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Abstract: This paper introduces a quadrotor trajectory tracking controller comprising a steady-
state optimal position controller with a normed input saturation and modular integrative action
coupled with a backstepping attitude controller. First, the translational and rotational dynamical
models are designed in the body-fixed frame to avoid external rotations and are partitioned into an
underactuated position system and a quaternion-based attitude system. Secondly, a controller is
designed separately for each subsystem, namely, (i) the position controller synthesis is derived from
the Maximum Principle, Lyapunov, and linear quadratic regulator (LQR) theory, ensuring the global
exponential stability and steady-state optimality of the controller within the linear region, and global
asymptotic stability is guaranteed for the saturation region when coupled with any local exponential
stable attitude controller, and (ii) the attitude system, with the quaternion angles and the angular
velocity as the controlled variables, is designed in the error space through the backstepping technique,
which renders the overall system, position, and attitude, with desirable closed-loop properties that
are almost global. The overall stability of the system is achieved through the propagation of the
position interconnection term to the attitude system. To enhance the robustness of the tracking system,
integrative action is devised for both position and attitude, with emphasis on the modular approach
for the integrative action on the position controller. The proposed method is experimentally validated
on board an off-the-shelf quadrotor to assess the resulting performance.

Keywords: quadrotor; stability of nonlinear systems; bounded control; optimal control; robustness

1. Introduction

In recent years, quadrotors have emerged as versatile aerial platforms, with applica-
tions spanning from surveillance and inspection to aerial photography and autonomous
exploration. The inherent agility and maneuverability of these vehicles have rendered
them indispensable in various fields [1,2]. To fully exploit the capabilities of quadrotors in
tracking tasks, precise and robust control strategies are paramount. The trajectory tracking
problem for quadrotors is challenging due to their nonlinear dynamics and underactuated
nature, and many control strategies have been devised [2,3].

With the purpose of taking the maximum benefit of the capabilities of these vehicles
for tracking purposes, numerous controllers have been proposed [4–6]. In [7], successful
implementation of linear control techniques, including the linear quadratic regulator (LQR),
was achieved for low-speed indoor flights. However, these linear techniques often rely
on the linearization of quadcopter dynamics, which can limit their ability to fully explore
the vehicle’s flight envelope and establish a clear region of attraction for stability. In the
literature, various nonlinear approaches are available, including feedback linearization [8],
backstepping [9], differential flatness [10], and sliding mode control.
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Nowadays, state-of-the-art research in quadrotor control blends hierarchical control
with geometric feedback. This method entails the creation of a virtual feedback law at
the acceleration level, which is subsequently extended to the inner attitude controller. A
geometric approach for trajectory tracking with thrust vectoring capabilities is proposed
in [11], where position tracking can be achieved by easing attitude tracking requirements.
Asymptotic stability is proved for the entire system. In [12], the stability of the system is
tackled through integral input-to-state stability. This method yields a quasi-time-optimal
control law, which achieves global asymptotic stabilization for any initial position. As a
result, it enhances transient performance compared with existing control designs. Recent
significant contributions to quadrotor control, which combine hierarchical control with
geometric feedback, can be found in [13–16].

The backstepping method has been extensively applied in various studies to control
underactuated quadrotors, as documented in [17–19]. In these approaches, the attitude
error is skillfully derived either from the error in the thrust direction or through traditional
backstepping techniques. This results in the interconnection term being backstepped into
the attitude control law, effectively canceling its influence.

In the field of quadrotor control, effectively handling system dynamics within the con-
straints of actuator limits is of paramount importance. The intrinsic underactuated nature
of quadrotors necessitates sophisticated control strategies that can handle the nonlinear
constraints imposed by actuator saturation. The formulation of control laws incorporat-
ing saturation for quadrotors typically aims to avert the singularity linked with a null
thrust value, thereby ensuring well-posed attitude references [14,16,20]. This approach is
critical, as it ensures that the system remains robustly stable and bounded, regardless of
the given trajectory. Moreover, such control laws can provide large regions of attraction
with disturbances rejection capability in a closed-form solution [21]. A recently emerging
alternative strategy is the Explicit Reference Governor (ERG), which has gained traction
in the field. This Lyapunov-based scheme acts as an add-on to prestabilized systems,
from which the reference commands are modified to ensure the handling of constraints [22].
The ERG closed-form solutions are particularly advantageous for constraint applications
with limited computational resources but may lead to conservative solutions [23]. This
method has been successfully applied to underactuated Unnamed Air Vehicles (UAVs),
demonstrating its efficacy in real-time constraint management [24,25].

This work presents a quadrotor trajectory tracking controller that integrates a steady-
state optimal position controller with normed saturated input and a backstepping attitude
controller. This approach is characterized by a blend of inner–outer loop theory and back-
stepping, enhancing transient performance. The dynamical models for translation and
rotation are designed in the body-fixed frame to prevent external rotations (algebraic trans-
formations to convert sensor data into inertial coordinates) and are split into underactuated
position and quaternion-based attitude systems. Separate controllers are crafted for each
subsystem. The position controller is synthesized with a modular integrative action using
the Maximum Principle, Lyapunov, and linear quadratic regulator theory, ensuring global
exponential stability and steady-state optimality in the linear region, with global asymptotic
stability (GAS) guaranteed in the saturation region. On the other hand, the attitude system,
with quaternion angles and angular velocity as controlled variables, is developed using
the backstepping technique, ensuring desirable almost global closed-loop properties as a
consequence of the double cover quaternion representation [26]. The position controllers
are designed with a normed input saturation with the shown GAS property when coupled
with any attitude controller with local exponential stability. This strategic approach ensures
stability throughout the operation, preserving both GAS and local exponential stability for
the overall system.

The proposed methodology incorporates rigid-body translational dynamics expressed
in body-fixed coordinates, which is rooted in several compelling benefits. One of the
notable advantages is the avoidance of algebraic transformations to convert sensor data
into inertial coordinates. This avoidance is crucial as it helps minimize the amplifica-
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tion of noise and biases on attitude estimates, a viewpoint highlighted in [27]. Moreover,
the present approach aligns well with sensor-based strategies and image-based algorithms
often utilized in aerial vehicles, as they are designed in a similar frame. This synergy
with existing strategies is advantageous, as it allows for seamless integration into vari-
ous applications, such as visual servoing tasks [28]. Additionally, positioning dynamics
in the body-fixed frame enable the direct utilization of accelerometer measurements for
body acceleration estimation. This capability is vital in helping the system effectively
deal with specific unmodeled dynamics, a feature that proves advantageous in real-world
scenarios [29]. Furthermore, when addressing the position dynamics in the body-fixed
frame, the interconnection term primarily depends on gravity and attitude error, thereby
making it independent of how the inertial frame is defined [30]. This distinctive characteris-
tic offers a fresh perspective on solving the thrust and desired attitude extraction problem,
setting it apart from the majority of approaches in the literature. In essence, the decision to
employ the body-fixed frame in constructing the controller is grounded in its multifaceted
advantages, including noise reduction in attitude estimates, compatibility with existing
sensor-based strategies, direct utilization of accelerometer data for robustness, and a unique
approach to handling position and attitude dynamic interconnections.

Summarizing, the key contributions of this work encompass several aspects:

1. A position control law developed in the body-fixed frame, incorporating an input
normed saturation with a modular integral control component. This innovative
approach ensures global asymptotic stability and presents a novel way of addressing
the thrust and desired attitude extraction problem, distinguishing it from the majority
of existing methods in the literature.

