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Abstract: The present study focuses on the dry and wet end milling of three distinct Aluminum
7075 alloys: A7075, A7075–Sc (with a 0.18% Sc addition), and A7075–Li–Sc (containing 2.2% Li and
0.18% Sc additions). The main objective is to explore how cutting parameters (cutting speed and feed
rate), heat treatment, alloy composition, and cooling methods influence A lcutting force. In the initial
phase of the investigation, all three alloys underwent heat treatment. Subsequently, the machining
process centered on the softest and hardest conditions, aiming at analyzing the impact of hardness
on machinability behavior of the three studied alloys, using the same milling tool and a consistent
depth of cut under both dry and wet conditions. The investigations also highlight the role of Li and
Sc additions on the quality of surface finish, as well as burr and chip formation. In total, a sum of
108 operations have been performed on the present alloys.

Keywords: machinability; aluminum; A7075; alloying elements; heat treatment; cutting forces

1. Introduction

Three steps are involved in precipitation hardening: (i) solution heat treating; (ii) rapidly
quenching the solution heat-treated sample to a lower temperature, followed by (iii) aging
(natural aging or artificial aging at a specific temperature and for a specified duration). During
solution heat treatment, the alloy is heated to a temperature at which the alloying elements
dissolve in the alloy. To keep the alloying elements trapped in solution, the solution-treated
alloy is rapidly quenched to room temperature. Quenching is followed by the aging process,
in which dissolved alloying elements start to form fine particles, leading to an enhancement
of the alloy hardness. The main reason why these fine particles increase the alloy hardness
is that they create obstacles preventing dislocation movement. Natural aging and artificial
aging are two possible aging processes for aluminum alloys. In the natural aging of Al alloys,
precipitation takes place at room temperature, usually after a long period of time, while
artificial aging is accomplished through heating to a predetermined temperature for a certain
amount of time [1–4].

The hardness and strength of aluminum 7075 alloys can be attributed to several
strengthening mechanisms that occur during the heat treatment process, including solid
solution strengthening, precipitation hardening, grain refinement, and cold working. A
combination of these mechanisms can lead to a significant increase in the hardness and
strength of the alloy, making it suitable for high-stress applications in the aerospace, au-
tomotive, and defense industries [5,6]. Aluminum-lithium (Al-Li) alloys are a family of
lightweight alloys that have been developed to meet the high-performance requirements of
aerospace and defense applications. These alloys typically have a higher strength-to-weight
ratio and stiffness compared to conventional aluminum alloys [7]. In other words, each
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additional weight percent of lithium results in a density reduction of about 3% and an
increase in Young’s modulus of about 6%.

In the research conducted by Suresh et al. [8], it was demonstrated that the addition of
Sc and Zr elements to thermo-mechanically processed AA2195 Al-Li alloy resulted in the
formation of Al3(Sc,Zr) particles. These particles played a crucial role in grain refinement
and had a notable impact on the stability of the sub-grain structure. In addition, adding
Ag and Zn to the alloy resulted in a marked increase in the alloy strength. In the case of
Ag-containing alloys, T and η phases were observed in the microstructure. It is suggested
that the precipitation sequence can be expressed as SSS → η–type cluster → GP zone → η′

→ η → T, since Ag promotes the precipitation of the T-phase [9].
Milling is a fundamental machining process used in die, aerospace, automotive, and

machinery design, as well as in manufacturing industries, to remove metal and obtain
milled surfaces, which are widely used to mate with other parts [10]. In the milling
operation, a rotating cutting tool provides the cutting action, while the movement of the
workpiece clamped on a table performs the feed action. The shapes of milling cutters and
the number of their cutting edges (teeth) vary, depending on the application. Each tooth
cuts away an arc-shaped segment whose thickness is determined by the feed or tooth load.

Although feeds in this operation are typically light, ranging between 0.025 mm and
0.25 mm, the metal removal rate is relatively high due to the high cutting speed and the
large number of teeth involved. The output variables that are identified as dependent
variables or responses can be classified as process variables and effect variables. Process
variables emerge during the process; therefore, they are detectable and measurable only
during the machining process. Cutting force, chip formation zone temperature, and acoustic
emissions are some of the well-known outputs of this category. After machining, effect
variables can be measured for different elements, including the workpiece (dimension
accuracy, surface roughness), the tool (wear), the machine tool (increase in temperature,
wear), and the cutting fluids (increase in temperature) [11]. The use of cutting lubricants
can significantly affect the contact length and cutting forces. At very low cutting speeds,
the lubricant can prevent seizure and greatly reduce the forces. Although at higher speeds,
seizure cannot be prevented near the edge, liquid or gaseous lubricants can restrict the area
of seizure to a small region by penetrating from the periphery [12].

Another aspect to be considered is the need to establish a means to assess sustainability
with a proposed three-tiered categorization—identifying energy-efficient solutions from
energy-saving and health issues perspectives [13]. The work of Astakhov [14] explains
main areas for improving sustainability of machining operations, in terms of modeling the
cutting process and in the design of practical machining operations. Lubrication during
milling is also an area of great importance. Implementation of MQL (minimum quantity
lubrication) demonstrated an improvement in tool life and surface finish by minimizing
heat generation in the cutting zone, thereby reducing environmental issues and costs [15].
However, application of nano fluids would be difficult to employ as a sustainable coolant
from an economic point of view. Therefore, in these circumstances, the MQL/hybrid MQL
should be a strong candidate for lubrication.

The purpose of this research is to develop a comprehensive understanding of the
fundamental machining of Aluminum 7075 alloys, including A7075, A7075–Sc (with a 0.1%
Sc addition), and A7075–Li–Sc (2.2% Li and 0.18% Sc addition).

The specific objectives of this study are as follows:

(1) To investigate how precipitation hardening, with variations in aging times and tem-
peratures, and alloying with lithium affect the mechanical properties of A7075 alloys.

(2) To investigate cutting forces during the machining of A7075 alloys and analyze how
the specified inputs influence cutting forces in these specific alloys.

