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Abstract: Path planning is one of the most essential parts of autonomous navigation. Most existing
works are based on the strategy of adjusting angles for planning. However, drones are susceptible
to collisions in environments with densely distributed and high-speed obstacles, which poses a
serious threat to flight safety. To handle this challenge, we propose a new method based on Multiple
Strategies for Avoiding Obstacles with High Speed and High Density (MSAO2H). Firstly, we propose
to extend the obstacle avoidance decisions of drones into angle adjustment, speed adjustment, and
obstacle clearance. Hybrid action space is adopted to model each decision. Secondly, the state space of
the obstacle environment is constructed to provide effective features for learning decision parameters.
The instant reward and the ultimate reward are designed to balance the learning efficiency of decision
parameters and the ability to explore optimal solutions. Finally, we innovatively introduced the
interferometric fluid dynamics system into the parameterized deep Q-network to guide the learning
of angle parameters. Compared with other algorithms, the proposed model has high success rates
and generates high-quality planned paths. It can meet the requirements for autonomously planning
high-quality paths in densely dynamic obstacle environments.

Keywords: hybrid action space; path planning; obstacle avoidance decision-making; interfered fluid
dynamical system; deep reinforcement learning

1. Introduction

As a critical technology reflecting the autonomous control capability of drones, the
essence of path planning is to design a collision-free optimal path in the three-dimensional
space environment from the starting position to the destination [1]. With the continuous
development of air combat information technology, the airspace environment of drones
is becoming increasingly complex. This complexity is reflected in the dense distribu-
tion of and dynamic changes in obstacles. The complex airspace environment presents
significant challenges to the safety of drone flights. It is crucial to achieve autonomous
obstacle-avoidance decision-making for drones to enhance the intelligent decision-making
capabilities of control systems.

At present, in the field of path planning research, scholars from various countries
are concentrating on improving the efficiency, completeness, and optimality of search
paths. The achievements made are mainly divided into graph search algorithms [2–7],
fluid/potential field algorithms [8–14], heuristic algorithms [15–19], and artificial intelli-
gence learning algorithms. Graph search is the most effective search method for finding
the shortest path in the static road network. Reference [5] used the Dijkstra algorithm to
implement real-time path planning by defining the interest points of obstacles. However,
path planning cannot be efficiently performed for dynamic obstacles. Fluid/potential field
algorithms can generate a smooth virtual field based on the position of a target and the
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distribution of obstacles. The algorithms offer clear advantages in the smooth control of
path planning and are widely utilized. Reference [11] introduced virtual sub-targets into an
artificial potential field to achieve reasonable obstacle avoidance in complex environments.
However, the algorithm lacks global information, making it only suitable for obstacle
avoidance in local space. Reference [17] proposed a sand cat algorithm with learning
behavior, which enables the UAV to plan a safe and feasible path at low cost. However,
heuristic algorithms are typically suitable for simple or small environments. Their search
efficiency decreases when the planning environment is complex, making it easy to be-
come trapped in local optimal solutions. Observing that the path planning problem is a
sequential decision-making problem, researchers turn to reinforcement learning (RL)-based
methods [20–22]. Reference [22] built a maneuvering decision model using Q-learning and
realized independent path planning in simulation environments. By integrating deep learn-
ing technology with reinforcement learning, deep reinforcement learning (DRL) [23–31] can
acquire knowledge from the interaction between agents and the environment using neural
networks. This approach is more closely aligned with the essence of biologic learning and
can cope with complex and dynamic airspace environments. In addition, based on the non-
linear learning ability of neural networks, DRL can effectively extract useful features from
high-dimensional data, such as continuous historical trajectory information of obstacles
and the attributes of obstacles affecting the effectiveness of path planning. Reference [26]
achieved autonomous navigation of drones in a multi-obstacle environment based on the
twin delayed deep deterministic policy gradient (TD3) network. Reference [27] proposed
the construction of sparse rewards to achieve automatic obstacle avoidance for drones
based on the asynchronous advantage actor–critic (A3C) network. Reference [28] utilized
the Q function of enhanced dueling double deep Q-networks (D3QN) with priority to
implement UAV path planning in dynamic scenarios.

However, in the above research, the path planning environment is relatively simple.
When the airspace environment of the drone is extremely complex, such as conducting
reconnaissance, interpenetration, and other tasks in air combat, the obstacles may include
vehicle-mounted phased array radar, anti-aircraft guns, electronic warfare aircraft, and
other aircraft with striking capability. These obstacles are characterized by a highly dense
distribution and high-speed dynamics. In such complex dynamic environments, it is chal-
lenging to plan safe routes effectively by relying solely on the decision of angle adjustment
to avoid obstacles. Therefore, this paper aims to enhance the obstacle-avoidance decision-
making of drones in complex airspace environments. This is achieved by adjusting the
flight speed or direction or removing obstacles that significantly impact the quality of path
planning in order to improve autonomous route planning capabilities.

Compared to discrete action spaces or continuous action spaces, hybrid action spaces
can better describe complex problems by combining decision variables from multiple di-
mensions. This flexibility makes hybrid action spaces have more practical significance.
In response to the diverse obstacle-avoidance decisions and their unique descriptive pa-
rameters, the hybrid action space can more effectively describe this situation, providing
a research foundation. In addition, some scholars have developed deep reinforcement
learning networks for hybrid action learning [32,33], which have been widely used in
various decision-making problems such as games [34,35] and resource management [36,37].