2. The proposal of a novel trajectory tracking approach for quadrotors, characterized by
almost global asymptotic stability and local exponential stability, exhibiting optimal
steady-state properties within the linear region.

3. The design of the controller is fine-tuned using the linear quadratic regulator frame-
work, which optimizes for energy efficiency over time.

This paper is organized as follows. Section 2 introduces the dynamics and kinematics
of the quadrotor. The problem statement and the control objective are also provided.
Section 3 provides the design of an optimal steady-state position control law to guarantee
asymptotic convergence of the closed-loop error to zero. A saturated control law is devised
to overcome singularities during the thrust and reference attitude extraction. The attitude
controller design is also given with stability proof and explicitly takes into consideration
the coupling between both systems. Section 4 details the implementation of the controllers,
as well as some insight into the gain-tuning procedure. Section 5 provides simulation
results to assess the proposed tracking law. In Section 6, the experimental results of the
proposed control structure onboard an AR.Drone 2.0 are shown and its performance is
analyzed. Concluding remarks are pointed out in Section 7.

Notation

Throughout this paper, bold lowercase letters (e.g., x, b) denote column vectors, bold
uppercase letters (e.g., X, K) denote matrices, the symbol 0 denotes a matrix of zeros, and I
is an identity matrix, both with appropriate dimensions. The vectors e1, e2, and e3 denote
the unit vectors codirectional with the x, y, and z axes, respectively. The i-th element of the
vector x is denoted by xi. The time derivative of s is denoted by ṡ. The Euclidean norm of
vectors is denoted as ∥x∥, x ∈ Rn. In R3, the skew-symmetric matrix of a generic vector
a ∈ R3 is defined as [a×] and given by

[a×] =




0 −az ay
az 0 −ax
−ay ax 0


. (1)
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The vector s expressed in the coordinate frame {E} is denoted by Es , and B
I R is a rotation

matrix from the frame {I} to {B}. Finally, the transpose operator is denoted by the
superscript (·)T .

2. Problem Statement
2.1. Quadrotor Dynamics and Kinematics

Consider the quadrotor vehicle model presented in Figure 1. The quadrotor equations
are represented in the body-fixed frame since that is usually the frame of the available
sensory data. Thus, unnecessary rotations are avoided. The equations of motion that
govern the quadrotor [1], used throughout the paper, are given by

{
ṗ = Rv
v̇ = −[ω×]v − T

m e3 + RT ge3
, (2)

where p =
[
px py pz

]T ∈ R3 is the inertial position, v ∈ R3 is the linear body ve-
locity, ω ∈ R3 is the body angular velocity, T ∈ R≥0 is the total thrust generated
by the rotors, m is the total mass of the quadrotor, assumed constant, g is the gravi-
tational acceleration, and R = I

BR ∈ R3 is the rotation matrix from {B} to {I}. Let

q =
[
qT

v q4
]T

=
[
q1 q2 q3 q4

]T ∈ R4 represent the orientation vector, in terms of

quaternions, and λ =
[
ψ θ ϕ

]T ∈ R3 denote the equivalent orientation vector in terms
of Euler angles. The rotation matrix follows the Euler sequence of rotation Z-Y-X and is
given by

R(λ) =




cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ


, (3)

where c and s are the shorthand forms for the cosine and sine trigonometric functions and
are equivalent to

R(q) =

[
1 − 2

(
q2

2 + q2
3
)

2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1 − 2

(
q2

1 + q2
3
)

2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) 1 − 2

(
q2

1 + q2
2
)

]
. (4)

Similarly, the exploited equations for the angular motion of the quadrotor are defined
as follows: {

q̇ = 1
2 Ω(ω)q

ω̇ = −J−1[ω×]Jω + J−1τ
, (5)

where Ω(ω) =

[ −[ω×] ω

−ωT 0

]
, J ∈ R3×3 corresponds to the quadrotor inertia tensor

described in {B}, assumed to be constant, and τ =
[
τψ τθ τϕ

]T denotes the moments
applied to the vehicle airframe by the aerodynamics of the rotors, described in {B}, which
affect the rotation of the vehicle about the Bz, By, and Bx axes, respectively. It is assumed
that p, v, q, and ω are available from the sensor set.

The rigid-body equations of motion of the quadcopter (2) and (5) can be written,
in compact state-space form, as

[
ṗ
v̇

]
=

[
0 R
0 −[ω×]

][
p
v

]
+

[
0 0

− T
m I +gRT

]
e3 (6)

and [
q̇
ω̇

]
=

[
0 1

2 Ξ(q)
0 −J−1[ω×]J

][
q
Ω

]
+

[
0

J−1

]
τ, (7)

where Ξ(q) =
[

q4 I3×3 + [qv×]
−qT

v

]
and Ω = [0 ωT ]T . The aerodynamic forces are disre-

garded as a consequence of the low speed of operation.
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By

Bx

Bz

Body

T2

T3

T4

T1
τ2

τ3

τ4

τ1
θφ

ψIy

Ix

Iz

Inertial Frame

ge3

1

Figure 1. Quadrotor model.

2.2. Problem Formulation

Consider a UAV with kinematics and dynamics given by (6) and (7), respectively. Let
the desired position pd(t) ∈ R3 be a curve of class C4 and the desired yaw ψd(t) ∈ R be a
curve of class C2, both with bounded time derivatives. The problem considered herein is
that of designing a sensor-based integrated tracking control law for the thrust T and torque
τ, which enforces a bound on the thrust force with respect to the position, velocity errors,
and an integrative term, ensuring global convergence of the quadrotor position p(t) to
the desired position pd(t) and the yaw angle to ψd(t), minimizing the energy expenditure
over time.

3. Controller Design

In this section, a nonlinear tracking and control law is derived for the tracking problem
stated in Section 2.2. The schematic of the proposed quadrotor controller is presented
in Figure 2. By virtue of the underactuated nature of the quadrotor system, a hierar-
chical strategy is employed to achieve the control development. It consists of an inner
loop, the attitude control, combined with an outer loop, the position control, which when
bounded provides references to the inner loop. Pontryagin’s principle and the LQR the-
ory aligned with Lyapunov’s theory are at the basis of the controller’s design and the
stability proof.

Optimal
Position Controller

(13)

Thrust (32),
Quaternion (33)

Reference Commands
Attitude

Nonlinear Controller
(61), (73)

Quadrotor
Dynamics

(6), (7)

pd

ψd

yu∗
T

qd

τψ

τθ

τϕ

q, p, v
q, ω

Figure 2. Controller architecture.