2. Experimental Procedure

The methodology of this study involves the use of a multi-level full factorial design
of the experiment. This study aims to investigate the effect of various factors on the
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machining of three A7075 alloys, namely, A7075, A7075-Sc, and A7075-Li-Sc. Table 1 lists
the chemical compositions of the used alloys. The alloys were subjected to solution heat
treatment at 8 h @ 47 ◦C, followed by two distinct aging heat treatments at 8 h @ 280 ◦C
and 24 h @ 120 ◦C, respectively (see Table 2, depicting the details of aging treatment). The
experiments were conducted under dry and wet milling conditions. Figure 1 depicts the
cutting tool configuration. Table 3 lists the experimental variables and their levels.

Table 1. Chemical composition (wt%) of A7075 workpiece materials.

Code Si Mg Cr Fe Cu Zn Zr Ti Li Sc Ag

A7075 0.20 2.1 0.18 0.16 1.5 5.6 - 0.03 - - --

A7075-Sc 0.11 2.8 0.16 0.05 1.5 6.6 0.3 0.16 0.06 0.12 0.27

A7075-Li-Sc 0.16 2.2 0.14 0.10 1.3 6.5 0.3 0.15 2.2 0.18 0.27

Table 2. Applied heat treatment process.

Number Solution Heat Treatment Quenching Artificial Aging

1

(8 h @ 470 ◦C) Quenched in warm water at 60 ◦C

None

2 Single aging (24 h @ 120 ◦C)

3 Single aging (8 h @ 280 ◦C)

4 Double aging (24 h @ 120 ◦C + 8 h @ 180 ◦C)

5 Double aging (8 h @ 180 ◦C + 24 h @ 120 ◦C)

6 Double aging (8 h @ 280 ◦C + 24 h @ 120 ◦C)
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Figure 1. Cutting tool specifications.

This study investigated 12 different conditions. These conditions were obtained
by using a Cartesian multiplication of three distinct variables, namely, material, heat
treatments, and dry or wet conditions, resulting in 3 × 2 × 2 = 12 unique combinations.
For each of the 12 conditions, nine tool paths were implemented, determined by varying
the cutting speed and feed rate parameters, resulting in 3 × 3 = 9 unique tool paths for
each condition. Therefore, a total of 108 experiments were conducted. Table 4 provides the
test parameters for the nine tool paths, which were repeated for each of the 12 conditions.
The dimensions of the workpiece were 23 × 75 × 100 mm.
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Table 3. Experimental variables and their levels.

Experimental Variables Level 1 Level 2 Level 3

Cutting speed (m/min) 200 400 600

Feed per tooth (mm/z) 0.05 0.1 0.15

Cooling mode Dry - Wet

Material A7075 A7075-Sc A7075-Li-Sc

Aging treatment 8 h @ 280 ◦C - 24 h @ 120 ◦C

Table 4. Cutting parameters of each condition.

Test
(Tool Path)

Cutting Speed
(m/min)

Feed Rate
(mm/tooth)

Cutting Time
(s)

1 200 0.05 4.71

2 400 0.05 2.36

3 600 0.05 1.57

4 200 0.1 2.36

5 400 0.1 1.18

6 600 0.1 0.79

7 200 0.15 1.57

8 400 0.15 0.79

9 600 0.15 0.52

Following heat treatment, the samples were mounted using an automatic mounting
press (Struers CitoPress-5, Champigny, France). The mounted samples were then subjected
to grinding (sanding) using silicon carbide waterproof papers. The order of grit sizes was
120/P120, 240/P280, 320/P400, 400/P800, and 600/P1200. The grinder used was the Pace
Technologies Nano 2000T grinder. Subsequently, 3 µm and 1 µm monocrystalline diamond
suspension from Met Lab Corporation were utilized to polish the samples, followed by a
finishing step using 0.06 µm colloidal silica blue (10 pH) from Met Lab Corporation. A load
of 100 g (0.9807 N) was applied to all samples during the measurement. Each sample was
measured at ten different points and the average was calculated as the final microhardness
value for that sample.

In total, 108 experimental tests were conducted in the context of dry and wet milling,
utilizing a 3-axis CNC machine tool featuring the following specifications: a power output
of 50 kW, a rotational speed of 28,000 rpm, and a torque of 50 Nm. Milling was performed
using uncoated carbide end milling cutting tools with a three-flute design (with z = 3) and
a 10 mm diameter. The measurement of the three cutting force components (Fx, Fy, and
Fz) was carried out during the machining process utilizing a 3-axis dynamometer (Kistler,
model 9255-B), which was mounted in the milling machine. A sampling frequency of
12 kHz was used to acquire the cutting force signals. In the cutting plane, the Kistler 9255B
three-axis dynamometer can measure forces ranging from −20 KN to 200 KN, and in the
vertical plane, it can measure forces from −10 KN to 40 KN.

3. Results and Discussion
3.1. Microhardness and Microstructural Characterization

The measured microhardness results for the A7075 alloy are summarized in Table 5.
An examination and analysis of the corresponding microstructures using SEM/EDS, as
discussed in subsequent sections, will shed further light on the reasons behind the observed
microhardness values.
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Table 5. Microhardness of alloys subjected to different heat treatments.

