, RGB-D, and skeleton
information is the Kinect. An example of a both RGB and RGB-D dataset is the Human4D
dataset [40] (Figure 7) where the authors provide samples with RGB and depth readings. A
common way to represent a skeleton is illustrated in Figure 8 and typically is represented
in the form of joint rotations in either exponential maps or quaternions [41,42].
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Figure 7. An example of an RGB-D image. The source RGB image appears to the left and its
corresponding depth map to the right. Objects that appear closer have a darker red color while the
furthest objects appear blue. A notable dataset that is available for HAR problems and provides both
RGB and LiDAR scanned depth maps is the Human4D dataset [40].

Figure 8. Example of a human body skeleton representation.

4.2. Algorithms

We outline the deep neural network (DNN)-based approaches employed in the lit-
erature for solving the problem of human activity recognition that utilize sensor inputs.
The most common methodologies include convolutional neural networks (CNNs), autoen-
coders, and recurrent neural networks (RNNs).

4.2.1. Convolutional Neural Networks

This subsection discusses the application of convolutional neural networks (CNNs)
in human activity recognition (HAR) and highlights its advantages and considerations.
CNNs leverage sparse interactions, parameter sharing, and equivariant representations.
After convolution, pooling and fully connected layers are typically used for classification
or regression tasks.

CNNs have proven effective in extracting features from signals and have achieved
promising results in various domains such as image classification, speech recognition,
and text analysis. When applied to time-series classification like HAR, CNN offers two
advantages over other models: local dependency and scale invariance. Local dependency
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refers to the correlation between nearby signals in HAR, while scale invariance means the
model can handle different paces or frequencies. Due to the effectiveness of CNNs, most of
the surveyed work in HAR has focused on this area.

When applying CNNs to HAR, several aspects need to be considered: input adaptation,
pooling, and weight-sharing.

4.2.2. Input Adaptation

HAR sensors typically produce time-series readings, such as acceleration signals,
which are temporal multi-dimensional 1D readings. Input adaptation is necessary to
transform these inputs into a suitable format for CNN. There are two main types of
adaptation approaches:

4.2.3. Data-Driven Approach

Each dimension is treated as a channel, and 1D convolution is performed on them.
The outputs of each channel are then flattened to unified deep neural network (DNN)
layers. This approach treats the 1D sensor readings as a 1D image, and examples include
treating accelerometer dimensions as separate RGB channels [43] and using shared weights
in multi-sensor CNNs [44]. While this approach is simple, it ignores dependencies between
dimensions and sensors, which can impact performance.

4.2.4. Model-Driven Approach

The inputs are resized to form a virtual 2D image, allowing for 2D convolution. This
approach requires non-trivial input tuning techniques and domain knowledge. Examples
include combining all dimensions into a single image [45] or using complex algorithms to
transform time series into images [46]. This approach considers the temporal correlation of
sensors but requires additional efforts in mapping time series to images.

4.2.5. Weight-Sharing

Weight-sharing is an efficient method to speed up the training process on new tasks.
Different weight-sharing techniques have been explored, including relaxed partial weight-
sharing [43] and CNN-pf and CNN-pff structures [47]. Partial weight-sharing has shown
improvements in CNN performance.

In summary, this subsection provides an overview of the key concepts and consider-
ations when applying CNNs to HAR, including input adaptation, pooling, and weight-
sharing techniques.

4.2.6. Recurrent Neural Networks

RNN is a popular neural network architecture that leverages temporal correlations
between neurons and is commonly used in speech recognition and natural language process-
ing. In HAR, a RNN is often combined with long short-term memory (LSTM) cells, which
act as memory units and help capture long-term dependencies through gradient descent.

There have been relatively few works that utilize RNNs for HAR tasks. In these
works [48–51], the main concerns are the learning speed and resource consumption in
HAR. One study [51] focused on investigating various model parameters and proposed a
model that achieves high throughput for HAR. Another study [48] introduced a binarized-
BLSTM-RNN model, where the weight parameters, inputs, and outputs of all hidden layers
are binary values. The main focus of RNN-based HAR models is to address resource-
constrained environments while still achieving good performance.

In summary, this subsection highlights the limited use of RNNs in HAR and empha-
sizes the importance of addressing learning speed and resource consumption in HAR
applications. It mentions specific studies that have explored different approaches, in-
cluding optimizing model parameters and introducing resource-efficient models like the
binarized-BLSTM-RNN model.
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5. Sensor-Based HAR

Human activity recognition (HAR) has witnessed transformative advancements with
the incorporation of body-worn sensors, ushering in a new era of ubiquitous and contin-
uous monitoring. Accelerometer and Inertial Measurement Unit (IMU) sensors serve as
foundational elements, capturing motion-based data to deduce activities ranging from sim-
ple gestures to complex movements. In parallel, WiFi sensors have unlocked the potential
for HAR even without direct contact with the human body, by leveraging the ambient wire-
less signals that reflect off our bodies. Advancements in radar sensors further expand the
spectrum, providing a richer dataset with the capability to penetrate obstacles and discern
minute motions, such as breathing patterns. However, the pinnacle of HAR’s potential
is realized through sensor fusion, where the combined prowesses of these varied sensors
coalesce, offering enhanced accuracy, resilience to environmental noise, and the ability to
operate in multifarious scenarios. This section delves into the multifaceted applications of
these sensors, both in isolation and in harmony, illustrating their transformative impact
on HAR’s landscape. In the following subsections, we present applications of HAR that
leverage accelerometer and IMU signals, WiFi, and radar imaging, as well as methods that
combine all of the aforementioned modalities. The findings of this section are summarized
in Tables 3–6, for the modalities of accelerometers, Wi-Fi, RADAR-based methods and
finally for the various modalities, respectively.