3.1. Position Control

Suppose that the desired position of the quadrotor represented in the inertial frame is
pd =

[
xd yd zd

]T . Furthermore, pd must verify some conditions, namely, it is assumed
to be continuous and three-times differentiable. The position error is defined as

ep = p − pd, (8)

with ṗd = Rvd, where vd ∈ R3 is the desired velocity in the body-fixed frame. Define the
body velocity error as

ev = v − vd. (9)
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In order to achieve zero steady-state error and to add robustness to model uncertainties,
a modular integral feedback is taken into account

η̇ = w1ep + w2Rev, (10)

where w1 ∈ R>0 and w2 ∈ R≥0 are user-defined.
Hence, by taking the derivative of (8)–(9), considering the position system (6) and the

integral dynamics (10), the position tracking system is defined as




ėp
ėv
η̇


 =




0 R 0
0 −[ω×] 0

w1 I w2R 0




︸ ︷︷ ︸
A




ep
ev
η


+




0
I
0




︸︷︷︸
B

u, (11)

where
u = − T

m
e3 + RT(ge3 − p̈d) (12)

and p̈d is the desired inertial acceleration.
The proposed feedback control law is

u := u∗ = −
[
RTKp RTKvR RTKη

]



ep
ev
η


, (13)

where u∗ represents the optimal LQR controller for the system (11), Kp, Kv, and Kη are the
steady-state LQR gain matrices ∈ R3×3 corresponding to the fully controllable LTI system




ẋp
ẋv
ẋη


 =




0 I 0
0 0 0

w1 I w2 I 0




︸ ︷︷ ︸
Al




xp
xv
xη


+




0
I
0




︸︷︷︸
Bl

u. (14)

Theorem 1. Consider the dynamics of position error described by (11). The closed-loop system that
results from applying the feedback law (13) is globally exponentially stable. Moreover, the feedback
law is steady-state optimal in the sense that it minimizes the cost function

J =
∫ ∞

0

1
2




xT
1




Qp 0 0
0 RT QvR 0
0 0 Qη




︸ ︷︷ ︸
Q

x1 + uT RT RpR
︸ ︷︷ ︸

Ru

u




dt, (15)

where Qp, Qv, and Qη ∈ R3×3 are positive semidefinite matrices, Rp ∈ R3×3 is a positive definite

matrix, and x1 =
[
eT

p eT
v ηT

]T
.

Proof. The proof follows a similar approach as in the LQR derivation. Applying the Maxi-
mum Principle theorem [31] to minimize the cost function (15) subject to the constraint (11)
renders the Hamiltonian H

H =
1
2

xTQx +
1
2

uT Ruu + λT(Ax + Bu), (16)
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where λ is the costate vector of variables, and A and B are defined in (11). Applying the
Maximum Principle theorem [31], the following necessary conditions are obtained:





ẋ =

(
∂H
∂λ

)T
= Ax + Bu

−λ̇ =

(
∂H
∂x

)T
= Qx + ATλ

0 =
∂H
∂u

= Ruu + BTλ

. (17)

Hence, the optimal control law is given by

0 =
∂H
∂u

= Ruu∗ + BTλ ≡ u∗ = −R−1
u BTλ. (18)

To find a solution for u∗, λ must be determined. Let λ = Px, where P is a square symmetric
matrix, and substitute (17) into the necessary conditions to obtain the equation

−Ṗ = PA + ATP − PBR−1
u BTP + Q, (19)

which is the Riccati matrix differential equation. Since system (11) is time-varying, P will always
vary for any t. Consider the following well-defined Lyapunov transformation T

P = TPTT , T =




I 0 0
0 RT 0
0 0 I


. (20)

Then, as detailed in Appendix A, it is possible to write

−Ṗ = PAl + AT
l P −PBl R

−1
p BT

l P + Ql , (21)

which is the Riccati equation for the LTI system (14), and Ql is defined in Appendix A. Conse-
quently, at the infinity, Ṗ∞ = 0, and the optimal control law u∗ (13) can be rewritten as

u∗ =− R−1
u BTPx = −R−1

u BTTPTTx

=−
[

RT RpPT
2︸ ︷︷ ︸

Kp

RT RpP4︸ ︷︷ ︸
Kv

R RT RpP5︸ ︷︷ ︸
Kη

]


ep
ev
η




=− Knl x1,

(22)

where P =



P1 P2 P3
PT

2 P4 P5
PT

3 PT
5 P6


. Thereby, u∗ is the optimal control law that minimizes the

cost function (15) for the position system (11). The proof of global exponential stability is
now immediate. Consider the following well-defined Lyapunov function

V1(x) = xTTPTTx, (23)

with the time derivative given by

V̇1(x) =
d
dt

(
xTT

)
PTT x + xTTP d

dt

(
TT x

)

=xT
(

AT
cl T + Ṫ

)
PTT x + xTTP

(
TT Acl + ṪT

)
x

=xTT(Al − BKl)
TPTT x + xTTP(Al − BKl)T

T x

=− xTTQl T
T x,

(24)
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with Acl = A − BKnl and Kl =




Kp 0 0
0 Kv 0
0 0 Kη


. Thus, V1(x) ≥ 0 and V̇1(x) < 0 for an x

different from zero, and, by [32] [Theorem 4.9], the origin of the closed-loop error system
is globally asymptotically stable. To prove exponential stability, observe the following
inequalities [32] {

−xTTQlT
Tx ≤ −Λmin(Ql)xTx

xTTPTTx ≤ Λmax(P)xTx
, (25)

where Λmin(Ql) and Λmax(P) are the minimum eigenvalue of Ql and the maximum eigen-
value of P , respectively, which are positive. Define α = Λmin(Ql)

Λmax(P)
> 0 and

apply (25) to (24), which yields
V̇1(x) ≤ −αV1(x), (26)

Hence, the origin is globally exponentially stable.

The block diagram of the position controller is depicted in Figure 3.

∫
RTKη

Modified
Input

(31) − (32)

Position Dynamics
(2)

RT d
dt (·) RTKvR

RTKp

pd

g qψd

yep η u T

−
ev

Figure 3. Position controller block diagram.

The position dynamics are an underactuated system with one control input and three
output variables. The outer loop is responsible for generating not only the desired thrust
but also angular references. Noting that u = − T

m e3 + RT(ge3 − p̈d), although T is a system
input, the rotation matrix RT is not and cannot be set arbitrarily. Nevertheless, the attitude
variable R can be controlled by means of the attitude system (7), and the input moments
can be exploited to drive the thrust force in some intended direction. The input u can be
rewritten as

u = − T
m

e3 + RT
d (ge3 − p̈d)

︸ ︷︷ ︸
u∗

−
(

R̃T − I
)

RT(ge3 − p̈d)
︸ ︷︷ ︸

∆

, (27)

where the term ∆ ∈ R3 is a disturbance due to the attitude error control, Rd is the desired
rotation matrix, and R̃ = RT Rd describes the discrepancy between the vehicle attitude and
the attitude command. The rotation matrix R̃ verifies [33]

R(eq) =
[(

q2
4e − qT

veqve

)
I + 2qveqT

ve − 2q4e[qve×]
]
, (28)

where eq =
[
qT

ve q4e
]T ∈ S3 denotes the unit quaternion error parameterization that

is further defined in Section 3.3, which ensures that R(eq) = R̃ through the mapping
R : S3 → SO(3). The mapping (28) allows to write the perturbation term ∆ as

∆ = 2([qve×] + q4e I)[qve×]ϑ (29)

where ϑ = RT(ge3 − p̈d), and provide an upper bound resorting to the spectral norm of ∆

given by

∥∆∥ ≤ 2∥([qve×] + q4e I)[qve×]∥∥ϑ∥ = 2∥ϑ∥∥qve∥ ≤ 2max(∥ϑ∥)∥qve∥, (30)
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which is a strictly increasing class-K function [34]. Keep in mind that similar constraints on
∆ can be derived using alternative attitude parameterizations.