Heat Treatment Solution Heat Treatment Artificial Aging Alloy Type Micro-Hardness (HVN)

1

8 h @ 470 ◦C

-

A7075 113.7

A7075-Sc 149.6

A7075-Li-Sc 155.4

2
Single aging
(24 h @ 120 ◦C)

A7075 176

A7075-Sc 185

A7075-Li-Sc 198

3
Single aging
(8 h @ 280 ◦C)

A7075 62.6

A7075-Sc 79.2

A7075-Li-Sc 80.8

4
Double aging
(24 h @ 120 ◦C + 8 h @ 180 ◦C)

A7075 142.7

A7075-Sc 167.4

A7075-Li-Sc 174.8

5
Double aging
(8 h @ 180 ◦C + 24 h @ 120 ◦C)

A7075 144.8

A7075-Sc 171.9

A7075-Li-Sc 174

6
Double aging
(8 h @ 280 ◦C + 24 h @ 120 ◦C)

A7075 65.9

A7075-Sc 78.8

A7075-Li-Sc 78.7

Lithium is characterized by low density (0.534 g/cm3), compared to the density of
pure aluminum (2.7 g/cm3). Thus, the lightweight and high strength of Al-Li alloys would
enhance performance in aerospace applications [15]. Furthermore, during the applied heat
treatment processes, both alloys exhibited almost no difference in their microhardness.
When alloys were aged at 120 ◦C for 24 h, the microhardness of the base A7075 alloy
recorded 198 VHN, almost 22 units higher than that of A7075–Sc alone, due to the formation
of small, uniformly dispersed precipitates [16].

Figure 2 depicts the variation in the grain size of as-cast alloys as a function of alloy
composition. The base alloy, Figure 2a, exhibits the grain size distribution in the base
alloy A7075 (the average grain size is in vicinity of 300 µm). With the addition of 0.18%
Sc (A7075+Sc alloy), the average grain size was dropped to about 70 µm, representing a
reduction of about 75% in the grain size of the base alloy (Figure 2b). This observation
indicates the strong refining effect of Sc-rich precipitates (dispersoids) in restricting grain
growth [17–24]. Hall and Petch suggested that alloy strength (σ) varies with the inverse
square root of the grain size (d):

σ = σ0 + kd−0.5 (1)

where k is the stress required to initiate plastic flow at a grain boundary, and σ0 is the
resistance to dislocation motion [25–29].

The source of the grain-refining efficiency of L12 Al3Sc for α-Al may be explained in
terms of the identical crystal structures of Al3Sc and α-Al, in addition to the very low lattice
misfit between the two phases (~1.5%) [30,31]. Krug et al. [32] examined the distributions
of precipitates in heat-treated Al-Li-Sc and Al-Li-Sc-Yb alloys, and found that nano-sized
α-Al3(Li,Sc,Yb)(L12) precipitates were formed after isothermal aging at 325 ◦C, during
which, at times, δ’-Al3Li(L12) shells also formed on these precipitates after further aging
at 170 ◦C. Figure 2c displays the effectiveness of Sc as a grain refiner, as inferred from
the EBSD technique. The interaction between Li and Sc results in coarser grains in the
A7075+Li+Sc alloy, compared to those in A7075+Sc alloy. Figure 2d–f depict the variation
in the grain distribution as a function of the added Li and (Li+Sc). The histogram exhibits a
skewed distribution pattern towards the low values of grain size in the B alloy, followed
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by spreading across the total range when Sc is added to the Al-Li alloy, due to the Li-Sc
interaction in the A7075-Li-Sc alloy.
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Figure 3 displays the microstructure of the alloy A7075 in the as-cast condition, aged
at room temperature for 7 years (T5). In the as-cast condition, the 7075-type alloys form
several intermetallics, mainly (Fe,Cr)3SiAl12, Mg2Si, and a pseudobinary eutectic consisting
of Al and MgZn2 or Mg(Zn,Cu,Al), as shown by the white arrow in Figure 3a [33–37]. In
addition, dense precipitation is seen covering the grains, particularly in the vicinity of the
pre-existing intermetallics, moving towards the center of the grain. The high-magnification
micrograph shown in Figure 3b reveals that these particles are rather short platelets (or rods)
of 20–50 nm thickness (the inset micrograph). The EDS spectrum corresponding to the
white eutectic area in Figure 3a is presented in Figure 3c, confirming the composition of
this phase as Mg(Zn,Cu,Al).

Figure 4 represents the microstructure of the A7075+Sc alloy following aging at 120 ◦C
for 24 h (T6 temper), revealing dense precipitation of Al2Cu phase in the form of fine
spherical particles extending up to the grain boundaries (Figure 4a). Since the atomic
number of Li is 3 which is below the detection level on the SEM, only the impression of the
precipitates (black spots) can be observed as can be seen in Figure 4b. Figure 4c shows the
shape and size of δ’-Al3Li phase particles using high resolution TEM techniques, with the
formation of precipitate-free zones [38].
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Several researchers have proposed that during the age-hardening treatment, this
process follows the sequence of a saturated solid solution → GP zones → ή (MgZn2)
→ η (MgZn2). The orthorhombic S-(Al2CuMg) phase may also take place [40]. Dur-
ing the aging process, Ag addition contributes to the formation of dense fine rod-like
T1-Mg32(Al, Ag)49 phase particles. According to [41], ledges of the Ω phase could attract
Cu atoms from the surrounding matrix, resulting in the formation of the Al2Cu (Ω) crystals.
The main hardening precipitate, η’, is a metastable hexagonal phase, semi-coherent with
the Al matrix (a = 0.496 nm, c = 1.40 nm, where aAl = 0.405 nm) [42–46]. The equilibrium
phase, η, is a hexagonal phase, with a = 0.5221 nm and c = 0.8567 nm. Thus, in summary,
for higher Zn/Mg (≥2.2, at.%) alloys, the precipitation sequence may be expressed as
(SSS) → coherent GP zones → semi–coherent η′ → incoherent stable η, whereas for lower
Zn/Mg ratios (<2.2, at.%), the T phase (Mg32(Al, Zn)49) could be one of the main hardening
η phases. The Zn/Mg atomic ratio in the present alloy is about 1.9. Based on all the discus-
sion above, it is expected to observe MgZn2(η), Al2CuMg, and Al2Cu phases. Considering
the atomic numbers of the main alloying elements Mg (12, Zn:30, Cu:29), the Al2Cu phase
will be the brightest phase under the electron beam [47–53].