Therefore, taking deep reinforcement learning as the core technical approach and
analyzing the motion rules of drones, this paper proposes the Multiple Strategies for
Avoiding Obstacles with High Speed and High Density (MSAO2H) model inspired by
hybrid action space. The model aims to meet the requirements of autonomy and high
quality in path planning for drones. The main contributions of this paper are:

(1) We propose three types of obstacle-avoidance decisions for drones. This is the first
study on obstacle avoidance using three decisions: adjusting angles, adjusting speed, and
obstacle clearance. Based on the hybrid action space, discrete obstacle-avoidance decisions
and continuous action parameters are combined to improve the efficiency of path planning.
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(2) In order to improve the learning efficiency of angle parameters, the interfered
fluid dynamical system (IFDS) is innovatively introduced in the training process of the
parametric deep Q network (PDQN). The model combines the advantages of PDQN in
autonomous learning and IFDS in generating high-quality paths in complex dynamic
obstacle environments, thereby enhancing the quality of path planning.

(3) Random environments with densely distributed and high-speed obstacles are
designed in the GYM platform. The neural network is used to explore the interaction law
between the drone and obstacle environments. The validity of the proposed method is
verified in the scenarios.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
problem of path planning for drones. Section 3 introduces the relevant theories. Section 4 in-
troduces the proposed method. Section 5 shows the simulation experiments and discussion.
Section 6 presents the conclusions of this study.

2. Description of the Obstacle Environments

The complexity of the airspace environment is mainly reflected in the dense distribu-
tion of and dynamic changes in obstacles. Therefore, the obstacles in airspace are equivalent
to moving spheres with a large radius in this paper, as shown in Equation (1) [38]:

Γ(ξ) =
(

x− x0

Robs

)2
+

(
y− y0

Robs

)2
+

(
z− z0

Robs

)2
(1)

where ξ = (x, y, z) represents the position of the drone, (x0, y0, z0) represents the cen-
ter point coordinates of the obstacle, and Robs ∈ [2500, 8500] m represents the radius of
the obstacle.

In addition, we simulated the trajectories of obstacles through four different motion
modes: static obstacles (Model 0), uniform linear motion (Model 1), horizontal uniform
circular motion (Model 2), and serpentine motion (Model 3), whose motion laws are
illustrated in Figure 1.
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Figure 1. Obstacle-avoidance decision space. (a) Model 1; (b) Model 2; (c) Model 3.

Based on the characteristics of obstacles, the blue dot in Figure 2 represents the starting
point of the drone, which is fixed at [0, 0, 10,000]. The magenta dot represents the goal
point of the drone, which is fixed at [10,000, 10,000, 20,000]. The initial positions of multiple
obstacles are randomly simulated in the airspace range of 100× 100× 30 km3. The number
of obstacles N is [8, 25]. We introduced noise to simulate the motion uncertainty of obstacles,
making the simulated obstacles closer to those in the real world.



Drones 2024, 8, 205 4 of 21Drones 2024, 8, x FOR PEER REVIEW 4 of 22 
 

 
Figure 2. Schematic diagram of dynamic obstacle environment. 

In addition, the quality of path planning needs to be evaluated from the aspects of 
path length pP , tortuosity pC , and relative distance to the nearest obstacle pD . When 

pP   is smaller, pC   is smaller, and pD   is farther, the comprehensive quality of the 
planned path is better, enabling it to better fulfill the high-quality planning requirements 
for paths in complex obstacle environments. The corresponding calculation formulas are 
as follows: 

-1
2 2 2

1 1 1
1

( ( ) - ( )) ( ( ) - ( )) ( ( ) - ( ))
N

p n n n n n n
n

P p x p x p y p y p z p z+ + +
=

= + +  (2) 

2

1 1 2 1 1 2
n 1

acos( )/( )
N

p n n n n n n n nC P P P P P P P P
−

+ + + + + +
=

= × ×
   

 (3) 

2 2 2min( ( ( ) - ( )) ( ( ) - ( )) ( ( ) - ( )) ( ))p n i n i n i obsD P x O x P y O y P z O z R i= + + −  (4) 

where iO  is the position of the i-th obstacle, ( )obsR i  is the corresponding influence ra-

dius, and ( ( ), ( ), ( ))n n n np p x p y p z=  is the position of the n-th route node. 
This research focuses on how one can autonomously plan high-quality paths in re-

sponse to the large number of obstacles in the airspace and the dynamic changes in their 
positions. 

3. Related Theories 
3.1. PDQN 

The PDQN is a kind of value-based reinforcement learning [39], which provides a 
general framework for effectively solving hybrid action space problems. As shown in Fig-
ure 3,the hybrid action space is represented as a tuple ( , )k x , where discrete actions are 

selected from a finite set { }1 2, , ,d kk k k= …  and each action dk∈  has a set of real-val-

ued continuous parameters am
ax ⊆  [40]. 

1 2 3

Ⅱ Ⅱ

Discrete Action Selection

Continuous Parameter Selection

 
Figure 3. Schematic diagram of hybrid action space structure. 

Figure 2. Schematic diagram of dynamic obstacle environment.

In addition, the quality of path planning needs to be evaluated from the aspects of
path length Pp, tortuosity Cp, and relative distance to the nearest obstacle Dp. When Pp is
smaller, Cp is smaller, and Dp is farther, the comprehensive quality of the planned path
is better, enabling it to better fulfill the high-quality planning requirements for paths in
complex obstacle environments. The corresponding calculation formulas are as follows:

Pp =
N−1

∑
n=1

√
(pn+1(x)− pn(x))2 + (pn+1(y)− pn(y))

2 + (pn+1(z)− pn(z))
2 (2)

Cp =
N−2

∑
n=1

acos(
−−−−→
PnPn+1 ×

−−−−−→
Pn+1Pn+2)/(

∣∣∣−−−−→PnPn+1

∣∣∣× ∣∣∣−−−−−→Pn+1Pn+2

∣∣∣) (3)

Dp = min(
∣∣∣∣√(Pn(x)−Oi(x))2 + (Pn(y)−Oi(y))

2 + (Pn(z)−Oi(z))
2
∣∣∣∣− Robs(i)) (4)

where Oi is the position of the i-th obstacle, Robs(i) is the corresponding influence radius,
and pn = (pn(x), pn(y), pn(z)) is the position of the n-th route node.