Table 3. Accelerometer and IMU sensor-based methods.

Paper Approach Cost Performance Dataset Supervised?

[3] SVM + 1D CNN Low High UCI-HAR

[4] MLP Ensemble High High REALDISP

[5] 1D CNN Medium Medium SHO, MHealth

[52] 1D CNN High High UCI-HAR, WISDM, Skoda
Dataset, self-prepared

[6] Self-attention + 1D CNN High High UCI-HAR, MHealth

[53] Transformers High High WISDM

[54] LSTM Medium Medium WISDM

[55] MLP Ensembles High High MotionSense (kaggle),
self-prepared

[56] ConvLSTM High High WISDM, UCI, PAMAP2,
OPPORTUNITY

[8] Deformable CNN High (4 × 3090) Medium OPPORTUNITY,
UNIMIB-SHAR, WISDM

[57] LSTMs, Hierarchical Clustering Medium Medium MHealth, UCI-HAR

[58] CNN Medium High
UCI-HAR, OPPORTUNITY,

UNIMIB-SHAR, WISDM,
PAMAP2

[59] Temporal CNN High Medium PAMAP2, OPPORTUNITY, LISSI Semi

[60] GRU-ResNet High High UCI-HAR Supervised

[61] MLP Medium High N/A Unsupervised

[62] CNN High Medium OPPORTUNITY,
UNIMIB-SHAR, WISDM Supervised

[63] Linear Discriminant Analysis Low High Self-prepared Supervised
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Table 3. Cont.

Paper Approach Cost Performance Dataset Supervised?

[64] GRU-CNN High High UCI-HAR, OPPORTUNITY, MHealth Supervised

[65] CNN Medium High PAMAP2 Supervised

[66] CNN Low High UCI-HAR, PAMAP2,
WISDM, UNIMIB-SHAR Supervised

[67] MLP Low High UCI ML Repository Supervised

Table 4. WiFi sensor-based methods.

Paper Approach Cost Performance Dataset Supervised?

[68] CNN-RNN Medium Medium Self collected Unsupervised

[69] SVM, MLP, CNN Low Medium Self collected Unsupervised

[70] CNN Low High Self collected Supervised

[71] ConvLSTM,
PCA with STFT

Low High Self collected Supervised

[72] CNN Low

High with
Transfer

Learning, Low
w/o Transfer

Learning

Self collected Supervised

[73] CNN Unet Low Medium Self collected Supervised

[74] CNN Low High Self collected Unsupervised

Table 5. Classification of radar-based methods.

Paper Approach Cost Performance Dataset Supervised?

[75] 2DPCA, 2DLDA,
kNN

Low High
University of

Glasgow
Dataset

Unsupervised

[76] Transformer High High 4d Imaging
Radar Dataset Supervised

[77] RNN Medium N/A PARRad
Dataset Unsupervised

Table 6. Classification of methods that leverage a fusion of various modalities.

Paper Approach Cost Performance Dataset Supervised?

[78] Transformer High High [79–81] Supervised

[82] GMM, HMM Low Medium

NGSIM (Next Generation
Simulation (NGSIM) https:

//data.transportation.
gov/Automobiles/Next-
Generation-Simulation-

NGSIM-Vehicle-Trajector/
8ect-6jqj (accessed on
12 December 2023))

Unsupervised

[83] SVM Low High UCI-HAR Supervised

[84] Attention based High Medium
OPPORTUNITY, UCI ML
REPOSITORY, Daily life

activities
Supervised

[85] CNN High High Self-supervised Supervised

https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
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5.1. Accelerometer and IMU Modalities

A contribution to accelerometer-based HAR is presented in [3], where the authors
introduce an adaptive HAR model that employs a two-stage learning process. This model
utilizes data recorded from a waist-mounted accelerometer and gyroscope sensor to first
distinguish between static and moving activities using a random forest classifier. Subse-
quent classification of static activities is performed by a Support Vector Machine (SVM),
while moving activities are identified with the aid of a 1D convolutional neural network
(CNN). Building on the idea of utilizing deep learning for HAR, the work in [4] proposes
an ensemble deep learning approach that integrates data from sensor nodes located at
various body sites, including the waist, chest, leg, and arm. The implementation involves
training three distinct deep learning networks on a publicly available dataset, encompass-
ing data from eight human actions, demonstrating the potential of ensemble methods
in improving HAR accuracy. Furthermore, the research in [5] introduces a multi-modal
deep convolutional neural network designed to leverage accelerometer data from multiple
body positions for activity recognition. The study in [52] explores the application of a
one-dimensional (1D) CNN model for HAR, utilizing tri-axis accelerometer data collected
from a smartwatch. This research focuses on distinguishing between complex activities
such as studying, playing games, and mobile scrolling.