The desired quaternion qd is obtained by equating u∗ in (27) with the output of the
feedback law u∗ (13), which gives

u∗ = − T
m

e3 + RT
d (ge3 − p̈d) ≡

u∗ +
T
m

e3
︸ ︷︷ ︸

ut

= R(qθϕd)
T R(qψd)

T(ge3 − p̈d)︸ ︷︷ ︸
t

≡

ut = R(qθϕd)
Tt,

(31)

where R(qψd) is the rotation matrix defined in quaternions that represents the chosen yaw
angle, i.e., qψd , of the quadrotor, and R(qθϕd) denotes the desired rotation matrix defined
by the equivalent quaternion for a roll rotation followed by a pitch rotation, i.e., qθϕd.
The thrust is computed as

T = m
[√

∥t∥2 − u∗
1

2 − u∗
2

2 − u∗
3

]
, (32)

and the desired quaternion command qθϕd is given by

qθϕd =




c2
c1

−c1c2
1




1√
c2

1 + 1
√

c2
2 + 1

, (33)

where 



c1 =
−t3+

√
−ut1

2+t2
1+t2

3
ut1+t1

, ∥t∥2 − t2
2 ≥ ut1

2, g + p̈d3 > 0

c2 =
−ut3+

√
−t2

2+u2
t2+u2

t3
ut2+t2

, ∥ut∥2 − t2
2 ≥ ut1

2, ∥t∥2 > u∗
1

2 + u∗
2

2
,

The time derivative of the desired quaternion (33) given by

q̇θϕd =




ċ2qθϕd4
+ c2q̇θϕd4

ċ1qθϕd4
+ c1q̇θϕd4

−(ċ1c2 + c1 ċ2)qθϕd4
− c1c2q̇θϕd4

q̇θϕd4


, (34)

where
q̇θϕd4

= −qθϕd2

ċ1

c2
1 + 1

− qθϕd1

ċ2

c2
2 + 1

. (35)

The guidance law (33) only specifies the desired roll and pitch, but it can be extended
to include the desired yaw. Let qψd represent the desired yaw quaternion, then the desired
quaternion can be defined as follows:

qd = qψd ⊗ qθϕd , (36)

where the operator ⊗ defines the quaternion product, i.e.,

q1 ⊗ q2 ≜
[

q24 q1v + q14 q2v − [q2v×]q1v
q24 q14 − qT

2vq1v

]
, (37)
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and
qψd =

[
0 0 sin(ψd

2 ) cos(ψd
2 )
]T

. (38)

Remark 1. The stability proof presented in this section does not take into consideration the coupling
term ∆, which is a requisite when position and attitude are coupled together. In Sections 3.2 and 3.3,
the coupling term ∆ is addressed while the attitude controller is deduced and the stability analysis
for the overall system is discussed.

The reference angular velocity ωd and its time derivatives along the body’s x and y
axes can be readily expressed as functions of ut, t, and their respective time derivatives.
In fact, this can be deduced from the kinematic relationship q̇ = Ξ(q)Ω, which implies that

ωd =WΞ(qd)
T q̇d,

ω̇d =W
(

Ξ(q̇d)
T q̇d + Ξ(qd)

T q̈d

)
= WΞ(qd)

T q̈d,
(39)

where

W =




0 1 0 0
0 0 1 0
0 0 0 1


,

q̇d = q̇ψd ⊗ qθϕd + qψd ⊗ q̇θϕd ,

and
q̈d = 2q̇ψd ⊗ q̇θϕd + q̈ψd ⊗ qθϕd + qψd ⊗ q̈θϕd .

It is clear that the extracted attitude is time-varying, and that ωd and ω̇d can be derived
using the expressions of u̇t and üt, which are functions of available signals.

3.2. Saturated Control Law

The control law derived in Section 3.1 requires certain conditions to be met. First, due
to the nature of the aircraft, the thrust T must be positive, which leads to the following
control law requirement

∥u∥ < ∥ge3 − p̈d∥ = ∥t∥. (40)

Secondly, the rotors and fans can only manage a maximum thrust, i.e., T < Tmax ∈ R>0,
which is equivalent to the next requirement

u∗2
1 + u∗2

2 +

(
u∗

3 +
Tmax

m

)2
> ∥ge3 − p̈d∥2. (41)

In the context of a well-defined thrust magnitude, the inequalities ∥t∥2 − t2
2 ≥ ut1

2 and
∥ut∥2 − t2

2 ≥ ut1
2 can be considered equivalent. Consequently, the last necessary bound

for u comes from the quaternion extraction (33) and is given by −ut1
2 + t2

1 + t2
3 ≥ 0, which

is equivalent to the following inequality

u∗2
1 ≤ ∥ge3 − p̈d∥2 − t2

2. (42)

In Figure 4, the allowed space for input u considering u∗
2 = 0 is depicted in light blue and

gray. Due to the complexity of finding a smooth saturation function that guarantees these
bounds, one could saturate u within the gray space; see Figure 4, i.e.,





∥u∥ < ∥ge3 − p̈d∥
u∗2

1 ≤ ∥ge3 − p̈d∥2 − t2
2

u∗
3 >

Tmax
m − ∥ge3 − p̈d∥

, (43)

or even to choose the maximum possible radius sphere around the origin.
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Figure 4. Two-dimensional bounds for the input u, considering u∗
2 = 0, according to (43) in gray.

The total admissible area also aggregates the light blue area, which results from (40) (red circle),
(41) (blue circle), and (42) (green lines).

To accomplish the requirements in (43), one may employ the following smooth satura-
tion function:

s(x, k) = x
(∥x∥p

kp + 1
)− 1

p

︸ ︷︷ ︸
κ

= xκ(x), (44)

where k > 0 is the saturation limit, and p > 0 adjusts the slope transition between linear
and saturated regions; see Figure 5.

-2k −k 0 k 2k
−k

0

k

s(
x)

-2k −k 0 k 2k
0

0.5

1

x

d dx
s(

x)

Figure 5. Saturation function (44) and the respective derivative for p = 30.

Given (43) and (44), the saturated control law is designed as follows:

usat = −s
(

RTKpep + RTKvRev, ε1kmin

)
− s
(

RTKηηs, ε2kmin

)

= −s(u1, ε1kmin)− s(u2, ε2kmin)
, (45)

where

η̇s =
[
KT

v MT I
]
PT

s

[
R 0
0 R

][
s(u1, ε1kmin)

T eT
v

]T
+ cKvK−1

p Rs(u1, ε1kmin), (46)

M =
d

du1
s(u1, k) = κ(u1)

(
I − ∥u1∥p−2

∥u1∥p + kp u1uT
1

)
, (47)
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with 0 < eig(M) ≤ 1, Ps =

[
a −b
−b c

]
, a = aI, b = aK−1

v Kp, c = cI, where a ∈ R and

c ∈ R can be defined by the user such that c > aK2
pK−2

v ,

kmin = min
(
∥ge3 − p̈d∥,

√
∥ge3 − p̈d∥2 − t2

2,
Tmax

m
− ∥ge3 − p̈d∥

)
, (48)

and ε1 ∈ R>0, ε2 ∈ R>0 define the allowed saturation limits between each saturation
function and satisfy ε1 + ε2 = 1.

Theorem 2. Let the dynamics of the position error be described by (11). Suppose that the equilibrium
qve = 0 of q̇ve = f (qve) is GAS and LES and that the gain matrices Kp = kp I, Kv = kv I,
and Kη = kη I, where kp ∈ R, kv ∈ R, and kη ∈ R. The closed-loop system that results from
applying the saturated feedback law (45) achieves global asymptotic stabilization, driving both
position and velocity errors to zero for any c = cI and a = aI chosen such that c > aK2

pK−2
v .

Proof. The proof can be found in Appendix B. □

Remark 2. The inclusion of the plant integrator ηs allows the control system to manage constant
uncertainties within the dynamic model. For this particular scenario, the Lyapunov function from
the preceding theorem can be adapted to account for a constant bias in the position acceleration
dynamics. This adaptation can be achieved by employing the methodologies outlined in [20,21] and
adjusting them for the application of normed saturation functions. This implies that the proposed
system is capable of handling a disturbance b ∈ R3 provided that ∥b∥ < ϵ2kmin.