This research focuses on how one can autonomously plan high-quality paths in
response to the large number of obstacles in the airspace and the dynamic changes in
their positions.

3. Related Theories
3.1. PDQN

The PDQN is a kind of value-based reinforcement learning [39], which provides a
general framework for effectively solving hybrid action space problems. As shown in
Figure 3, the hybrid action space is represented as a tuple (k, x), where discrete actions
are selected from a finite set Ad = {k1, k2, . . . , kk} and each action k ∈ Ad has a set of
real-valued continuous parameters xa ⊆ Rma [40].
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The Bellman equation of the PDQN can be written as Equation (5):

Q(st, kt, xt) = Ert ,st+1 [rt + γmaxsupQ(st+1, kt, xt)|st = s, at = (kt, xt) ] (5)

where s, r, a represent state space, rewards, and action respectively, and γ represents dis-
count factor. Here, inside the conditional expectation on the right-hand side of Equation (5),
they first solve Equation (6) for each k ∈ [K]:

x∗k = argsupxk∈χk
Q(st+1, k, xk) (6)

Then, we select the largest Q(st+1, k, x∗k ). When the function Q is fixed, Equation (6)
can be seen as the function xQ

k : S→ χk . Then, the Bellman equation can be written as:

Q(st, kt, xt) = Ert ,st+1 [rt + γmaxQ(st+1, kt, xQ
k (st+1))|st = s ] (7)

The value network Q(s, k, xk, w) is used to approximate Q(st, kt, xt), and the strategy
network xQ

k (s, θ) is used to approximate xQ
k . w, θ are the parameters of the value network

and the policy network, respectively. The loss functions are as shown in Equation (8), where
yt is the loss function.

ℓQ
t (w) =

1
2
[Q(st, kt, xkt ; w)− yt]

2, ℓΘ
t (θ) = −

K

∑
k=1

Q(st, k, xk(st; θ); wt) (8)

Based on the nonlinear mapping ability of PDQN, it can extract more meaningful
features from the original input, helping the agent learn the hybrid action parameters better.

3.2. IFDS

The path planning method based on the IFDS simulates the macroscopic character-
istics of water flow [41]. This method makes the generated path have the advantage of
being smoother.

(1) Build the initial flow field model. Since the initial flow field model is not set to be
affected by obstacles, the expression of the initial fluid vector velocity is as follows:

µ = −V
[

x− xd
d

,
y− yd

d
,

z− zd
d

]
(9)

where d =
√
(x− xd)

2 + (y− yd)
2 + (z− zd)

2 represents the Euclidean distance between
the point (x, y, z) and the target point.

(2) Build the disturbed flow field model. The obstacles can cause disturbance to the
initial flow field, and the impact expression is as follows:

M(p) = I − n(p)(n(p))T

|Γ(p)|
1
ρ (n(p))Tn(p)

+
t(p)(n(p))T

|Γ(p)|
1
σ ∥t(p)∥∥n(p)∥

(10)

I is the unit attraction matrix, and the second and third terms are the repulsion matrix
and the tangential matrix, respectively. t(p) = RI(p)[cos θ, sin θ, 0]T is the tangential matrix.

n(p) is a radial normal vector: n(p) =
[

∂Γp
∂x , ∂Γp

∂y , ∂Γp
∂z

]T
.

(3) Calculate the confluent flow field u(P) = M(P)u(P) and obtain the next point
P∗ = P + u(P)∆t. In this way, a series of scattered points are obtained through iterative
solutions and connected to form an interfered streamline, that is, the planned path.

θ, ρ, σ determine the shape and direction of the planned path. The larger ρ or σ is, the
more drastically and earlier the agent avoids the obstacles.
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4. Method

The MSAO2H model mainly consists of four components: the obstacle avoidance
strategy space, the state space of obstacle environments, the reward of obstacle avoidance
actions, and the training of the PDQN-IFDS.

4.1. Construction of the Multiple Obstacle-Avoidance Decision Space for Drones

According to the characteristics of obstacle environments and the needs of path
planning described in Section 2, the obstacle-avoidance actions of drones include adjusting
angles, adjusting speed, and obstacle clearance in this paper.

As shown in Figure 4a, the obstacle can be avoided by accelerating without changing
the flight angles. In Figure 4b, the obstacle R1 has a larger influence range. After removing
R1, the obstacle environment is greatly simplified. Therefore, the quality of path planning
can be improved by adjusting the speed of drones or clearing obstacles to avoid dynamic
obstacles. The specific analysis is as follows:
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(1) Adjusting angles: Considering the angular rate constraints of the climb angle and
heading angle, the climb angle and heading angle at the next moment are adjusted as χα f
and γα f , respectively:

χα f =


χc,

∣∣ .
χc
∣∣ ≤ .

χmax

χc +
.
χmax∆T,

.
χc >

.
χmax

χc −
.
χmax∆T,

.
χc < −

.
χmax

, γα f =


γc,

∣∣ .
γc
∣∣ ≤ .

γmax

γc +
.
γmax∆T,

.
γc >

.
γmax

γc −
.
γmax∆T,

.
γc < −

.
γmax

(11)

where
.
χc =

(
χc − χa f (t)

)
/∆T,

.
γc =

(
γc − γa f (t)

)
/∆T are the change rates of the climb

angle and heading angle at the next moment, and
.
χmax and

.
γmax are the maximum angular

rates of the climb angle and heading angle.
(2) Adjusting speed: When the parameter α of the adjusting speed is obtained, the flight

speed of the drone at the next moment is V = V(t) + a∆T, a ∈ (−amax, amax). Considering
the speed limit of drones, the speed is corrected according to Equation (12):

V =


Vmax, V > Vmax

V, Vmin ≤ V ≤ Vmax
Vmin, V ≤ Vmin

(12)

(3) Clearing obstacles: When remove = 0, this indicates that the clearing operation
is not performed, and the drone interacts with the obstacle environment according to
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the original motion law. When remove = 1, the drone clears the obstacle, the number of
obstacles decreases, and the maximum residual cost of the drone changes to q = q(t)− rcos.
At the next moment, the drone obtains a new state space by interacting with the remaining
obstacles. The initial remaining cost of obstacle clearance for the drone is 0.9.