Another development in this area is presented in [6], where the authors introduce
a convolved self-attention neural network model optimized for gait detection and HAR
tasks. Further addressing the challenges of capturing spatial and temporal relationships
in time-series data from wearable devices, the work in [53] explores the application of a
transformer-based deep learning architecture. Recognizing the limitations of traditional AI
algorithms, where convolutional models focus on local features and recurrent networks
overlook spatial aspects, the authors propose leveraging the transformer model’s self-
attention mechanism. In another approach, Ref. [54] employs Bidirectional long short-term
memory (LSTM) networks for data generation using the WISDM dataset, a publicly avail-
able tri-axial accelerometer dataset. The study focuses on assessing the similarity between
generated and original data and explores the impact of synthetic data on classifier per-
formance. Addressing the variability in human subjects’ physical attributes, which often
leads to inconsistent model performance, the authors in [55] propose a physique-based
HAR approach. By leveraging raw data from smartphone accelerometers and gyroscopes.
Additionally, the study in [56] introduces an architecture called “ConvAE-LSTM”, which
synergizes the strengths of convolutional neural networks (CNNs), autoencoders (AEs),
and Long Short-Term Memory (LSTM) networks. In parallel, the challenge of capturing
salient activity features across varying sensor modalities and time intervals due to the
fixed nature of traditional convolutional filters is addressed in [8]. This research presents
a deformable convolutional network designed to enhance human activity recognition
from complex sensory data. Ref. [57] contributes to the HAR field by proposing a hier-
archical framework named HierHAR, which focuses on distinguishing between similar
activities. This structure serves as the basis for a tree-based activity recognition model,
complemented by a graph-based model to address potential compounding errors during
the prediction process.

In [58], Teng et al. introduce a groundbreaking approach by implementing a CNN-
based architecture with a local loss. The adoption of a local loss-based CNN represents
a strategy in the domain that offers a more refined feature extraction capabilities and
enhanced learning efficacy for activity recognition. Additionally, Ref. [59] explores the use
of Generative Adversarial Networks (GANs) combined with temporal convolutions in a
semisupervised learning framework for action recognition. This approach is particularly
designed to tackle common challenges in HAR, such as the scarcity of annotated samples.
Ref. [60] presents the BiGRUResNet model, which combines LSTM-CNN architectures with
deep residual learning for improved HAR accuracy and reduced parameter count.

In [61], the authors propose XAI-BayesHAR, an integrated Bayesian framework by
leveraging a Kalman filter to recursively track the feature embedding vector and its associ-
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ated uncertainty. This feature is particularly valuable for practical deployment scenarios
where understanding and quantifying predictive uncertainty are required. Furthermore,
the framework’s ability to function as an out-of-data distribution (OOD) detector adds an
additional layer of practical utility by identifying inputs that significantly deviate from the
trained data distribution. In contrast to traditional wrist-worn devices, Yen, Liao, and Huang
in [86] explore the potential of a waist-worn wearable device specifically designed to accu-
rately monitor six fundamental daily activities, particularly catering to the needs of patients
with medical constraints such as artificial blood vessels in their arms. The hardware and
software components of this wearable, including an ensemble of inertial sensors and a
sophisticated activity recognition algorithm powered by a CNN-based model, highlight the
importance of tailored hardware and algorithmic approaches in enhancing HAR accuracy
in specialized healthcare applications. Furthermore, Ref. [87] delves into the utilization
of smartphones and IoT devices for HAR. The work in [62] addresses the challenge of
balancing HAR efficiency with the inference-time costs associated with deep convolutional
networks, which is especially pertinent for resource-constrained environments.

The authors of [63] introduce a wearable prototype that combines an accelerometer
with another launchpad device. This device is specifically designed to recognize and classify
activities such as walking, running, and stationary states. The classification algorithm
is based on analyzing statistical features from the accelerometer data, applying Linear
Discriminant Analysis (LDA) for dimensionality reduction, and employing a support
vector machine (SVM) for the final activity classification. Building on the integration of
advanced neural network architectures for HAR, Ref. [64] presents a system that combines
convolutional neural networks (CNNs) with Gated Recurrent Units (GRUs). This hybrid
approach allows for enhanced feature extraction through the CNN layers, followed by
the GRU layers capturing temporal dependencies. In response to the constraints imposed
by resource-limited hardware, Ref. [65] introduces an innovative HAR system based on a
partly binarized Hybrid Neural Network (HNN). This system is optimized for real-time
activity recognition using data from a single tri-axial accelerometer, distinguishing among
five key human activities. Finally, Tang et al. in [66] propose a CNN architecture that
incorporates a hierarchical-split (HS) module, designed to enhance multiscale feature
representation by capturing a broad range of receptive fields within a single feature layer.

Finally, in a similar direction, Ref. [67] explores the integration of cost-effective hard-
ware focusing on leveraging the gyroscope and accelerometer to feed data into a deep
neural network architecture. Their model, DS-MLP, represents a confluence of affordability
and sophistication, aiming to make HAR more accessible and reliable.