The preceding theorem guarantees that s(u1) asymptotically converges to zero. This
implies that there exists a time t > 0 at which s(u1) tends to u1, entering the linear region.
Consequently, and assuming that ∆ also tends asymptotically to zero, the closed-loop
system (A4) can be reformulated as




ėp
ėv
η̇s


 =




0 R 0
−RTKp −[ω×]− RTKvR 0

w1 I w2R 0






ep
ev
ηs


−




0
I
0


s
(

RTKηηs, ε2kmin

)
, (49)

where w1 = a(kpkv − k2
vk−1

p ) + ckv and w2 = a(k2
v − 2kp) + c(k−1

p k2
v + 1).

Lemma 1. If one of the following inequalities are met:
{

1
2 (1 + s −

√
(s − 1)(s + 3)) < kpk−2

v < 1
2 (1 + s +

√
(s − 1)(s + 3))

kpk−2
v < 1

s−1
(50)

or {
kpk−2

v < 1
2 (1 + s +

√
(s − 1)(s + 3))

kpk−2
v > 2

(51)

where s = w2
w1

kv and, assuming that ∆ tends to zero asymptotically and exponentially locally, then
the Lyapunov function Vs1 (A8) is positive definite and its derivative negative semidefinite, and the
closed-loop system (A4) converges to (49).

Proof. The inequalities come to light by setting

c = k−1
v (a(k2

pk−1
v − kpkv) + w1) > ak2

pk−2
v ≡ a <

w1

kpkv
, (52)
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and

a =
w1(k3

v + kpkv)− w2kpk2
v

k2
p(2k2

v − kp)
> 0 ≡





kp

k2
v
< 1

s−1 , for kp

k2
v
< 2

kp

k2
v
> 1

s−1 , for kp

k2
v
> 2

. (53)

Then,

a <
w1

kpkv
≡ 1

2
(1 + s −

√
(s − 1)(s + 3)) < kpk−2

v <
1
2
(1 + s +

√
(s − 1)(s + 3)). (54)

The graphical illustration in Figure 6 showcases the range of gains concerning the s
ratio, from which Theorem 2 and Lemma 1 are satisfied.

0 1 2 3 4 5
0

1

2

3

4

5

s

kp

k2
v

(50)–(51)
1
s , Theorem 3 chosen line

1
s−0.5

Figure 6. Graphical representation of the inequalities from Lemma 1. The shaded region indicates the
allowable region for the modular integral feedback concerning the ratio kp

k2
v
.

Theorem 3. Let the dynamics of the position error be described by (11) and assume that ∆ → 0
asymptotically and exhibits exponential local convergence and that the gain matrices Kp = kp I,
Kv = kv I, and Kη = kη I, where kp ∈ R>0, kv ∈ R>0, and kη ∈ R>0. Additionally, let Rp = I
(22), which implies that Kp = PT

2 , Kv = P4, and Kη = PT
5 . Choose w1 = kp and w2 = kv, such

that s = k2
v

kp
in Theorem 1, and let

Kp =

√
2q1

2
I, Kv =

√
2

4

(√
q3 +

√
4q2 + q3 + 4

√
2q1

)
I, Kη =

√
2q3

2
I, (55)

where q1 ∈ R>0, q2 ∈ R>0, and q3 ∈ R>0. Then, the origin of the closed-loop system that
results from applying the saturated feedback law (45) is globally asymptotically stable and locally
exponentially stable as soon as ∥s(u1)∥ = ∥u1∥. Moreover, the feedback law is steady-state optimal
in the sense that it minimizes the cost function

J =
∫ ∞

0

1
2




xT
1




q1 I 0 0
0 q2 I 0
0 0 q3 I




︸ ︷︷ ︸
Qs

x1 + uTu




dt, (56)

in the linear region.

Proof. The proof can be found in Appendix C. □

Remark 3. The saturation law (45), as stipulated in Theorem 3, ensures global asymptotic stability
and local exponential stability for the system (11), with the assumption that ∆ converges to zero
asymptotically and locally exponentially. Moreover, it ensures steady-state optimal control within
the linear region of the saturation function and enables the computation of the thrust T and the
desired quaternion qd for every instance.
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3.3. Attitude Control—Quaternion

The attitude controller is designed via backstepping to cope with the coupling term ∆.
Suppose the desired orientation of the quadrotor is qd =

[
qT

vd q4d
]T

=
[
q1d q2d q3d q4d

]T.
The quaternion error is a four-dimensional vector, defined as follows:

eq = q ⊗ qd
−1 =

[
qve
q4e

]
∈ S3, (57)

where qd
−1 = [−qT

vd q4d]
T represents the inverse of the estimated quaternion rotation,

and the error (57) verifies (28).
Define the angular velocity error vector in the body-fixed frame as

eω := ω − R̃ωd ∈ R3, (58)

where ωd is the desired angular velocity. Take the derivative of (57) and (58), and define
the attitude tracking system by the kinematic differential equation

ėq =
1
2

[
q4e I3×3 + [qve×]

−qT
ve

]

︸ ︷︷ ︸
Ξ(eq)

eω (59)

and by the dynamic equation

ėω = −J−1[ω×]J + J−1τ + [eω×]R̃ωd − R̃ω̇d. (60)

Apply the following input-to-state linearization control law

τ = J
(

J−1[τn + ω×]J − [eω×]R̃ωd + R̃ω̇d

)
(61)

and rewrite (59)–(60) as follows:
{

ėq = 1
2 Ξ(eq)eω

ėω = τn
. (62)

Define the vectors of variables

x1 =
[
eT

p eT
v ηT

s

]T
, (63a)

and
x2 =

[
qT

ve 1 − |q4e|
]T

. (63b)

The objective is to drive x1 and x2 to zero. Note that, due to the dual quaternion represen-
tation, two equilibria exist, i.e., eq = [0 ± 1]. To cope with model imbalances, the control is
augmented with an integrator state

q̇i = qve. (64)

Remark 4. Incorporating plant integrators endows the control system to effectively handle un-
changing uncertainties inherent in the dynamical model. As long as these uncertainties are constant,
the control system can sustain its properties of stability in both position and attitude error. Never-
theless, when confronted with nonlinear uncertainties, such as those stemming from biased mass or
moment of inertia, additional measures are required. The introduction of nonlinear integrative or
adaptive terms into the control system emerges as a valuable recourse, effectively reinstating the
stability properties and addressing the effects of these nonlinear uncertainties [21].
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The quaternion parameter set is redundant due to the fact that a particular attitude of
a rigid body will always have two mathematical representations, involving a 2π rotation
about an axis relative to each other [35]. Only one of the equilibrium points is considered,
i.e., eq = [0 ± 1], as formalized with the assumption that follows.

Assumption 1. The scalar part of the quaternion error q4e maintains its signal for all times,
i.e., sgn(q4e(t)) = sgn(q4e(t0)) ∀ t .

In order to stabilize the equilibrium points of eq, the signum function, denoted as
sgn(x), is introduced

sgn(x) =

{
−1 , x < 0

1 , x ≥ 0
. (65)

Remark 5. In practical scenarios, control continuity is maintained as it hinges on the initial
condition q4e(t0). However, it is important to exercise caution if the initial quaternion error q4e(t0)
is zero and exposed to noise, as this may trigger unwinding behavior. This potential issue can be
relaxed through hybrid switching techniques, as detailed in [35,36]. Nonetheless, in a well-defined
trajectory, it is typically unrealistic to encounter an initial tracking error q4e that is nearly zero.