Based on the above steps, the formula for calculating the position of the drone at the
next moment is as follows:x(t + 1)

y(t + 1)
z(t + 1)

 =

x(t)
y(t)
z(t)

+

V(t) cos γa f (t) cos χa f (t)
V(t) cos γa f (t) sin χa f (t)

V(t) sin γa f (t)

∆T (13)

4.2. Construction of the State Space

In order to improve the learning efficiency of the clearing parameter in specific situa-
tions, the descriptive factors rcro, ratts, and rattv of obstacle attributes are constructed. The
indicators are described as follows:

rcro represents the cost of the drone to clear the obstacle, which is mainly determined by
the vulnerability of obstacles. The greater the vulnerability of obstacles, the more difficult
they are for the drone to clear, resulting in higher costs. In this paper, rcro is set as [0.1,0.9].

ratts represents the success rate of obstacle clearance, which is mainly affected by
the speed vo of obstacles and the speed vd of the drone. When the obstacle is static, the
success rate of clearance is the highest. When the speed of a dynamic obstacle is greater,
the success rate of clearance is lower. Therefore, the calculation formula of ratts is shown in
Equation (14):

ratts = exp(− vo

vd
) (14)

rattv represents the benefits brought by removing obstacles for path planning, and the
calculation is shown in Equation (15). The former term represents the obstruction degree of
the obstacle, and the latter term represents the dispersion of the obstacle. w1, w2 are the
corresponding weights.

rattv = w1
Robs

Robsmax
+ w2

1− Pdis
k
∑

i=1
Pdis

 (15)

The obstruction degree of the obstacle constructed is determined by the radius Robs
of the obstacle and the maximum influence radius Robsmax of obstacles. As shown in
Figure 5a, the larger the impact range of an obstacle, the more valuable it is for path
planning. Equation (16) is constructed to describe the degree of dispersion Pdis between the
obstacle and other obstacles. The denser the distribution of obstacles in the environment,
the lower the benefits of removing obstacles. As shown in Figure 5b, the distribution of
R2 is relatively sparse. It is considered that clearing R2 is more effective in improving the
quality of path planning than clearing R1.

Pdis =


d f −

√√√√ m
∑

j=1

(
d

Rj
f −d f

)2

m , 2 ≤ m < k
d f , m = 1
0, m = 0

(16)

where f is the line segment equation between the current obstacle and the flight endpoint,

d
Rj
f represents the distance from obstacle j to the line, and m represents the number of

obstacles that are close to the current obstacle (d
Rj
f < Robs(j) + ε) and closer to the flight

endpoint than the current obstacle.
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Based on the above analysis, state observations are obtained based on the interaction
between the drone and obstacle environments and are defined as follows:

Si =

(
∆xi, ∆yi, ∆zi, ∆dxi , ∆dyi , ∆dzi , ∆vxi, ∆vyi, ∆vzi, rcro, ratts, rattv,
Robs(i), χ, γ, q, ∆x′j, ∆y′j, ∆z′j, Poi

)
(17)

where ∆xi, ∆yi, ∆zi are the relative positions of the drone and the nearest obstacle; ∆dxi , ∆dyi ,
∆dzi are the relative positions of the nearest obstacle to the end point; ∆vxi, ∆vyi, ∆vzi are
the relative velocity amplitude of the drone and the nearest obstacle; χ, γ are respectively
the heading angle and climb angle of the drone, q represents the remaining cost of obstacle
clearing for the drone, ∆x′j, ∆y′j, ∆z′j are the relative positions of the nearby obstacle j and the
drone, and Poi represents the position information of obstacle i at seven historical moments.

4.3. Construction of a Comprehensive Reward Mechanism

In order to improve the learning efficiency of action strategies and the exploration
ability of global optimal solutions, a comprehensive reward mechanism was constructed,
which includes dense instant reward and sparse ultimate reward.

4.3.1. The Instant Reward

The instant reward is reflected in the state of the drone, so it can provide immediate
feedback to guide the agent to carry out the optimal action at each time step. The calculation
formula is shown in Equation (18), including r f t, rcol , and rh. The specific analysis is
as follows:

rin =
3
5

r f t +
2
5

rcol + rh (18)

(1) Flight tendency reward r f t: This represents the distance from the next point planned
by the drone to the destination. A longer distance indicates that the drone has a trend of
gradually approaching the destination, resulting in a shorter path length and a greater
reward value.

r f t =

∥∥∥Puav(t + 1)− Pgoal

∥∥∥− ∥∥∥Puav(t)− Pgoal

∥∥∥
Lmax

(19)

(2) Flight safety reward rcol : This is determined by the distance between the drone
and the surface of the obstacle. The farther the distance from the obstacle, the longer the
path length will inevitably be. Therefore, the flight safety threshold disst was set. When the
distance from the obstacle surface is less than disst, the corresponding punishment will be
given. rcol is calculated as follows:

rcol =

{
a, i f disO

uav ≥ disst
disO

uav−disst
disst

, i f disO
uav < disst

(20)

where disO
uav = ∥Puav − Pobs∥ − Robs, and ∥Puav − Pobs∥ is the distance between the drone

and the center of the obstacle.
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(3) Border security reward rh: In order to avoid the problem of the drone being unable
to effectively learn parameters by adjusting its flight height to too high or too low, it is
necessary to set boundary safety thresholds zt1 and zt2, and impose the corresponding
punishment when the flying altitude is low or high. The calculation formula is as follows:

rh =

{
e(Zuav−Zmin)/zt1

e−1 − 1, i f Zuav − Zmin < zt1
e(Zmax−Zuav)/zt2

e−1 − 1, i f Zmax − Zuav < zt2
(21)

4.3.2. The Ultimate Reward

At the end of the episode, the instant reward is disabled, and the ultimate reward
is returned based on the status of the planning result to help the agent plan and make
decisions for long-term goals. The final state is divided into four situations:

Situation 1: When the drone successfully reaches the end, it receives a reward for complet-
ing the planned mission. The calculation of the reward is shown in Equations (22) and (23).

rend = pen0(
rlen
2

+
rv

4
+

rang

4
+ rco) (22)
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where pathL  is the total length of the path. v  is the average flight speed. 1n n + −  and 

1n n + −  represent the variation in flight angles within an adjacent sampling interval. 