5.2. Methods Leveraging WiFi Signals

The work presented in [68] introduces WiHARAN, a robust WiFi-based activity recog-
nition system designed to perform effectively in various settings. The key to WiHARAN’s
success lies in its ability to learn environment-independent features from Channel State
Information (CSI) traces, utilizing a base network adept at extracting temporal information
from spectrograms. This is complemented by adversarial learning techniques that align
the feature and label distributions across different environments, thus ensuring consistent
performance despite changes in the operating conditions. Complementing this, the ap-
proach detailed in [69] explores a device-free methodology utilizing WiFi Received Signal
Strength Indication (RSSI) for recognizing human activities within indoor spaces. By em-
ploying machine learning algorithms and collecting RSSI data from multiple access points
and mobile phones, the system achieves remarkable accuracy, particularly in the 5 GHz
frequency band. Further expanding the scope of WiFi-based activity recognition, Ref. [70]
presents a comprehensive framework that integrates data collection and machine learning
models for the simultaneous recognition of human orientation and activity. In a different
vein, Ref. [71] focuses on the nuances of limb movement and its impact on WiFi signal
propagation. The research identifies the challenges associated with variability in activity
performance and individual-specific signal reflections, which complicate the recognition
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process. To overcome these hurdles, a novel system is proposed that leverages diverse CSI
transformation methods and deep learning models tailored for small datasets. The work
by Ding et al. [72] showcases the application of a straightforward convolutional neural
network (CNN) architecture, augmented with transfer learning techniques, with mini-
mal or even no prior training. This approach not only demonstrates the effectiveness of
transfer learning in overcoming the limitations of small training sets but also sets new
benchmarks in location-independent, device-free human activity recognition. Amidst these
technological advancements, the aspect of user privacy emerges as a pivotal consideration,
particularly in the domain of HAR applications and, by extension, Assisted Daily Living
(ADL). As the quality of service for IoT devices improves, users are increasingly faced
with the balance between benefitting from enhanced services and risking the exposure of
sensitive personal information, such as banking details, workout routines, and medical
records. The participants of the study conducted in [88] highlight a nuanced stance towards
this balance; they seem amenable to sharing sensitive information about their health and
daily habits as long as the IoT services provided are tailored to their needs and yield better
service performance. Nonetheless, their willingness to share personal data is conditional,
underscored by the prerequisite of specific circumstances that safeguard their privacy while
enabling the benefits of technology-enhanced living.

Wireless sensing technologies have seen remarkable advancements, particularly in
the realms of indoor localization and human activity recognition (HAR), propelled by the
nuanced capabilities of wireless signals to reflect human motions. This is vividly illustrated
in the works of [73,74], where each study presents a unique approach to leveraging Channel
State Information (CSI) for enhanced HAR and localization. In [73], the focus is on the
dynamic nature of wireless signals and their interactions with human activities. The authors
observe that the scattering of wireless signals, as captured in the CSI, varies with different
human motions, such as walking or standing. They achieve this by leveraging the U-
Net architecture, a specialized convolutional neural network (CNN). Ref. [74] integrates
wireless sensing within the Internet of Things (IoT) ecosystem, emphasizing its importance
for both HAR and precise location estimation. The authors in [74] introduce a hardware
design, which simplifies CSI acquisition and enables the simultaneous execution of HAR
and localization tasks using Siamese networks. This integrated approach is particularly
advantageous in smart home environments, where it can facilitate gesture-based device
control from specific locations without compromising user privacy, as it negates the need
for wearable sensors or cameras.

5.3. Radar Signal HAR

In an effort to address challenges related to high data dimensions in Frequency Mod-
ulated Continuous Wave (FMCW) radar images, slow feature extraction, and complex
recognition algorithms, Ref. [75] presents a method using two-dimensional feature ex-
traction for FMCW radar. The approach begins by employing two-dimensional principal
component analysis (2DPCA) to reduce the dimensionality of the radar Doppler–Time Map
(DTM). The recognition task is accomplished using a k-nearest neighbor (KNN) classifier.
Ref. [76] explores the application of three self-attention models, specifically Point Trans-
former models, in the classification of Activities of Daily Living (ADL). The experimental
dataset, collected at TU Delft, serves as the foundation for investigating the optimal combi-
nation of various input features, assessing the impact of the proposed Adaptive Clutter
Cancellation (ACC) method, and evaluating the model’s robustness within a leave-one-
subject-out scenario. In [77], the Bayesian Split Bidirectional recurrent neural network for
human activity recognition is introduced, in order to compensate for the computational
cost of deep neural networks. The proposed technique harnesses the computational capa-
bilities of the off-premise device to quantify uncertainty, distinguishing between epistemic
(uncertainty due to lack of training data) and aleatoric (inherent uncertainty in predictions)
uncertainties. Radar signal modalities are used to predict human activities.
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5.4. Various Modalities and Modality Fusion

One approach that leverages multiple modalities for HAR is the Data Efficient Separa-
ble Transformer (DeSepTr) framework, as introduced in [78]. This framework leverages
the capabilities of transformer neural networks [89,90], specifically a Vision Transformer
(ViT), trained using spectrograms generated from data collected by wearable sensors.
In response to the limitations of model-based hidden Markov models, the switching Gaus-
sian mixture model-based hidden Markov model (S-GMMHMM), is introduced in [82].
The S-GMMHMM utilizes a supervised algorithm for accurate parameter estimation and
introduces a real-time recognition algorithm to compute activity posteriors recursively.
Capitalizing on Enveloped Power Spectrum (EPS) to isolate impulse components from
signals, Ref. [83] introduces Linear Discriminant Analysis (LDA), which is employed to
reduce the feature dimensionality and extract discriminative features. The extracted fea-
tures are then used to train a multiclass support vector machine (MCSVM). Building upon
the need for efficient data handling and feature extraction in HAR, Ref. [84] introduces the
HAP-DNN model, an advanced solution addressing the challenges posed by the extensive
sensor data and multichannel signals typical in HAR tasks. Finally, in response to the com-
plexities of recognizing human activities in varied real-world settings, Ref. [85] presents a
method that combines data from Frequency Modulated Continuous Wave (FMCW) radar
with image data, taking advantage of the complementary strengths of these modalities to
boost recognition accuracy. This approach is further enhanced by incorporating domain
adaptation techniques to address inconsistencies in data due to environmental variations
and differing user behaviors.