A candidate Lyapunov function is devised as

V2 = k1Vs1 + xT
2 x2 +

1
2

qT
i Kiqi, (66)

where Vs2 is defined in (A19), k1 is a positive gain to tune the effects of the coupling term,
and Ki ∈ R3×3 is a positive definite diagonal matrix.

Accounting for the coupling term ∆, the Lyapunov function Vs1 within the saturated
region, i.e., t < t1, is given by

V̇s1 = −k1xT
s Qmxs − k1K∆∆ (67)

where K∆ = (xT
s Ps
[
0 I

]T
+ 1

kc
s(u1l )

TKv). Exploiting the property in (28) and (29), the pre-
vious term can be rewritten as follows:

V̇1s = W(x1) + 2k1K∆([qve×] + q4e I)[ϑ×]qve, (68)

where W(x1) = −k1xT
s Qmxs. The time derivative of V2 is given by

V̇2 =W(x1) + 2k1K∆([qve×] + q4e I)[ϑ×]qve

+ sgn(q4e(t0))qT
veeω + qT

i Kiqve

= W(x1) + qT
ve

(
sgn(q4e(t0))eω + Kiqi

+ 2k1[ϑ×]([qve×]− q4e I)KT
∆

)
.

(69)

Applying the backstepping procedure, a new error is defined

x3 = sgn(q4e(t0))eω + 2k1[ϑ×]([qve×]− q4e I)KT
∆

+ Kqqve + Kiqi
, (70)

where Kq ∈ R3×3
>0 is a positive definite gain matrix, and a new Lyapunov function is defined as

V3 = V2 +
1
2

xT
3 x3, (71)
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with time derivative

V̇3 = W(x1)− qT
veKqqve + xT

3

(
sgn(q4e(t0))τn

+(I + Ki)qve + 2k1[ϑ̇×]([qve×]− q4e I)KT
∆

+2k1[ϑ×]([q̇ve×]− q̇4e I)KT
∆

+2k1[ϑ×]([qve×]− q4e I)K̇T
∆ + Kqq̇ve

)
. (72)

The actuation τn can now be set to cancel the coupling terms and to render the
Lyapunov function V̇3 negative semidefinite. Define the actuation as follows:

τn = sgn(q4e(t0))
(
− 2k1[

...p d×]([qve×]− q4e I)KT
∆

−2k1[ϑ×]([q̇ve×]− q̇4e I)KT
∆

−2k1[ϑ×]([qve×]− q4e I)K̇T
∆

−(I + Ki)qve − Kqq̇ve − Kωx3

)
,

(73)

where Kω ∈ R3×3
>0 is a positive definite gain matrix.

Theorem 4. Let the quadrotor kinematics and dynamics be described by (6)–(7), let pd(t) ∈ C4

and ψd(t) ∈ C2 be the reference trajectory, and consider the transformation of error coordinates
xs, x2, x3, given by (63a), (63b) and (70), respectively. The closed-loop system that results from
applying the inputs (45) and (61) achieves trajectory tracking by guaranteeing that the errors
x1, x2, and x3 converge to zero. Additionally, almost uniform global asymptotic stability of
(xs, u2l , qve, qi, eω) = 0 is established.

Proof. The closed-loop quadrotor error dynamic system, with state variables xs, u2l , xηs,
x2, and x3, defined as (63a), (63b), and (70), respectively, with Vs1 devised according to
Theorem 2, admits the Lyapunov function V3 (71) with time derivative

V̇3 =− k1xT
s Qmxs − qT

veKqqve − xT
3 Kωx3 = Y1 ≤ 0 . (74)

Since V̇3 ≤ 0, which implies that V3 ≤ V3(0) is compact, and according to [32] [Theorem
4.8], the set (xs, u2l , qve, qi, x3) = 0 is uniformly stable. Resorting to the LaSalle–Yoshizawa
Theorem [32] [Theorem 8.4], it follows from (74) that lim

t→∞
xs(t) = lim

t→∞
qve(t) = lim

t→∞
x3(t) = 0

and lim
t→∞

q4e(t) = sgn(q4e(t0)).

To show uniform asymptotic stability of the equilibrium (xs, u2l , qve, qi, x3) = 0, one
can resort to the Nested Matrosov Theorem [37] [Theorem 1]. Define the following auxiliary
function V4 = 1

2 eT
ωeω, with time derivative V̇4 = eT

ωτn. By inspection, τn and its time
derivative are bounded, and within the set Y1 = 0, V̇4, yield

V̇4 = −eT
ωKqeω = Y2 ≤ 0 ∀ {(xs, u2l , qve, qi, x3) ∈ R18 : Y1 = 0}. (75)

Consider the function V5 = uT
2l

xv, with time derivative

V̇5 = −uT
2l

s(u2l , ϵ2kmin) = Y3 ≤ 0 ∀ {(xs, u2l , qve, qi, x3) ∈ R18 : Y1 = 0, Y2 = 0}. (76)
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Finally, consider the last auxiliary function V6 = sgn(q4e(t0)qT
i eω, which satisfies

V̇6 = sgn(q4e(t0)qT
veeω + qT

i

(
− d

dt
(2k1[ϑ×]([qve×]− q4e I)KT

∆)

− (I + Ki + KωKq)qve − (Kq(q4e I3×3 + [qve×]) + sgn(q4e(t0)Kω)eω

− Kω2k1[ϑ×]([qve×]− q4e I)KT
∆ − KωKiqi)

=− qT
i KωKiqi = Y4 ≤ 0 ∀ {(xs, u2l , qve, qi, x3) ∈ R18 : Y1 = 0, Y2 = 0, Y3 = 0}

. (77)

By setting Yi = 0 for i = 1, 2, 3, 4 and applying the Nested Matrosov Theorem [37]
[Theorem 1], almost uniform global asymptotic stability of (xs, u2l , qve, qi, eω) = 0 is estab-
lished, since the closed-loop system exhibits a zero measure point for qT

d q = 0 [26].
Therefore, by leveraging the Lyapunov coordinate transformation T, it can be as-

serted that the equilibrium point of the closed-loop system (A4) is also almost globally
asymptotically stable.

The preceding theorem establishes global asymptotic stability for eq = [0 sgn(q4e(t0))]
in the context of classical solutions. Nonetheless, it is crucial to exercise caution as this
solution is susceptible to arbitrarily small measurement noise near q4e = 0. This vulnera-
bility is underscored in [36], where it is asserted that initial conditions in close proximity
to the discontinuity maintain the state near the discontinuity, implying that the condition
q4e = 0 represents a set of zero measure, rendering the system almost global. This issue
can potentially be addressed through hybrid switching techniques, as demonstrated in [38].
However, in practical scenarios where the generated path is well-defined, it is unrealistic
for the initial tracking error q4e to be close to 0, and it has been disregarded in this context.

Keep in mind that constructing the Lyapunov function Vs1 from scratch is possi-
ble by utilizing the Lyapunov transformation T alongside the position system errors ep
and ev. This would yield a result akin to applying the transformation at the end of
Theorems 2 and 4. However, such an extension of the proof is unnecessary, as the Lyapunov
transformation T inherently preserves the system’s properties.

Remark 6. The current approach utilized the principles of backstepping theory to eliminate
the interconnection term between position and attitude. Nevertheless, according to Theorem 2,
any attitude controller relying exclusively on an attitude parameterization error with asymp-
totic and locally exponential stability would render the overall system, i.e., position and attitude,
asymptotically stable.