Figure 5 illustrates the microstructure of the A7075+Sc alloy in the T7 condition
(280 ◦C/8h). The backscattered electron image in Figure 5a shows fairly coarser precipitates
compared to those shown in Figure 4a for the same alloy in the T6 condition, causing
the observed decrease in the alloy hardness. Figure 5b is a high-magnification image of
Figure 5a, revealing the presence of (i) very thin platelets parallel to each other—orange
arrows, (ii) clusters of fine spherical particles in the vicinity of coarse particles (white
circles), and (iii) coarse particles marked by white arrows. These morphologies confirm the
coarsening by the ripening mechanism proposed by Wilhelm Ostwald in 1896 [54].
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3.2. The Statistical Analysis of Cutting Force

The evaluation of machinability often revolves around two primary criteria: cut-
ting force and surface roughness. Among these, cutting force stands out as a pivotal
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parameter for optimizing machining performance. The reduction of cutting force under
specific cutting conditions can enhance machinability significantly. Notably, a decrease
in cutting force correlates with improved dimensional accuracy and reduced tool wear
rates throughout the machining process [55]. Furthermore, it is essential to consider that
periodically varying cutting force has a direct impact on cutting heat, thereby exerting
a critical influence on tool wear and the overall quality of the machined surface. This
phenomenon is particularly relevant in milling processes, which are characterized by
multi-tooth discontinuous cutting [56–59].

There are many factors affecting cutting force. Some of these factors include alloying
elements, impurities, casting process, heat treatment, machine tool rigidity, and cutting tool
geometry. Through the cutting parameters depth of cut and feed rate, the most significant
effect on cutting force enhancement occurs, since the effective area of shear per tooth
increases with an increase in depth of cut and feed rate. An increase in cutting speed,
associated with elevated temperatures, leads to a reduction in shear strength, ultimately
resulting in a decrease in cutting force [60,61].

Hardness, a factor influenced by hardening precipitation, serves as a key determinant
of mechanical properties. It is worth noting that higher hardness levels are associated
with increased cutting forces. When processing materials with high mechanical properties,
it is common to encounter elevated cutting forces, which, in turn, can lead to higher
temperatures [61]. The incorporation of lubricants into the machining process improves
tribological performance by lowering the coefficient of friction, diminishing cutting forces,
and mitigating tool wear. This decrease in cutting force necessitates a reduced demand for
specific cutting energy, consequently lowering production costs [62,63].

3.2.1. Statistical Analysis of Cutting Force in Machining of A7075

An ANOVA analysis was conducted on the cutting-force results presented in Table 6a,b
to investigate the effects of independent variables, including feed rate, cutting speed,
microhardness, and cooling mode, on cutting force during the milling of A7075. The model
accounts for 89.9% of the variation in cutting force based on the mentioned inputs. Further
details of the ANOVA analysis are provided in Table 7. In the machining of A7075, as
depicted in Figures 6 and 7a, the feed rate exhibits the most significant positive influence
on cutting force, showing an impressive enhancement of approximately 65 N across the
range of 0.05 to 0.15 mm/th. When machining under wet conditions, there is a notable
reduction in cutting force by approximately 50 N, with all other parameters held constant,
as illustrated in Figure 7b. The use of cutting fluid in the machining process leads to a
decrease in the coefficient of friction, resulting in a reduction in cutting force. The third
parameter significantly affecting cutting force in A7075 machining is cutting speed.

As depicted in Figure 7c, when the cutting speed increased from 200 to 600 m/min,
the cutting force decreased from 156.7 to 108 N. Two primary reasons can be mentioned
to justify this phenomenon. Firstly, the higher heat generated during machining at higher
cutting speeds softens the workpiece in the cutting zone, reducing shear strength. Secondly,
at higher cutting speeds, the chip length is [64,65], resulting in a shorter actual contact
length compared to the natural contact length.

The direct impact of hardening on cutting speed is also notable. In the case of hard
A7075 with a hardness of 176 VHN, the cutting force is approximately 26 N higher com-
pared to the soft condition with a hardness of 62 VHN (see Figure 7d). In terms of the
interaction effect between the independent variables, the interaction between cutting speed
and cooling mode proved to be significant. As illustrated in Figure 8, at low cutting speeds
(200 m/min), the cutting force is approximately 100 N higher in dry machining compared to
wet machining. However, at high cutting speeds (600 m/min), there is almost no difference
in the cutting force observed between dry and wet machining conditions for A7075.
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Table 6. (a) Cutting force results of A7075 dependence on cutting speed and feed rate. (b) The details
of the ANOVA parameters.

(a)

Material Test Number Cutting Speed
(m/min)

Feed
Rate

(mm/tooth)

F (N)

Softest
(62 VHN)

Hardest
(176 VHN)

Dry Wet Dry Wet

A7075

1

200

0.05 61.0 73.0 203.8 261.1

2 0.10 106.4 112.5 149.4 233.6

3 0.15 149.0 154.8 200.4 233.8

4

400

0.05 62.3 81.6 80.3 132.7

5 0.10 103.4 118.0 121.2 150.9

6 0.15 145.6 164.1 172.0 184.5

7

600

0.05 53.9 73.5 73.7 88.1

8 0.1 90.8 119.2 114.8 125.0

9 0.15 124.4 165.7 155.7 170.2

(b)

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: Feed rate 4.56841 1 4.56841 216.82 0.0000

B: Cutting speed 0.219268 1 0.219268 10.41 0.0037

C: Hardness 1.13849 1 1.13849 54.03 0.0000

D: Cooling mode 1.88604 1 1.88604 89.51 0.0000

AA 0.0347161 1 0.0347161 1.65 0.2121

AB 0.007921 1 0.007921 0.38 0.5458

AC 0.360885 1 0.360885 17.13 0.0004

AD 0.000442042 1 0.000442042 0.02 0.8861

BB 0.0351125 1 0.0351125 1.67 0.2096

BC 0.0000601667 1 0.0000601667 0.00 0.9578

BD 0.000988167 1 0.000988167 0.05 0.8305

CD 0.464669 1 0.464669 22.05 0.0001

Total error 0.484606 23 0.0210698

Total (corr.) 9.20161 35

Table 7. The cutting force results obtained from A7075-Sc machining.