6. Vision-Based HAR

Human activity recognition (HAR) represents a pivotal area of research in the realm
of computer vision, aiming to identify and categorize human actions from a series of
observational data. Primarily, the data feeding these models come from visual sources
such as videos or sequences of images captured from a variety of devices like surveillance
cameras, smartphones, or dedicated recording equipment. Traditional machine learning
algorithms, having provided the foundation for HAR, have in recent years been comple-
mented and even superseded by more advanced architectures. Particularly, convolutional
neural networks (CNNs) have proven adept at extracting spatial hierarchies and patterns
from visual data [91–93], while Vision Transformers [90,94] divide the input image into
fixed-size patches and linearly embed them for attention-driven understanding. Further-
more, to capture the temporal dependencies inherent in video sequences, researchers often
amalgamate CNNs with recurrent neural networks (RNNs) [95]. This combination exploits
the spatial recognition capabilities of CNNs and the sequence understanding of RNNs,
offering a comprehensive understanding of both the spatial and temporal aspects of hu-
man activities. As technology advances, the fusion of classical and modern algorithms
offers promise in achieving more accurate and real-time HAR applications. The typical
vision-based approaches re illustrated in Figure 9. Many approaches use a combination of
primitive tasks, such as image segmentation [96] in order to extract semantic information
about the scene and infer the ongoing activity [97], as shown in Figure 10. We summarize
our findings in Table 7.
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Figure 9. Typically used modalities in vision-based methods in HAR. Due to the wide range of
applications of HAR, vision-based methods can be further categorized in subsequent tasks. Most
notable are human motion prediction, action recognition and pose estimation.

Figure 10. The framework proposed in [97]. First, the video is split into a sequence of RGB images and
consequently fed into an instance segmentation module, typically a MaskRCNN [96]. The per-frame
semantic representation extracted from the segmentation module are then processed by an RNN,
before they are fed to a fully connected layer to finally infer the activity class.

Table 7. Classification of vision-based methods.

Paper Approach Cost Performance Dataset Supervised?

[98] Attention, LSTM High High
UTD-MHAD,

UT-Kinect, UCSD
MIT

Supervised

[99] CNN + LSTM High High Kinetic Activity
Recognition Dataset Supervised

[100] 3D CNNs High High

MSRDailyActivity3D,
NTU RGB + D and

UTD-MHAD, PRECIS
HAR

Supervised

[101] DBN Low High HMDB51 Supervised

[102] Decision Tree Low High UT-Interaction Unsupervised

[103] CNN LSTM Medium High iSPL, UCI-HAR Supervised

[104] LSTM Medium High UCF-50 Supervised

[105] HMM Low High Depth Dataset Using
Kinect Camera Unsupervised
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The work presented in HAMLET [98] is characterized by a hierarchical architecture de-
signed for encoding spatio-temporal features from unimodal data. This is achieved through
a multi-head self-attention mechanism that captures detailed temporal and spatial dynam-
ics. In a similar fashion, the SDL-Net model introduced in [99] leverages the synergies of
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to address
HAR challenges. This model uniquely employs Part Affinity Fields (PAFs) to construct
skeletal representations and skeletal gait energy images, which are instrumental in captur-
ing the nuanced sequential patterns of human movement. Moreover, Popescu et al. [100]
augment information from multiple channels within a 3D video framework, including RGB,
depth data, skeletal information, and contextual objects. By processing each data stream
through independent 2D convolutional neural networks and then integrating the outputs
using sophisticated fusion mechanisms, their system achieves a comprehensive understand-
ing of the video content. Ref. [101] proposes a novel approach that melds the strengths of
Deep Belief Networks (DBNs) with a DBN-based Recursive Genetic Micro-Aggregation
Approach (DBN-RGMAA) to ensure anonymity in HAR. The Hybrid Deep Fuzzy Hashing
Algorithm (HDFHA) further enhances this approach by capturing complex dependen-
cies between actions. Furthermore, the CNN-LSTM framework introduced in [103] by
harmoniously integrating convolutional neural networks (CNNs) with long short-term
memory networks (LSTMs), captures the spatio-temporal dependencies of human activities.
The study by [104] introduces a pioneering hybrid approach that integrates the temporal
learning capabilities of long short-term memory (LSTM) networks with the optimization
prowess of Particle Swarm Optimization (PSO). This combination effectively analyzes both
the temporal and spatial dimensions of video data. The introduction of the Maximum
Entropy Markov Model (MEMM) by the authors of [105] treats sensor observations as
inputs to the model and employs a customized Viterbi algorithm to infer the most likely
sequence of activities.

7. Datasets
7.1. Sensor-Based Datasets

Ref. [106] offers an exhaustive survey on datasets tailored for human activity recogni-
tion (HAR) through the use of installed sensors. These datasets are pivotal for researchers
aiming to develop efficient machine learning models for activity recognition, and they
exclude datasets based on RGB or RGB-Depth video actions. The content of these datasets
spans a broad spectrum of sensor-based activities. Firstly, there are datasets from the UCI
Machine Learning Repository, which encompass a variety of domains, including activities
of daily living, fall classification, and smartphone-based activity recognition. Another
significant contributor is the Pervasive System Research Group from the University of
Twente, offering datasets on smoking activity, complex human activities, and physical
activity recognition. The Human Activity Sensing Consortium (HASC) provides large-scale
databases, with datasets like HASC2010corpus and HASC2012corpus, focusing on human
behavior monitoring using wearable sensors. Medical activities also find representation
with datasets like the Daphnet Freezing of Gait (FoG) dataset, which monitors Parkinson’s
disease patients, and the Nursing Activity dataset that observes nursing activities in hospi-
tals. For those interested in physical and sports activities, datasets such as the Body Attack
Fitness and Swimmaster datasets provide insights into workout routines and swimming
techniques, respectively. The rise of smart homes has led to the inclusion of household
activities-related datasets like the MIT PlaceLab and CMU-MMAC, which utilize IoT to
track daily household activities. Lastly, with the ubiquity of smart devices, the document
also touches upon datasets related to device usage, capturing user behaviors and patterns
while interacting with these devices.