(23)

where Lpath is the total length of the path. v is the average flight speed.
∣∣ .
χn+1 −

.
χn
∣∣ and∣∣ .

γn+1 −
.
γn
∣∣ represent the variation in flight angles within an adjacent sampling interval.

In addition, when the drone performs an obstacle-clearing action, the corresponding
additional action reward rco is given. The reward calculation formula is as follows, where
M represents the number of obstacles cleared.

rco =

10
M
∑

m=1
rattv(m)ratts(m)

M
(24)

Situation 2: When the drone hits an obstacle, the episode ends and the drone receives
a punishment. In order to improve the search ability of the action s, the punishment is set
to be related to the position of the drone at the moment Tend, as shown in Equation (25).

rend = −pen1

∥∥∥Puav(Tend)− Pgoal

∥∥∥
Lmin

(25)

Situation 3: When the q of the drone is less than 0, this indicates that the drone has
carried out too many clearing obstacle operations. The learning of this episode is over, and
the drone receives the corresponding punishment. The calculation method of punishment
is similar to Equation (25).

Situation 4: When the drone flies out of the airspace, the corresponding punishment is
obtained, and the calculation method of punishment is similar to Equation (25).

pen0 and pen1 are the final reward coefficients, and they are set to 2
3 × Stepmax, where

Stepmax is the maximum time step. The reason for this is to avoid the drone focusing too
much on instant rewards and ignoring the long-term path planning goal.

4.4. Learning of Obstacle-Avoidance Strategies Based on the PDQN-IFDS
4.4.1. The Structure of the PDQN-IFDS

The angle adjustment of the drone involves learning two continuous parameters:
climbing angle and heading angle. It is necessary to find the optimal combination of
continuous parameters, which causes the problem of difficult convergence of the algorithm
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and poor path planning quality. When the IFDS is introduced, the parameters of angles
become ρ, σ, and θ. The three parameters are closely related to the position of the drone
and the position and radius of obstacles, and they determine the direction, shape, and
avoidance time of path planning.  χc = tan−1

(
uy
ux

)
γc = sin−1

(
uz

∥u(P)∥

) (26)

The PDQN is used to train the probability distribution of parameters to guide the
learning of climb angle and heading angle, as shown in Equation (26), so as to effectively
improve the learning efficiency of obstacle-avoidance strategies.

The PDQN-IFDS is divided into four neural networks, namely ParamActorNet, Q-Net,
ParamActor-TargetNet, and Q-TargetNet. The structure of ParamActorNet is divided into
four layers, with network nodes of 40, 128, 256, and 5, respectively. The 40 nodes of the
input layer correspond to the size of the state space (Equation (17)). The number of output
nodes corresponds to the 5 parameters of the hybrid action space. a ∈ [−15, 15]m/s2,
ρk ∈ [1, 5], σk ∈ [1, 5], θk ∈ [0, π], and remove is 0/1. Each parameter is normalized
to [−1,1], which avoids the problems of inconsistent convergence speed and gradient
instability. The structure of Q-net is still divided into four layers, and the corresponding
network nodes are 45, 128, 256, and 3. The number of output nodes corresponds to three
different obstacle-avoidance decisions: adjusting angles, adjusting speed, and obstacle
clearance. ParamActor-TargetNet and Q-TargetNet are obtained by copying parameters
from ParamActorNet and Q-Net.

4.4.2. The Training Process of the PDQN-IFDS

Based on the loss function of the PDQN-IFDS in Section 3.1, the gradient of LQ
t (w) on

the Q-Net network parameter w can be expressed as Equation (27), and w is updated via
the gradient descent method: w← w− α1∇wLQ

t , where α1 is the learning rate.

∇wLQ
t =

(
yt −Q

(
st, kt, xkt |w

))
∇wQ

(
st, kt, xkt |w

)
(27)

ParamActorNet is designed to maximize the cumulative expected return, and θ is
updated by policy gradients: θ ← θ − α2∇θ Lπ

t .

∇θ Lπ
t = −

K

∑
k=1
∇xQ(st, k, xk(st|θ )|wt )∇θ x(s|θ ) (28)

The soft update is adopted for ParamActor-TargetNet and Q-TargetNet, as shown in
Equation (29).

θ′ ← τ1θ + (1− τ1)θ
′, w′ ← τ2w + (1− τ2)w′ (29)

4.5. MSAO2H Model

We designed the random obstacle environments in the development framework of
OpenAI Gym 0.10.5. According to the introduction in Sections 4.1–4.4, the interaction
process of the four parts is shown in Figure 6: By inputting the real-time status of the drone
and the obstacle environment (Section 4.1) into the PDQN-IFDS (Section 4.4), the drone
learns the best obstacle avoidance strategies (Section 4.2) under the guidance of the reward
mechanism (Section 4.3), so as to complete a sequential decision process of path planning.
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The MSAO2H model training process is shown in Algorithm 1:

Algorithm 1: The training process of MSAO2H

Initialization: Randomly initialize w,θ, targrt nets θ′ ← θ; w′ ← w ; Replay memory D;
for episode
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Algorithm 1: The training process of MSAO2H 