Material Test Number
Cutting Speed

(m/min)

Feed
Rate

(mm/tooth)

F (N)

Softest (79 VHN) Hardest (185 VHN)

Dry Wet Dry Wet

A7075-Sc

1

200

0.05 124.3 129.9 133.3 82.3

2 0.1 146.0 111.6 151.8 120.9

3 0.15 163.0 119.9 191.1 162.1

4

400

0.05 96.0 101.3 117.8 91.4

5 0.1 106.1 111.2 144.5 118.2

6 0.15 135.5 121.7 173.0 162.2

7

600

0.05 75.9 82.2 109.8 80.9

8 0.1 111.4 93.7 127.3 100.9

9 0.15 117.9 112.6 185.8 155.9
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Figure 7. Main effects plot for cutting force in machining of A7075: (a) feed rate, (b) cooling mode,
(c) cutting speed, (d) hardness.
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This finding reveals that the use of cutting fluid at low speeds is beneficial, significantly
reducing cutting forces. However, in high-speed machining, wet machining has minimal im-
pact on reducing cutting forces. Figure 9 depicts a 3D surface plot illustrating the cutting force
during the machining of A7075. In dry machining, cutting force exhibits greater sensitivity to
variations in cutting speed. It can also be observed that, overall, the level of cutting force is
significantly lower in wet conditions, particularly when machining a harder alloy.
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Figure 9. Three-dimensional surface plots of cutting force in different hardness and cooling modes
for A7075: (a) low hardness-dry, (b) low hardness-wet, (c) high hardness-dry, (d) high hardness-wet.
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From the results visually illustrated in Figure 9, the conditions associated with both
the highest and lowest cutting forces can be observed. In A7075, with a hardness of 62 VHN,
the highest cutting force (almost 200 N) was recorded during machining with a feed rate
of 0.15 mm/th and a cutting speed of 200 m/min in dry conditions, and the lowest force
was almost 54 N, achieved during wet machining with a feed rate of 0.05 mm/th and a
cutting speed of 600 m/min. In terms of A7075 with hardness 176 VHN the highest and
lowest amount of cutting force has been recorded in the exact same conditions with 73 N
and 233 N, respectively. This observation is made while considering the effects of feed rate
(f ), cutting speed (v), hardness (h), cooling mode (c), and the interaction between cutting
speed and cooling mode.

3.2.2. The Statistical Analysis of Cutting Force in Machining of A7075-Sc

The cutting force results obtained from A7075-Sc machining are presented in Table 7.
The R-squared value obtained from the statistical analysis on the cutting force results is
93.4%, indicating that the model explains nearly 93% of the variation in cutting force based
on the examined variables. The details of the ANOVA parameters are presented in Table 8
shows the details of the ANOVA parameters.

Table 8. The details of the ANOVA parameters.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: Feed rate 13,804.8 1 13,804.8 156.82 0.0000

B: Cutting speed 3311.15 1 3311.15 37.61 0.0000

C: Hardness 3383.36 1 3383.36 38.43 0.0000

D: Cooling mode 3433.96 1 3433.96 39.01 0.0000

AA 266.805 1 266.805 3.03 0.0951

AB 203.776 1 203.776 2.31 0.1418

AC 2679.71 1 2679.71 30.44 0.0000

AD 76.3267 1 76.3267 0.87 0.3614

BB 14.8512 1 14.8512 0.17 0.6851

BC 6048.37 1 6048.37 39.79 0.0000

BD 244.482 1 244.482 1.61 0.2174

CD 4578.78 1 4578.78 30.12 0.0000

Total error 3496.59 23 152.025

Total (corr.) 70,993.4 35

In A7075-Sc machining, the feed rate stands out as having the most significant impact
on cutting force, as depicted in the Pareto chart (Figure 10). Following the feed rate in
order of significance are cooling mode, hardness, and cutting speed, each of which has
approximately half the effect of feed rate. The direct effect of increasing the feed rate on
cutting force, as shown in Figure 11, resulted in an increase of nearly a 48 N in force when
the feed rate was raised from 0.05 to 0.15 mm/th. Both the Pareto chart and the main effect
plot indicate that using a high level of cutting fluid in machining A7075-Sc is beneficial
for reducing cutting force. According to Figure 10, this reduction was approximately 20 N
when machining under wet conditions compared to dry machining.

Alloy hardness significantly affected cutting force, with machining the softest condi-
tion of A7075-Sc (achieved by heat treating for 8 h at 280 ◦C) requiring nearly 20 N less
cutting force compared to the hardest alloy (heat treated for 24 h at 120 ◦C), with a cutting
force of 129 N. As expected, cutting speed also had a significant impact on reducing cutting
force. Increasing the cutting speed from 200 to 600 m/min resulted in a reduction in cutting
force from 132.5 to 109 N.
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Figure 11. Main effects plot for cutting force in machining of A7075-Sc: (a) feed rate, (b) cooling
mode, (c) hardness, (d) cutting speed.

The interaction plot in Figure 11 highlights the amplified impact of feed rate under the
high-hardness condition of the alloy. As shown in the plot, machining both hardness levels
at a low feed rate (0.05 mm/th) required approximately 100 N of cutting force. However,
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when machining the hard alloy with the high feed rate (0.15 mm/th), it needed more than
40 N of additional cutting force compared to machining the soft alloy, which required
nearly 130 N of cutting force. The interaction plot in Figure 12 highlights the amplified
impact of feed rate in high hardness condition of the alloy. As shown in the plot, machining
both hardness levels at a low feed rate (0.05 mm/th) required approximately 100 N of
cutting force.
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Figure 12. Interaction plot for cutting force in A7075-Sc machining.