The UCI Machine Learning Repository offers a diverse collection of datasets pivotal
for human activity recognition (HAR) research. The HHAR dataset [107], for instance,
encompasses data from nine subjects across six activities, with 16 attributes spanning
about 44 million instances. Similarly, the UCIBWS dataset [108], derived from 14 subjects,
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captures four activities and comprises nine attributes across 75,000 instances. The AReM
dataset [109], although from a single subject, provides insights into six activities with six
attributes, though the instance count remains unspecified. The HAR [110] and HAPT
datasets [111], both sourced from 30 subjects, delve into 6 and 12 activities respectively,
both having 10,000 instances. Single Chest [112] and OPPORTUNITY datasets [113] offer
a broader activity spectrum, with the former capturing 7 activities from 15 subjects and
the latter detailing 35 activities from 4 subjects. ADLs [114] and REALDISP datasets [115]
provide a snapshot of daily activities, with the latter offering an extensive 33 activities and
attributes from 17 subjects. UIFWA [112] and PAMAP2 [81] datasets, from 22 and 9 subjects,
respectively, offer varied attributes, with the former’s activity count unspecified. DSA
and Wrist ADL datasets [116], both focusing on daily activities, provide data from 8 and
16 subjects respectively and proposed in the same publication. The RSS dataset [117], while
not specifying subject count, offers insights into two activities with four attributes. Lastly,
the MHEALTH [118], WISDM [119], and WESAD datasets [120], derived from 10, 51, and
15 subjects, respectively, provide a comprehensive view of various activities, with the
WISDM dataset [119] detailing 18 activities across 15 million instances. Collectively, these
datasets from the UCI Machine Learning Repository present a rich tapestry of information
that is invaluable for researchers aiming to advance the domain of HAR. Table 8 sum-
marizes all the datasets’ attributes along with the measurement tools employed to create
the samples.

Table 8. Summary of datasets from the UCI Machine Learning Repository for human activity
recognition (HAR) research. The table provides details on the number of subjects, activities, instances,
measurement sensors and the respective sources for each dataset.

Dataset # Subjects # Activities Sensors # Instances # Source

HHAR 9 6 Accelerometer,
gyroscope 44 million [107]

UCIBWS 14 4 RFID 75k [108]

AReM 1 6 IRIS Nodes 42k [109]

HAR 30 6 Accelerometer,
gyroscope 10k [110]

HAPT 30 12 Accelerometer,
gyroscope 10k [111]

Single Chest 15 7 Accelerometer N/A [112]

OPPORTUNITY 4 35

Accelerometer,
motion sensors,

ambient
sensors

2551 [113]

ADLs 2 10
PIR, magnetic,
pressure and

electric sensor
2747 [114]

REALDISP 17 33 Accelerometer,
gyroscope 1419 [115]

UIFWA 22 2 Accelerometer N/A [112]

PAMAP2 9 19 IMU, ECG 3.8 million [81]

DSA 8 19
Accelerometer,

magnetome-
ters, gyroscope

9120 [116]

Wrist ADL 16 14 Accelerometer N/A [116]

RSS N/A 2 N/A 13,917 [117]
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Table 8. Cont.

Dataset # Subjects # Activities Sensors # Instances # Source

MHEALTH 10 12 Accelerometer,
ECG 120 [118]

WISDM 51 18 Accelerometer,
gyroscope 15 million [119]

WESAD 15 3 N/A 63 million [120]

7.2. Vision-Based Datasets

In terms of visual-based human activity recognition (HAR), several benchmark datasets
have been established to evaluate and validate algorithmic approaches and learning meth-
ods. At the action level, the KTH Human Action Dataset, developed by the Royal Institute
of Technology of Sweden in 2004, offers 2391 sequences spanning six distinct human
actions [121]. Transitioning to the behavior level, the VISOR Dataset from the Univer-
sity of Modena and Reggio Emilia encompasses 130 video sequences tailored for human
action and activity recognition [122]. Additionally, the Caviar Dataset (2004) provides
videos capturing nine activities in varied settings, while the Multi-Camera Action Dataset
(MCAD) [123] from the National University of Singapore focuses on 18 daily actions across
five camera perspectives. On the interaction level, the MSR Daily Activity 3D Dataset by Mi-
crosoft Research Redmond [124] comprises 320 sequences across channels like depth maps,
skeleton joint positions, and RGB video, capturing 10 subjects in 16 activities. Other notable
datasets include the UCF50 [125] with 50 action categories from YouTube, the HMDB-51
Dataset from Brown University [126] with 6849 clips across 51 action categories, and the
Hollywood Dataset by INRIA [127], featuring actions from 32 movies. We split our pool of
the benchmark datasets into four major categories: (i) action-level datasets, (ii) behavioral-
level datasets, (iii) interaction-level datasets, and (iv) group activities-level datasets. Table 9
summarizes the fundamental properties of all the datasets that will be described below.