Initialization: Randomly initialize  w , , targrt nets  ' ; 'w w   ; Replay memory D; 

for episode ⬅ 1 to Max do 

for step t ⬅ 1 to TMax or  IsDone   do   

Obtain initial state: S (by Equations (14)–(17)); 

Execute the action  ( , )t t ta k x   (by Equations (11)–(13) and (26)); 

Obtain reward r and new state St+1 (by Equations (18)–(25)); 

Update step counters: t ⬅ t + 1; 
Store the simple   1, , ,t t t ts a r s    in D; 

Obtain random a batch of   1, , ,t t t ts a r s    from D; 

Update ParamActorNet, Q-Net, ParamActor-TargetNet, Q-TargetNet (by Equa-

tions (27)–(29)). 

end for 

end for 

t + 1;
Store the simple (st, at, rt, st+1) in D;
Obtain random a batch of (st, at, rt, st+1) from D;
Update ParamActorNet, Q-Net, ParamActor-TargetNet, Q-TargetNet (by

Equations (27)–(29)).
end for

end for



Drones 2024, 8, 205 12 of 21

5. Simulation Experiment and Analysis

We designed obstacle environments in the OpenAI Gym 0.10.5 development frame-
work for autonomous path planning of the drone. Through the interaction between the
drone and the obstacles, data were collected. As a random environment, at the episode
end of obstacle avoidance tasks, obstacles in the airspace will be reinitialized randomly.
Considering the motion constraints of the drone, the climbing angle of the drone was set to
η ∈ (−25◦, 25◦) and the speed was set to vd ∈ [30, 80]m/s. The time step was 20 s, and the
maximum changes in the heading angle and climb angle of the drone at each step were
15◦ and 8◦, respectively. This paper analyzes the impact of the proposed method on path
planning from two perspectives:

(1) In the random training environments, the average success rate and average reward
of the deep deterministic policy gradient (DDPG), DDPG-IFDS, PDQN, and MSAO2H are
compared to verify the effectiveness of the diversified obstacle-avoidance decisions.

(2) We compared the results based on different methods in test environments to verify
the versatility of MSAO2H.

5.1. Analysis of Effectiveness

The training convergence results of the DDPG, DDPG-IFDS, PDQN, and MSAO2H
during training were compared. The DDPG and DDPG-IFDS only adjust the climbing angle
and heading angle of the drone for route planning. PDQN and MSAO2H perform route
planning by making three types of obstacle-avoidance decisions: adjusting angles, adjusting
speed, and clearing obstacles. The DDPG-IFDS and MSAO2H learn the parameters of angle
adjustment based on the IFDS algorithm. In the training process, the ε-greedy algorithm [39]
was adopted, with the initial value ε of 0.9, gradually decreasing to 0.01 as the number of
iterations increases. The parameters of the PDQN are shown in Table 1.

Table 1. Parameter settings of the PDQN.

Parameter
Discount Factor Learning Rate Smoothing Factor

Batch Sizeγ α1 α2 τ1 τ2

Value 0.9 0.001 0.0001 0.001 0.1 256

The number of training iterations was set to 4 million times, and the average reward
and average success rate were calculated every 1000 iterations. The training convergence
results of the four models are shown in Figure 7.
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Due to there being fewer parameters of obstacle avoidance action in the DDPG and
DDPG-IFDS, they exhibit faster convergence speeds compared to the algorithms based
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on hybrid action space. However, the convergence average reward and convergence
average success rate are lower. Additionally, the average reward value and average success
rate fluctuate greatly, indicating that these two models are highly sensitive to obstacle
environments and difficult to apply widely. The average reward during the initial stage of
PDQN training (0–100 K iterations) increases more rapidly than that of MSAO2H. But the
PDQN shows a slower increase in rewards during the later stages. After 260 K iterations of
training, the PDQN gradually converged. The average reward and average success rate after
convergence are lower than those of MSAO2H. This suggests that the avoidance decisions
learned from the PDQN have certain limitations. Although the average reward and average
success rate of MSAO2H are low in the initial learning stage, after 220 K iterations, the
average reward converges to a high value, and the average success rate converges to 0.92.
The main reason for the phenomenon is that the model transforms challenging-to-learn
parameters into parameters related to the relative position and radius of the nearest obstacle.
This physical interpretation can help to comprehend angle adjustments and improve the
learning efficiency of obstacle-avoidance actions.

The training results, based on the random obstacle environments, show that the
proposed method can effectively complete the avoidance tasks, and the proposed model
demonstrates a certain level of generalization.

5.2. Analysis of Versatility
5.2.1. Analysis of Planning Results in Simple Obstacle Environments

We compared the path planning results based on Astar, the IFDS, rapidly-exploring
random tree (RRT), DDPG, DDPG-IFDS, PDQN, and MSAO2H in the airspace of 12 static
obstacles, as shown in Figure 8.
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The angles of the drone and their variation are shown in Figure 9. The trend of the
distance from the nearest obstacle during flight is shown in Figure 10. Table 2 shows the Pp,
Cp, and Dp of the paths obtained by seven algorithms.
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Table 2. Evaluation results of planning paths in a simple environment.

Astar IFDS RRT DDPG DDPG-IFDS PDQN MSAO2H

Pp/m 147,653 150,329 151,162 147,179 146,920 146,101 145,770
Cp 0.0922 0.0537 0.0603 0.0854 0.0541 0.0939 0.0480

Dp/m 638 2690 93 1750 4030 1400 2265

Compared with Figures 9 and 10, it can be observed from the path planning results
based on Astar that the climb angle of the drone and its variation amplitude exceed the
constraint conditions, resulting in low path smoothness and falling into the local optimal
solution. Due to the random sampling and exploration method of the RRT, the climbing
angle and heading angle fluctuate significantly, leading to a longer planned path length.
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Furthermore, the closest distance to the obstacle surface is 93 m, indicating a low level of
path safety and poor overall path planning quality. Compared to the RRT and Astar, the
path planning results based on the IFDS show a safe distance from obstacles, as well as
more gradual changes in climb angle and heading angle. The resulting path is smoother,
but the quality of the path depends on the hyperparameter settings. The planning result is
based on the IFDS with ρ = 1, σ = 1, and θ = 0.1.