One point that can be drawn from the 3D surface plots (Figure 13a,b) is that the
negative effect of cutting speed is more pronounced in the soft alloy, especially in dry
condition. Although the effect of cutting speed is not as significant in hard alloy machining,
its impact is still noticeable in dry machining. The 3D surface plots (Figure 13a,b) also show
that the negative effect of cutting speed is more pronounced in the soft alloy, especially
under dry conditions. Although the effect of cutting speed is not as significant in hard alloy
machining, its impact is still noticeable, particularly in dry machining.

The heightened impact of feed rate on cutting force in the hard A7075-Sc is evident in
the 3D surface plots (Figure 13c,d), where the steep inclination of the plot sharply increases
with an increase in feed rate. The highest cutting force in the machining of soft A7075-Sc
with a hardness of 79 VHN was associated with the highest feed rate (0.15 mm/th) and the
lowest cutting speed (200 m/min) in dry conditions, resulting in 163 N. Conversely, the
lowest cutting force, approximately 80 N, was observed in both dry and wet machining,
with the lowest feed rate (0.05 mm/th) and the highest cutting speed (600 m/min).

The machining of the hardest A7075-Sc alloy, with a hardness of 185 VHN, yielded
the highest cutting force when using the highest feed rate (0.15 mm/th) and the lowest
cutting speed (200 m/min) in dry conditions, resulting in a force of 191 N. In contrast, the
lowest cutting force (81 N) was observed during wet machining with the lowest feed rate
(0.05 mm/th) and the highest cutting speed (600 m/min). It is worth noting that using
the same cutting parameters (cutting speed and feed rate) in dry machining resulted in a
force of nearly 110 N. This highlights the remarkable impact of wet machining on the hard
A7075-Sc alloy.

To establish a linear equation between the significant parameters and their interactions
affecting cutting force, we selected the parameters highlighted in the Pareto chart (Figure 10).
This selection still resulted in a significant explanation of cutting force variation, with an
R-squared value of 88.8%.
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Figure 13. Three-dimensional surface plots of cutting force in different hardness and cooling modes for
A7075-Sc: (a) low hardness-dry, (b) low hardness-wet, (c) high hardness- dry, (d) high hardness-wet.

3.2.3. Statistical Analysis of Cutting Force in Machining of A7075-Li-Sc

The cutting force results obtained from the A7075-Li-Sc alloy machining is presented
in Table 9. An ANOVA analysis was conducted on the cutting force results obtained from
the machining of A7075-Li-Sc, which are presented in Table 10. This analysis was carried
out to investigate the impact of the independent variables, including feed rate, cutting
speed, microhardness, and cooling mode, on cutting force. The model successfully explains
94.8% of the variations in cutting force attributed to these input factors.

Table 9. Cutting force results for A7075-Li-Sc dependence on cutting speed and feed rate.

Material Test Number
Cutting Speed

(m/min)

Feed
Rate

(mm/tooth)

F (N)

Softest (81 VHN) Hardest (198 VHN)

Dry Wet Dry Wet

A7075-Li-Sc

1

200

0.05 133.4 135.7 171.4 95.3

2 0.1 125.5 134.0 182.1 133.1

3 0.15 135.4 148.1 204.2 170.0

4

400

0.05 90.8 97.9 125.7 93.7

5 0.1 109.3 113.4 158.1 131.2

6 0.15 133.4 109.4 195.6 169.8

7

600

0.05 61.1 64.1 109.5 82.6

8 0.1 100.9 85.3 152.2 128.4

9 0.15 147.5 113.4 204.1 178.4
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Table 10. The A7075-Sc-Li ANOVA table for cutting force.

Source Sum of Squares Df Mean
Square F-Ratio p-Value

A: Feed rate 17,501.4 1 17,501.4 161.48 0.0000

B: Cutting speed 4836.52 1 4836.52 44.62 0.0000

C: Hardness 11,620.8 1 11,620.8 107.22 0.0000

D: Cooling mode 3528.36 1 3528.36 32.55 0.0000

AA 56.0035 1 56.0035 0.52 0.4795

AB 2606.1 1 2606.1 24.05 0.0001

AC 2394.0 1 2394.0 22.09 0.0001

AD 3.01042 1 3.01042 0.03 0.8691

BB 268.733 1 268.733 2.48 0.1290

BC 803.884 1 803.884 7.42 0.0121

BD 6.72042 1 6.72042 0.06 0.8056

CD 2246.76 1 2246.76 20.73 0.0001

Total error 2492.82 23 108.384

Total (corr.) 48,365.2 35

Similar to two other alloys in the machining of A7075-Li-Sc, feed rate emerges as the
most significantly influential factor, affecting the variation in cutting force. This observation
is evident from the Pareto chart depicted in Figure 14. According to the main effect plot
(Figure 15a), machining with the high feed rate (0.15 mm/th) resulted in a cutting force
approximately 54 N higher compared to machining with a low feed rate (0.05 mm/th),
where the cutting force measured 101.2 N. The hardness in the machining of A7075-Sc-Li
had a more significant effect on the cutting force compared to the machining of A7075-Sc.
As seen in Figure 14, the cutting force in machining the soft alloy with a hardness of 81 VHN
and the hard alloy with a hardness of 198 VHN was 107.6 and 143.6 N, respectively.
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Figure 14. Pareto chart of cutting force for A7075–Li–Sc.
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Figure 15. Main effects plot for cutting force in machining of A7075–Li-Sc: (a) feed rate, (b) hardness,
(c) cutting speed, (d) cooling mode.

When comparing the cutting forces in the machining of A7075-Sc and A7075-Sc-Li, it
becomes evident that the effect of hardness between the hard and soft conditions on cutting
force is more pronounced in A 7075-Li–Sc. This is attributed to the presence of lithium in
the alloy structure, which increases its hardness during heat treatment for 24 h at 120 ◦C.
As shown in Figure 15b,c, the cutting forces are nearly identical under soft conditions in
both alloys, with A7075-Sc and A7075-Li-Sc having similar hardness values of 81 VHN
and 79 VHN, respectively. However, in the machining of hard alloys, the cutting force is
approximately 14 N higher in A7075-Li-Sc (198 VHN) compared to A7075-Sc (185 VHN).