Table 9. Taxonomy of the vision-based dataset based on their interaction properties.

Dataset Action Behavior Human–Object
Interaction

Human–Human
Interaction Group Activities

KTH [121] ✓
Weizmann [128] ✓
Stanford 40 [129] ✓

IXMAS [130] ✓
VISOR [122] ✓
MCAD [123] ✓

MSR Daily Activity 3D [124] ✓ ✓ ✓
50 Salads [131] ✓ ✓

UCF50 [125] ✓ ✓
ETISEO [132] ✓ ✓

Olympic Sports [133] ✓ ✓
UT-Interaction [134] ✓ ✓

UT-Tower [135] ✓ ✓ ✓
ActivityNet [136] ✓ ✓ ✓

Kinetics [137] ✓ ✓ ✓
HMDB-51 [126] ✓ ✓ ✓

Hollywood [127] ✓ ✓
Hollywood2 [127] ✓ ✓

UCF-101 [138] ✓ ✓ ✓
YouTube Action [139] ✓ ✓
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7.2.1. Action-Level Datasets

In the category of action-level datasets, the KTH Human Action Dataset, developed by the
Royal Institute of Technology of Sweden in 2004, consists of 2391 sequences across six action
classes, including actions such as walking, jogging, and boxing, recorded against consistent
backgrounds with a stationary camera. In contrast, the Weizmann Human Action Dataset,
introduced by the Weizmann Institute of Science in 2005, comprises 90 sequences with nine
individuals performing 10 distinct actions, including jumping, skipping, and hand waving.
The Stanford 40 Actions dataset, curated by the Stanford Vision Lab, encompasses 9532 images
from 40 different action classes. Another notable dataset is the IXMAS dataset, established in
2006, offering a unique multi-view perspective on action recognition by capturing 11 actors
executing 13 everyday actions using five cameras from varied angles. Lastly, the MSR Action
3D dataset, a brainchild of Wanqing Li from Microsoft Research Redmond, includes 567 depth
map sequences, where 10 subjects perform 20 types of actions, captured using a Kinect device.
Some characteristic dataset are shown in Figure 11.

(a) (b)

Figure 11. Comparison of activity snapshots from two renowned datasets, KTH [121] and
Kinetics [137]. While both datasets provide a visual array of human actions, they vary in com-
plexity and scene context. (a) Snapshots from the KTH dataset, showcasing various human activities
such as walking, jogging, running, boxing, hand waving, and hand clapping. (b) A collection of
snapshots from the Kinetics dataset, depicting diverse activities ranging from air drumming and
applauding to making tea and mowing the lawn.

7.2.2. Behavioral-Level Datasets

Examining the behavioral-level datasets, we have the VISOR dataset, introduced
by the Imagelab Laboratory of the University of Modena and Reggio Emilia in 2005,
which includes a diverse range of videos categorized by type. One significant category,
designated for human action recognition in video surveillance, encompasses 130 video
sequences. The Caviar dataset, founded in 2004, splits into two distinct sets: one captured
using a wide-angle lens in the INRIA Labs’ lobby in Grenoble, France, and the other
filmed in a shopping center in Lisbon. This dataset captures individuals engaging in nine
activities across two contrasting settings. Lastly, the Multi-Camera Action Dataset (MCAD),
a creation of the National University of Singapore, addresses the open-view classification
challenge in surveillance contexts. It comprises recordings of 18 daily actions, sourced from
other datasets like KTH and IXMAS, captured through five cameras and performed by
20 subjects. Each subject performs each action eight times, split evenly between daytime
and evening sessions.

7.2.3. Interaction-Level Datasets

In the category of interaction-level datasets essential for vision-based human activity
recognition, a large number of datasets can be encountered. Among these, the MSR Daily
Activity 3D Dataset from Microsoft Research Redmond offers 320 sequences across channels
including depth maps, skeleton joint positions, and RGB video, capturing 10 subjects
engaging in 16 activities in both standing and sitting stances. The 50 Salads dataset from
the University of Dundee chronicles 25 individuals preparing salads in videos summing
up to 4 h. The MuHAVI dataset by Kingston University focuses on silhouette-based human
action recognition with videos from eight different angles. Additionally, the University
of Central Florida has contributed two significant datasets: UCF50, which extends from
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the UCF11 dataset with 50 action categories, and the UCF Sports Action Dataset, offering
150 sequences from televised sports. The ETISEO dataset by the INRIA Institute aims at
enhancing video surveillance techniques across varied settings. Meanwhile, the Olympic
Sports Dataset by the Stanford Vision Lab comprises 50 videos of athletes from 16 sports
disciplines. The University of Texas presented the UT-Interaction dataset, stemming from
a research competition, spotlighting 20 video sequences of continuous human–human
interactions across diverse attire conditions. Lastly, the UT-Tower dataset, also by the
University of Texas, showcases 108 video sequences spanning two settings: a concrete
square and a lawn.