By using deep reinforcement learning to learn the distribution of hyperparameters in
the IFDS, it is possible to dynamically adjust parameters for various obstacles and improve
adaptive capabilities. As shown in Table 2, the path planned by the DDPG-IFDS exhibits
similar tortuosity compared to the IFDS model. It maintains a longer distance from the
obstacle surface (the nearest distance is 1400 m) while reducing the length of the path
planning result by 2.81%. The length and tortuosity of the path based on MSAO2H were
reduced by 3.03% and 10.62%, respectively.

In the planning results based on hybrid action networks (PDQN and MSAO2H), ob-
stacle 8 is cleared. According to Table 2, it can be seen that the planned path is significantly
shortened compared to the DDPG and DDPG-IFDS. Therefore, the obstacle clearance deci-
sion represents a more optimal solution. Although the PDQN and DDPG reduce the path
length to a certain extent, it can be seen from Figure 10 that both of them have the problem
of significant fluctuations in the climb angle, resulting in poor path smoothness.

As shown in Table 2, the path generated by MSAO2H has the shortest length, the
lowest degree of tortuosity, and a safe distance from the nearest obstacle, resulting in
higher comprehensive path planning quality. The results indicate that the proposed model
achieves excellent performance.

5.2.2. Analysis of Planning Results in a Complex Obstacle Environment

Due to the lack of sensitivity to the perception of dynamic environments for traditional
algorithms, it is difficult to respond promptly to the dynamic obstacles. In this paper,
we compare the path planning results based on deep reinforcement network models
in a dynamic obstacle environment. There are 21 obstacles in the simulated dynamic
environment. Of them, 5 obstacles are static obstacles, 6 obstacles are in linear motion,
4 obstacles are in horizontal circular motion, and 6 obstacles are in serpentine motion. In
this environment, the path planning results based on the DDPG, DDPG-IFDS, PDQN, and
MSAO2H models are shown in Figures 11–14, respectively. To enhance the presentation
of path planning results in the dynamic obstacle environment, only the time when each
obstacle is closest to the drone, the corresponding position, and the path information of the
closest obstacle in a short time are exclusively highlighted in Figures 11–14. The change in
the relative distance to the nearest obstacle during flight is shown in Figure 15. Similarly,
Pp, Cp, and Dp of the paths are shown in Table 3.

Drones 2024, 8, x FOR PEER REVIEW 17 of 22 
 

  
(a) (b) 

Figure 11. Result of path planning based on the DDPG in a complex environment: (a) three-dimen-
sional path and (b) X-Y plane projection. 

  
(a) (b) 

Figure 12. Result of path planning based on the DDPG-IFDS in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection. 

  
(a) (b) 

Figure 13. Result of path planning based on the PDQN in a complex environment: (a) three-di-
mensional path and (b) X-Y plane projection. 

Figure 11. Result of path planning based on the DDPG in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection.



Drones 2024, 8, 205 16 of 21

Drones 2024, 8, x FOR PEER REVIEW 17 of 22 
 

  
(a) (b) 

Figure 11. Result of path planning based on the DDPG in a complex environment: (a) three-dimen-
sional path and (b) X-Y plane projection. 

  
(a) (b) 

Figure 12. Result of path planning based on the DDPG-IFDS in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection. 

  
(a) (b) 

Figure 13. Result of path planning based on the PDQN in a complex environment: (a) three-di-
mensional path and (b) X-Y plane projection. 

Figure 12. Result of path planning based on the DDPG-IFDS in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection.

Drones 2024, 8, x FOR PEER REVIEW 17 of 22 
 

  
(a) (b) 

Figure 11. Result of path planning based on the DDPG in a complex environment: (a) three-dimen-
sional path and (b) X-Y plane projection. 

  
(a) (b) 

Figure 12. Result of path planning based on the DDPG-IFDS in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection. 

  
(a) (b) 

Figure 13. Result of path planning based on the PDQN in a complex environment: (a) three-di-
mensional path and (b) X-Y plane projection. 
Figure 13. Result of path planning based on the PDQN in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection.

Drones 2024, 8, x FOR PEER REVIEW 18 of 22 
 

  
(a) (b) 

Figure 14. Result of path planning based on MSAO2H in a complex environment: (a) three-dimen-
sional path and (b) X-Y plane projection. 

In addition, we analyzed the changes in the relative distance between the drone and 
the nearest obstacle during flight, as shown in Figure 15. The horizontal axis represents 
the flight time of the drone. The blue line on the left vertical axis represents the relative 
distance between the drone and the nearest obstacle. The red line on the right vertical axis 
represents the number of the nearest obstacle (0–20 represents the number of the 21 
obstacles; 21 means no obstruction within 10 km). 

  
(a) (b) 

   
(c) (d) 

Figure 15. Distance to the nearest obstacle during flight; (a) based on the DDPG; (b) based on the 
DDPG-IFDS; (c) based on the PDQN; (d) based on MSAO2H. 

Figure 14. Result of path planning based on MSAO2H in a complex environment: (a) three-
dimensional path and (b) X-Y plane projection.



Drones 2024, 8, 205 17 of 21

Drones 2024, 8, x FOR PEER REVIEW 18 of 22 
 

  
(a) (b) 

Figure 14. Result of path planning based on MSAO2H in a complex environment: (a) three-dimen-
sional path and (b) X-Y plane projection. 

In addition, we analyzed the changes in the relative distance between the drone and 
the nearest obstacle during flight, as shown in Figure 15. The horizontal axis represents 
the flight time of the drone. The blue line on the left vertical axis represents the relative 
distance between the drone and the nearest obstacle. The red line on the right vertical axis 
represents the number of the nearest obstacle (0–20 represents the number of the 21 
obstacles; 21 means no obstruction within 10 km). 