Both cutting speed and the use of cutting fluid in machining had a significant impact
on reducing cutting force. As depicted in Figure 15c, machining this alloy at 600 m/min
resulted in a cutting force of 117.2 N, while machining at 200 m/min led to a cutting force
of 145.6 N. As depicted in Figure 15d, employing wet machining for A7075-Li-Sc led to
a reduced cutting force compared to dry machining, with cutting forces of 115.7 N and
135.5 N, respectively.

Interestingly, the feed rate, hardness, cutting speed, and cooling mode had a more
significant impact on the variation of cutting force compared to their interactions. The
interaction between feed rate and cutting speed had a positive and significant effect on
cutting force. This implies that increasing the feed rate had a more pronounced effect on
the variation of cutting force when the cutting speed was higher. As shown in Figure 16a,
while the cutting force remained the same at the high feed rate of 0.15 mm/th for both high
and low feed rates, in the case of the low feed rate, machining at 600 m/min resulted in a
nearly 50 N lower cutting force compared to machining at 200 m/min. In the context of
the interaction between feed rate and hardness, as illustrated in Figure 16b, the effect of
feed rate on cutting force was more pronounced in harder workpieces. At a low feed rate
(0.05 mm/th), the cutting force in machining the alloy with a hardness of 198 VHN was
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approximately 20 N higher than that for the alloy with a hardness of 81 VHN. However, this
difference increased to 60 N when machining with a feed rate of 0.15 mm/th. In Figure 16d,
it is evident that the cutting force decreased less than 20 N when cutting speed increased
from 200 to 600 m/min in the hard alloy (198 VHN), while this decrease in the soft sample
(81 VHN) was approximately 40 N.
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Figure 16. Interaction plot for cutting force in A7075–Li-Sc machining: (a) feed rate-cutting speed,
(b) feed rate-hardness, (c) hardness-cooling mode, (d) cutting speed-hardness.

Although the cutting force was higher in the harder workpiece during machining of
A7075-Li-Sc, machining in dry conditions intensified this effect compared to wet machining,
as depicted in Figure 16c. High-speed machining of this alloy reduces cutting force in
both hard and soft workpieces, with a more substantial reduction observed in the soft
material. As observed in the 3D surface plots (Figure 17a,b), the cooling mode’s effect on
cutting force was not significant in the soft workpiece of A7075-Li-Sc. Alternatively, when
comparing Figure 18c,d, the importance of utilizing cooling fluid became apparent during
the machining of the hard A7075-Li-Sc alloy.

Based on 3D surface plots, the effect of feed rate on cutting force in the soft condition
was minimal, but a significant reduction in cutting force occurred with an increase in cutting
speed, especially at lower feed rates. This highlights the significant impact of the interaction
between feed rate and cutting speed. While the feed rate had an insignificant effect on
cutting force during the machining of the soft alloy, it displayed a much more pronounced
impact on cutting force in the case of the hard A7075-Li-Sc alloy. This underscores the
positive effect of the interaction between feed rate and hardness.
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Figure 17. Three-dimensional surface plots of cutting force in different hardness and cooling modes for
A7075-Li-Sc: (a) low hardness-dry, (b) low hardness-wet, (c) high hardness- dry, (d) high hardness-wet.
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The minimum cutting force level achieved during the machining of A7075-Li-Sc was
observed when machining the soft alloy under both dry and wet conditions with the lowest
feed rate (0.05 mm/th) and highest cutting speed (600 m/min), resulting in a cutting force
of approximately 63 N. The maximum cutting force level achieved during the machining
of A7075-Li-Sc was observed when machining the hard alloy under dry conditions, with
the highest feed rate (0.15 mm/th) and highest cutting speed (600 m/min), resulting in a
cutting force of approximately 204 N. While Figure 18c suggests that the maximum force
occurred at a cutting speed of 600 m/min, the results in table (Table 10) reveal that the
exact same cutting force was achieved with the highest feed rate and the lowest cutting
speed (200 m/min). This is due to the insignificant effect of cutting speed on cutting force
at high feed rates. To establish a linear equation representing the relationship between
significant parameters and their interactions affecting cutting force, we specifically selected
the parameters highlighted in the Pareto chart. This selection explains the variation in
cutting force, yielding an R-squared value of 94.1%.

3.3. Comparative Analysis of the Effects of Added Elements

It has been observed that the feed rate is the most influential factor in controlling the
cutting force for each of the A7075-based alloy materials tested. In fact, the cutting force is
known to be governed by the following equation:

F = Ks·(Ac) = Ks· f ·d (2)

where Ks (N/mm2) is the specific cutting force, Ac (mm2) is the chip cross-section, f
(mm/tooth) is the feed rate, and d (mm) is the depth of cut. The specific cutting force of
the material is a property that depends on hardness and microstructure. Therefore, it is
important to examine the effect of the feed rate and hardness and their interactions on the
recorded cutting forces.

Table 11 summarizes the factors and interactions that influence the cutting forces for
each material. As indicated, the feed rate is the most influential parameter, followed by hard-
ness for the A7075-Li-Sc alloy, whereas the other two alloys/materials are most influenced
by the cooling mode. Some strong interactions with hardness are also present: the inter-
action with the feed (f × h) and the interaction with the cooling mode (h × c). The harder
materials require higher cutting forces, regardless of the feed rate used (Figures 12 and 16b).
The increase in feed rate will, of course, increase the cutting force, as per Equation (2).
The cutting speed held the third or fourth position of influence, but its interactions with
hardness and cooling mode were not influential, except in the case of the A7075 base alloy.

Figure 18 compares the effects of feed rate, hardness, and cooling mode on each
alloy material tested when using a low cutting speed of 200 m/min. For a high feed rate
(0.15 mm/tooth), the harder materials led to higher cutting forces (Figure 18a,b), with the
exception of the base alloy (A7075), for which higher forces were recorded when the alloy
was milled in its softer condition, corresponding to a hardness of 62 VHN, as seen from
Figures 18 and 19. This behavior could be related to the chip formation and possibly to the
presence of temporal build-up edges.