4. Implementation

As detailed in Section 3.1, the matrix gains Kp, Kv, and Kη are derived using the LQR
method applied to the LTI system (14), and they must adhere to the constraints depicted by
the shaded region in Figure 6. An alternative approach involves selecting a specific line,
such as 1

s , and computing the LQR solution in a manner consistent with Theorem 3.
In order to have some similar sensibility on the gains for the attitude system, the fol-

lowing similar LTI system is considered to compute Ki, Kq, and Kω




ẋq
ẋω

ẋqi


 =




0 1
2 I 0

0 0 0
I 0 0






xq
xω

xη


+




0
I
0


u. (78)

By performing the closed-loop system on the attitude system consisting of qve, eω, and qi,
and considering only small angle variations, the following system is devised:




ẋq
ẋω

ẋqi


 =




0 1
2 I 0

−
(

I + Ki + KωKq
)

︸ ︷︷ ︸
K1

−
(
Kω + Kq

)
︸ ︷︷ ︸

K2

−KωKi︸ ︷︷ ︸
K3

I 0 0







xq
xω

xη


, (79)
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where K1, K2, and K3 are the LQR gains for the system (78). With some algebraic computa-
tions, Ki, Kq, and Kω are retrieved as follows:





Kω = (K3 + K2)K−1
1

Ki = K1(K3 + K2)
−1K3

Kq = K2 − (K3 + K2)K−1
1

, (80)

where K1 and K3 + K2 should be invertible, and Ki, Kq, Kω should check positive definite-
ness. By considering diagonal input and state matrices while performing the LQR, this is
most likely the case, but one must always check. The desired angular velocity ωd and its
derivative are computed through (39).

Control Application-Steps

A complete step-by-step approach is outlined below to simplify the applicability of
the proposed control law:

1. Begin by computing the controller gains, as outlined in the initial part of Section 4;
2. Set the maximum thrust Tmax and choose p and ε ∈]0, 1[ such that | d

dx s(x, εkmin)| ≲ 1;
3. Define the values of ε1 and ε2 and calculate the position saturation law, usat, using the

Equation (45). From this, extract the values of T using (32), qd following (36), and also
determine ωd and ω̇d based on (39);

4. Finally, compute τn using (73), and calculate the actuation τ using (61).

5. Simulation Results

In this section, simulation results are presented to illustrate the performance of the
presented control law. The model was simulated in Simulink at a rate of 100 Hz using the
equations of motion (6)–(7). The vehicle starts with the states at zero, while the desired
position starts at pd(0) =

[
−1 −1 −0.8

]T . At 4.5 s, the vehicle takes off, and the position
controller is activated at 6 s. Then, the vehicle hovers for around 6 s, and the following
lemniscate of Gerono is generated:

pd(t) = 2




cos(ψd(t))
sin(2ψd(t))

2
cos(ψd(t))

3


−




2.7
1.2

1.75


 with ψd(t) =

3π

32
t, (81)

and it finishes after two laps.
To ensure smooth transitions, a second-order low-pass filter with a natural frequency

of 2 Hz is applied to the trajectory. The vehicle mass is m = 0.55 kg, the inertia ma-
trix is J = diag(2.2 2.9 5.3)10−3, the thrust is chosen to be bound by Tmax = 6.5 N,
which implies a kmin ≈ 2, the parameter p of the saturation function is set to p = 30,
and ε1 = 0.8. The transition point from the linear to saturated region is ε = 0.8, where
| d

dx s(x, 0.8kmin)| ≈ 0.999. The controller parameters are presented in Table 1, which are
used to compute the controller gains, as described in Section 4. The gains for the position
controller are selected in accordance with Theorem 3.

Table 1. Controller parameters: Input and state matrices to compute the controller gains, as described
in Section 4 and Theorem 3.

q1 (55) q2 (55) q3 (55) Qq Qω Qqi Rq k1

93 20 0.1 diag(1 1 1)10−2 diag(5.5 5.5 5.5) diag(1 1 1) diag(1 1 8)10−4 0.02

The simulation results are presented in Figures 7–9. In Figure 8, the tracking errors con-
verge exponentially to zero, which shows that the proposed solution is capable of following
paths. The transient convergence to the pass is less than 3 s. The controller provides zero
position and velocity steady-state errors. The rotor, thrust, and moment actuations can be
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seen in Figure 9, respectively. As illustrated in the bottom left plot of Figure 9, the position
controller saturates during the take-off and stays in the imminence of saturation at the time
when the trajectory is given. In comparison, the newly proposed position saturation law
exhibits a higher convergence rate when contrasted with a conventional nested saturation
law [39], as demonstrated in Figure 10. The notable discrepancy in convergence behavior
within the saturated region arises from the unique configuration where the position error
term is placed on the outer saturation function, as also performed in [12]. This is a departure
from the typical nested approach, where the velocity error is positioned on the outer part of
the saturation function. Furthermore, the controller is evaluated against the position satura-
tion law described in [40]; see Figure 10. To ensure an equitable assessment, a comparison
is made excluding the integrative element of the controller, since the controller proposed
in [40] does not have integrative action. The key distinction lies in the saturation approach,
where the proposed controller saturates the norm of the input, whereas the controller
from [40] applies saturation to each input component individually. The proposed controller
exhibits improved convergence rates in the step response, particularly when the step input
occurs in one or two directions, as depicted in Figure 10. This enhanced performance can
be attributed to the controller’s ability to allocate a larger control action when fewer than
three directions are saturated, resulting in faster convergence rates.

Version March 30, 2024 submitted to Drones 19 of 34
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Figure 7. Simulated tridimensional response obtained with the quadrotor during trajectory tracking
with the proposed nonlinear control approach, from top to bottom: a) Tridimensional; b) Yaw angle.
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Figure 8. Error state variables during the simulation.
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Figure 9. Thrust, moments, and norm of the position saturation control law resulting from the control
law implemented during the simulation.
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Figure 10. Transient performance comparison of the proposed position saturation law with, from top
to bottom, (a) a nested solution as per [39] and (b–d) the controller detailed in [40] under various

initial conditions. (a) Comparison with the nested solution in [39] with pd =
[
−2 −2 −2

]T
. (b)

Comparison with the position controller in [40] with pd =
[
−2 −2 −2

]T
. (c) Comparison with

the position controller in [40] with pd =
[
−5 0 0

]T
. (d) Comparison with the position controller

in [40] with pd =
[
0 −5 −5

]T
.

Robustness Comparisons

To rigorously evaluate the proposed controller’s effectiveness in counteracting constant
biases within the position acceleration dynamics, two distinct scenarios were analyzed.
For both scenarios, the system’s maximum tolerable bias threshold was set to b < 1,
meaning that ϵ2kmin = 1, with kmin = 3. The system is initialized at a zero position and a
step pd =

[
1 1 −0.8

]
is applied.
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In the first scenario, the disturbance is characterized by b = 1√
3
[0.95 0.95 − 0.95]T .

Comparative results with the robust position controller from [14] are depicted in Figure 11.
This figure illustrates the progression of the integrative saturation action, demonstrating
that both controllers successfully converge and neutralize the disturbance. While the
position error diminishes to zero for both controllers, the one proposed in this work
exhibits superior transient performance. One should notice that the controller in [14] does
not account for the bounded normed saturation function, which is the reason why each
saturation function is applied individually to each vector element and is bounded by ϵ2kmin√

3

or ϵ1kmin√
3

such that the bound is preserved for all time.
It is important to observe that the controller described in [14] does not incorporate

a bounded normed saturation function. Consequently, the saturation function must be
applied separately to each element of the vector and bounded by ϵ2kmin√

3
or ϵ1kmin√

3
to ensure

that the overall bound is maintained at all times. This requirement may be seen as a
drawback, as evidenced in the second scenario that follows.
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Figure 11. Comparison of the proposed position controller with the position controller presented
in [14]. The upper plot demonstrates the integration action compensating for a constant system bias
b = 1√

3
[0.95 0.95 − 0.95]T , with the lower plot illustrating the norm of the position error.