  
(a) (b) 

   
(c) (d) 

Figure 15. Distance to the nearest obstacle during flight; (a) based on the DDPG; (b) based on the 
DDPG-IFDS; (c) based on the PDQN; (d) based on MSAO2H. 

Figure 15. Distance to the nearest obstacle during flight; (a) based on the DDPG; (b) based on the
DDPG-IFDS; (c) based on the PDQN; (d) based on MSAO2H.

Table 3. Evaluation results of planning paths in a complex dynamic environment.

DDPG DDPG-IFDS PDQN MSAO2H

Pp/m - 165,946 148,491 146,082
Cp - 0.1453 0.0788 0.0705

Dp/m - 3617 2694 1563

As shown in Figure 11, the DDPG model failed to avoid obstacle 0. In contrast, the
paths of the other three models were successfully planned. The results in Figures 13 and 14
show that th ePDQN and MSAO2H can successfully plan a safe route in areas with a dense
obstacle distribution based on three obstacle avoidance decisions. The difference is that
PDQN clears obstacles 3 and 17, while MSAO2H only clears obstacle 17, and the clearing
cost based on MSAO2H is lower.

In addition, we analyzed the changes in the relative distance between the drone and
the nearest obstacle during flight, as shown in Figure 15. The horizontal axis represents
the flight time of the drone. The blue line on the left vertical axis represents the relative
distance between the drone and the nearest obstacle. The red line on the right vertical
axis represents the number of the nearest obstacle (0–20 represents the number of the
21 obstacles; 21 means no obstruction within 10 km).

According to Figure 15a, the DDPG fails to avoid obstacle 0 at t = 2040 resulting in the
failure of path planning. It can be seen from Figure 15b that the distance between the drone
and obstacles is relatively far on the whole. According to Figure 12, the main reason for the
phenomenon is that the DDPG-IFDS is planned in areas with a relatively wide distribution
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of obstacles, which causes the path length to be too large (the length is 165,946 m). The
number of the nearest obstacle changes rapidly as shown in Figure 15c,d, indicating that
the PDQN and MSAO2H can be applied to complex obstacle environments with high
dynamics. Compared with Figure 15c, the change in the number of nearest obstacles is
slower and the average distance from the nearest obstacle is longer in Figure 15d. This
suggests that the path planned based on the MSAO2H model is more secure.

As shown in Table 3, compared with the results of path planning under the obstacle
environment in Section 5.2.1, the path length increases and the smoothness decreases in
the dynamic environment. However, the path planned based on MSAO2H still has the
shortest length and the highest smoothness and maintains a certain safety range with
obstacles, resulting in the highest quality of planned paths. The length and tortuosity of
the path obtained by MSAO2H are 1.62% and 10.55% lower than those obtained by the
PDQN, respectively. This result indicates that the obstacle-avoidance decisions learned by
MSAO2H are more effective.

5.2.3. Analysis of Planning Results in Random Obstacle Environments

To further verify the versatility of MSAO2H, the performance of four models in
200 randomly generated obstacle environments was compared. We took 10 environments
as a test set and calculated the average reward and average success rate of different models
in each test set, as shown in Figure 16:
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Based on Figure 16, it is evident that the DDPG achieves its highest average reward of
221 in the fifth test set. The DDPG-IFDS surpasses this, attaining the highest average reward
of 240 in the first test set. The PDQN outperforms both with a maximum average reward
of 368 in the sixth test set. However, MSAO2H exhibits the most significant performance,
securing the highest average reward of 461 in the fifth test set. The four models exhibit
lower reward values in the eighth test set, with values of 84, 114, 232, and 392, respectively.
Compared to the other models, MSAO2H demonstrates the smallest fluctuation in average
reward in random testing environments. Additionally, the DDPG, DDPG-IFDS, and PDQN
achieve their maximum success rates of 0.6, 0.7, and 0.9, respectively, in the test sets.
Meanwhile, MSAO2H achieves the path success rate of one in five test sets, with a minimum
success rate of 0.8 in the eighth set.

In 200 test environments, the average reward values of the four models are 173.19,
194.76, 335.09, and 415.456, and the average success rates are 0.45, 0.54, 0.715, and 0.915,
respectively. These results indicate that MSAO2H has a higher average reward and
success rate in the test environments, confirming the higher robustness of MSAO2H to
the environment.
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6. Conclusions

By constructing the state space of obstacle environments, various obstacle-avoidance
strategies, a comprehensive reward mechanism, and the PDQN-IFDS, the MSAO2H model
was constructed to achieve autonomous path planning for drones in dynamic and com-
plex airspace environments. And compared with other methods, the effectiveness of the
proposed method was verified:

(1) MSAO2H can continuously optimize the obstacle-avoidance decisions of drones
based on feedback information from random dynamic obstacle environments. The aver-
age success rate of convergence and the average reward of convergence are high, which
improves the autonomous capability of path planning and validates the generalization of
the model.

(2) Compared to traditional path planning algorithms such as Astar, RRT, and IFDS,
the proposed method has shorter and less tortuous degree planning results in the static
obstacle environment while maintaining a safe distance from obstacle surfaces. The results
have validated the fact that multiple obstacle avoidance decisions can effectively improve
the quality of path planning.

(3) Compared with the DDPG and DDPG-IFDS, the proposed method can success-
fully plan routes in areas with dense obstacles. Compared with the PDQN, MSAO2H
can converge more quickly and stably and plan high-quality paths. The results show
that the proposed model makes path planning for drones in complex dynamic obstacle
environments more reliable and efficient.

In this paper, deep reinforcement learning was used to study the global path planning
method based on the motion constraints of drones. In the future, multi-agent reinforcement
learning will be used to further study dynamic path planning under the constraints of
autonomous navigation for formation and cluster cooperation.
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