7.2.4. Group Activity-Level Datasets

The study of group interaction in vision-based datasets has experienced significant
expansion and diversification. A notable contribution is the ActivityNet Dataset, created in
2015, offering 849 video hours spanning 203 activity classes and three comparison scenarios,
making it a robust choice for evaluating human activity understanding algorithms. The Ki-
netics Human Action Video Dataset, crafted by DeepMind in 2017, originally provided
400 human action classes (Kinetics 400) but later expanded to 600 (Kinetics 600), making it
one of the most extensive datasets, comprising around 500,000 video clips sourced from
YouTube. The HMDB-51 dataset by the Serre Lab of Brown University includes 6849 clips
from 51 action categories, standing out as one of the largest datasets in human activity
recognition. The Hollywood and Hollywood2 datasets, both hailing from INRIA, pro-
vide short sequences from 32 and 69 movies, respectively, highlighting multiple human
actions in realistic settings. The UCF-101 Action Recognition Dataset from the University
of Central Florida stands as an extension of the UCF50 dataset, featuring 13,320 videos
of 101 action categories, making it a gold standard for diversity in terms of actions and
realistic challenges. Finally, the YouTube Action Dataset from the same institution provides
11 action categories, offering challenges due to a multitude of factors like camera motion
and illumination variations.

8. HAR In Robotics and Industry

Recognizing human activities and being able to predict human intent plays a crucial
role in industrial environments and by extension in robotics. Specifically, in large produc-
tion lines where humans have to closely cooperate with robotic agents, it is important for
the robot to synergize efficiently by planning its path [140]. For this reason, complementary
to HAR, it is also necessary to model human motion. Numerous approaches have been
proposed to the task of modeling human motion and predicting it. Early methods incorpo-
rate RNNs in human skeleton models represented by their joint rotations [141,142]. Further
extending this field of research, other methodologies combine RGB scene characteristics
along with the skeleton representations [143]. The accelerating popularity of attention-
based methods has also given the advantage of accurately modeling and predicting the
human motion, and consequently, human intent. Notable works include [144,145].

The field of robotics is undoubtedly driven by the exploration of emulating human
motion. In this context, Ref. [146] introduces a novel approach that combines deep learning
and human motion imitation through the use of motion primitives. It further involves
motion modeling using motion primitives and the replication of these motions in a simu-
lated environment using the V-REP robotic simulator. The proposed framework represents
an initial version of deep learning-powered video analytics for human motion imitation,
employing motion primitive techniques.

9. Conclusions

The domain of human activity recognition (HAR) continues to grapple with several
open problems that impede its advancement. One notable challenge lies in the limited
availability of annotated data, which can potentially be mitigated by leveraging generative
AI to autonomously generate data from text descriptions, thus alleviating data scarcity
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issues. The diversification in data collection regarding the age, gender, and number of
subjects, alongside handling postural transitions, is another area that demands attention.
Moreover, despite the remarkable accuracies achieved by wearable sensor-based activity
recognition methods, their adoption among elderly individuals remains low due to reluc-
tance in wearing sensors. Moreover, the field faces hurdles in several core areas including
data collection, data preprocessing, hardware and techniques, complex activity detection,
and misalignment of activities. For instance, vision-based data, despite its larger size
requiring more processing, is often more cost-effective compared to sensor-based data,
the latter being more expensive. However, the trade-off between cost and data processing
needs is an area of ongoing discussion and research within the community. Furthermore,
the continuous evolution and expansion of HAR applications across various domains
necessitate ongoing updates and reviews of the existing literature to keep pace with the
emerging challenges and solutions. The complexity of these open problems underscores
the necessity for a multidisciplinary approach, encompassing advancements in sensor
technology, machine learning algorithms, and a deeper understanding of human behavior
and activities, to propel the field of human activity recognition forward.
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Appendix A

We present the input to the LLM. As context we provide the paper’s title concatenated
with its abstract. The rows below context are the follow-up questions we provide to the
LLM. If no answer is to be found, the model is prompted to return an N/A string as answer.

Table A1. Summary and query-response analysis of the paper on mobile convolutional neural
networks for human action recognition

Item Description

Context

“Human action recognition is a computer vision task that identifies how a person or a group
acts on a video sequence. Various methods have been proposed to address this problem
over the years; the most recent ones rely on deep-learning techniques. First, RGB video
measurements and stacks of optical flows are fed as input, and then through two-dimensional
convolutional neural networks (2D-CNNs), spatial and temporal analyses are performed.
In another line of work, several applications use 2D-CNNs for feature extraction. This way,
an image is represented via a feature vector employed to recurrent neural networks (RNNs)
for temporal analysis. Motivated by the fact that most high complexity CNNs are utilized on
human action recognition tasks and owing to the necessity for mobile implementations on
platforms with restricted computational resources, this article evaluates the performance of
four lightweight architectures. In particular, we examine how the models of certain mobile-
oriented CNNs, viz., ShuffleNet-v2, EfficientNet-b0, MobileNet-v3, and GhostNet, execute in
spatial analysis. To that end, we measure the classification accuracy on two human action
datasets, the HMDB51, and the UCF101, when the presented models have been previously
trained on ImageNet and BU101. The frameworks’ evaluation is based on the average, max
scores, and voting generated through the three and fifteen RGB frames of each video included
in the test set. Finally, via the trained mobile 2D-CNNs extracted features, RNNs performance
evaluation is also assessed where the temporal analysis is achieved.”

http://sestosenso.eu/
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Table A1. Cont.

Question Answer

What is the paper’s main contribution? evaluates the performance of four lightweight architectures

What problem is being addressed? Human action recognition

What is the input modality? RGB video measurements and 3 stacks of optical flows

How is the method evaluated? based on the average, 14 max scores, and voting

What is the methodology the authors
approach the problem with? deep-learning techniques
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