Figure 19 compares the cutting forces obtained when milling the tested alloys using a
moderate feed rate of 0.10 mm/tooth. The use of a higher speed (600 m/min) reduced the
cutting force requirements (Figure 19c,d) from that required with the use of low cutting
speed, as observed in Figure 19a,b. The heat associated with the use of high cutting speed is
very likely to have softened the materials. In addition, the use of a coolant further reduced
the cutting force slightly, as observed from a comparison of Figure 19c,d. This would be the
result of the chips being flushed away from the cutting zone, thus avoiding chip recutting.
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Table 11. The most influential factors for the A 7075 materials investigated (1—most influential, 10—least
influential; * indicates non-statistically significant factor or interaction at 95% confidence interval).

Parameters and Interactions Material

A7075 A7075-Sc A7075-Li-Sc
Feed rate: f 1 1 1

Cutting speed: V 3 4 3
Hardness: h 5 3 2

Cooling mode: c 2 2 4
Interaction: speed × cooling mode: V × c 4 8 * 9 *

Interaction: speed × hardness: V × h 9 * 7 8
Interaction: feed rate × speed: f × V 6 9 * 5

Interaction: feed rate × cooling mode: f × c 7 10 * 10 *
Interaction: hardness × cooling mode: h × c 8 * 6 7

Interaction: feed rate × hardness: f × h 10 * 5 6
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3.4. Surface Roughness

In this section, examples of roughness profiles and burr formation taken from the
A7075 base alloy (treatment #1, Table 6) and the A7075-Li-Sc alloy (treatment #9, Table 9) un-
der dry condition milling will be reviewed (cutting forces are 60 N and 200 N, respectively).
Figure 20a depicts the profile heights of the machined surface of A7075 alloy (cutting force
of about 60 N). As can be seen, the signals are very close to each other, with irregular heights
and bottoms (with a maximum height of 2 µm). However, the profile obtained from the
A7075-Li-Sc alloy (with cutting forces of about 200 N—Figure 20b) reveals rather systematic
cycles with a relatively maximum height of 3 µm, typical of hard metals. Occasionally,
when the tool hits a defected area, a negating long peak can be clearly observed (Figure 20c).
Figure 21 is an example of the effect of the interaction between feed rate and alloy hardness
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on the alloy surface roughness, represented by the corresponding increase in the value of
Ra (average heights in Figure 20).
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(c) A7075 alloy exhibiting a surface defect. Numbers represent the cutting forces.

Figure 22a reveals the machined surface of A7075 alloy (60 N), showing the traces of the
machining tool (note the presence of a surface defect in the white circle), whereas Figure 22b
depicts the 3D X-ray surface topography of Figure 22a. As can be seen, the machining
marks are rather shallow. Increasing the cutting force to 200 N (A7075-Li-Sc alloy) resulted
in an increase in the surface roughness (Figure 22c). However, no surface damage has been
reported, as confirmed from the X-ray 3D surface topography displayed in Figure 22d.
According to Hamed et al. [65,66], the addition of copper to aluminum-based alloys leads
to a better surface finishing compared to Al-Si alloys, which may explain the sluggish
response of the surface of the present alloys to machining.
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3.5. Burr and Chip Formation

The machinability of a certain material is evaluated based on one or more of the
following factors: (a) tool life, (b) cutting forces, (c) chip formation, and (d) the quality
of the machined surface. In the following sections, the machinability of aluminum alloys
is explained by referring to the above-mentioned machinability criteria [67]. According
to Songmene et al. [68], burrs forming during machining are defined as an extension of
the material beyond the workpiece edges. These extensions should be limited rather than
deburring them by applying a subsequent operation [69,70].
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In the present work, the debris is separated from the edge of the workpiece (positive
burr), as demonstrated in Figure 23, showing examples of positive burr formation for both
workpieces. In all alloys studied, the chips maintained a spiral form with shiny surfaces
and no sign of burning. Such chips can be seen in Figure 24a. However, due to the high
strength of A7075-Li-Sc alloy, a few cracks were observed (see white arrows). Additionally,
the edges are clearly rougher (white arrow), compared to those obtained from the base
alloys (Figure 24c).
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Figure 23. Burr forms: (a) A7075 alloy-60 N, (b) A7075-Li-Sc alloy-200 N. Numbers represent cutting
forces- White circles point to the separation of burr from the workpiece.
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Figure 24. Chips’ shape: (a,b) base A7075 alloy (60 N) and (c,d) A7075-Li-Sc alloy (200 N). Numbers
represent cutting forces. Black circle in (d) highlights fracture of the chips.
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4. Conclusions

Based on the results described in the present work, the following conclusions may
be drawn:

• The feed rate has the most significant effect on the cutting force in all the studied
alloys, with a more pronounced impact observed in the A7075 alloy under wet
machining conditions.

• As for the A7075-Li and A7075-Li-Sc alloys, the impact of feed rate was more significant
in workpieces with high hardness, i.e., aged at 120 ◦C/24 h.

• Wet machining significantly reduces the cutting force, with a more pronounced effect
on harder materials, regardless of their composition.

• Dry machining yields satisfactory results when the alloys are in their soft conditions
(i.e., aged at 280 ◦C/8 h, in particular for the A7075-Li-Sc alloy).

• It is recommended that the T6 heat treatment process (120 ◦C/24 h) be applied to the
machined parts to enhance their hardness, which would significantly optimize their
machinability characteristics.

• A practical conclusion drawn from the cutting force analysis is that, while increasing
cutting speed generally reduces cutting force, this trend is more pronounced at lower
feed rates for all alloys, at different levels.

• The implication of selecting lower feed rates and higher cutting speeds for the machin-
ing of these alloys not only reduces the cutting force but also maintains high material
removal rates, making it an advantageous choice.
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