The second scenario considers a disturbance b = [0.65 0 − 0.65]T , with ∥b∥ = 0.92.
The outcomes of this test are illustrated in Figure 12. The results demonstrate that the
proposed controller successfully manages to cope with the disturbance, driving the position
error zero. In contrast, the position controller from [14] fails to achieve this, as its saturation
function is unable to handle biases in individual elements exceeding 1√

3
. Essentially,

the utilization of a normed bound function allows the system to more effectively distribute
the integrative capacity across each variable.
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Figure 12. Comparison of the proposed controller with the controller presented in [14]. The upper plot
demonstrates the integration action compensating for a constant system bias b = [0.65 0 − 0.65]T ,
with the lower plot illustrating the norm of the position error.

6. Experimental Results

The experimental results attained with the coupled position (32), (45) and attitude
controllers (61), on board an AR.Drone 2.0, are presented in Figures 13–15. This particular
quadrotor offers the capability to implement custom software that can override the factory
control system through a Simulink package [41]. This custom software grants direct access
to the Pulse Width Modulation (PWM) of each motor. For the experiment, a position
tracking system (Qualisys) alongside the onboard IMU of the vehicle was exploited to
provide real-time accurate measurements at 100 Hz of position, velocity, quaternion angles,
and angular velocity. To allow a fair comparison, the controller parameters and the path
generated in the simulation are also used for the real-time experiment.
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Figure 13. Tridimensional response (upper) and yaw angle response (lower) obtained with the
quadrotor during trajectory tracking.
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Figure 14. Error state variables during the experiment.

Similarly to the simulation results, the quadrotor starts at 4.5 s from the ground floor
and aims to follow a lemniscate path for position and a ramp for the yaw angle. The vehicle
starts far off from the initial position in order to trigger saturation of the position control
law. In Figure 13, it is shown that the controller was successfully able to track the given path
displayed in red. The actual trajectories are displayed in black. The transient convergence to
the path occurs within 3 s, and the steady-state error is fewer than 10 cm. The system errors,
depicted in Figure 14, converge to the vicinity of zero and remain bounded. The actuations
are plotted in Figure 15. The experimental results exhibit an analogous resemblance to the
simulation results; see for comparison Figures 7 and 13 and Figures 9 and 15.
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Figure 15. Thrust, moments, and norm of the position saturation control law resulting from the
control law implemented during the experimental validation.

Table 2 details the root mean square errors (RMSEs) obtained during the steady state
of the trajectory. Furthermore, the entire experiment was recorded, and the result can be
seen at https://youtu.be/lg_5mCDDU8s (accessed on 17 April 2024).

Table 2. Root mean square error obtained in the experimental test.

px py pz

RMSE (m) 0.0373 0.0580 0.0189

https://youtu.be/lg_5mCDDU8s
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7. Conclusions

This paper presented a tracking controller for a quadrotor with steady-state optimal
properties, developed on the body-fixed frame and quaternion space. The controller stabi-
lizes the position and attitude of a rigid body robustly and almost globally asymptotically.
Through a specific set of transformation matrices, the positioning system is rendered LTI,
allowing the exploitation of linear control techniques that optimally stabilize it. To avoid
the physical limitations of the vehicle, during the thrust and attitude references extraction,
a saturation law with modular integrative action that bounds the norm of the position
input is devised, ensuring GAS and LES for the position system when paired with any
controller that achieves LES for the attitude system. At first, the position and attitude
are addressed separately. The origin of the saturation position controller exhibits global
asymptotic stability in the saturated region and exponential stability in the linear region.
The attitude controller, derived from the backstepping technique, tackles the effect of the
interconnection term ∆, which results in almost uniform global asymptotic stability of the
overall closed-loop system. Experimental and simulation results were shown to assess the
performance of the proposed controller.
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Appendix A

Take the time derivative of (20), which gives

Ṗ = ṪPTT + TP ṪT + TṖTT , (A1)

and the time derivative of T

Ṫ =




0 0 0
0 −[ω×]RT 0
0 0 0


. (A2)

Note that T−1 = TT . Substituting (20) and (A2) in (19) gives

−Ṗ =

a︷ ︸︸ ︷
TT ṪP +

b︷ ︸︸ ︷
P ṪTT +

c︷ ︸︸ ︷
PTT AT +

d︷ ︸︸ ︷
TT ATTP −

e︷ ︸︸ ︷
PTT BR−1

u BTTP +

f︷ ︸︸ ︷
TTQT

, (A3)
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with

a =




I 0 0
0 R 0
0 0 I






0 0 0
0 −[ω×]RT 0
0 0 0


P =




0 0 0
0 −R[ω×]RT 0
0 0 0


P

b =P




0 0 0
0 R[ω×] 0
0 0 0






I 0 0
0 RT 0
0 0 I


 = P




0 0 0
0 R[ω×]RT 0
0 0 0




c =P




I 0 0
0 R 0
0 0 I






0 R 0
0 −[ω×] 0

w1 I w2R 0






I 0 0
0 RT 0
0 0 I




=P




0 I 0
0 −R[ω×]RT 0

w1 I w2 I 0




d =




I 0 0
0 R 0
0 0 I






0 0 w1 I
RT [ω×] w2RT

0 0 0






I 0 0
0 RT 0
0 0 I


P

=




0 0 w1 I
I R[ω×]RT w2 I
0 0 0


P

e =P




I 0 0
0 R 0
0 0 I






0
I
0


RT R−1

p R
︸ ︷︷ ︸

R−1
u

[
0 I 0

]



I 0 0
0 RT 0
0 0 I


P

=P




0
I
0


R−1

p
[
0 I 0

]
P

f =




I 0 0
0 R 0
0 0 I






Qp 0 0
0 RTQvR 0
0 0 Qη






I 0 0
0 RT 0
0 0 I




=




Qp 0 0
0 Qv 0
0 0 Qη


 = Ql .

Appendix B

Proof of Theorem 2. Let position and velocity error dynamics subjected to the input satu-
ration u∗ = usat be given by

[
ėp
ėv

]
=

[
0 R
0 −[ω×]

][
ep
ev

]
+

[
0
I

]
usat −

[
0
∆

]
, (A4)

and consider for now there is no inner-loop tracking error, i.e., ∆ = 0. By applying the
Lyapunov transformation of coordinates

[
xp
xv

]
=

[
I 0
0 R

][
ep
ev

]
(A5)

to the closed-loop system (A4) results in the following LTI system with saturation input

ẋls =

[
ẋp
ẋv

]
=

[
0 I
0 0

][
xp
xv

]
+

[
0
I

]
usl , (A6)
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where
usl = Rusat = −s

(
Kpxp + Kvxv, ε1kmin

)
− s
(
Kηxηs, ε2kmin

)

= −s
(
u1l , ε1kmin

)
− s
(
u2l , ε2kmin

) , (A7)

and xηs = ηs. From here onwards, the second term in the saturation function s(x, k) will be
omitted. Hence, if usl achieves asymptotic stabilization for the system (A6), the stability
characteristics are then extended, through the Lyapunov transformation, to the system (11)
with saturated feedback law (45).

Inspired by [40], the following radially unbounded Lyapunov function is devised:

Vs1 =
1
2

xT
s Psxs +

1
kc

∫ ∥u1∥

0
µκ(µ)dµ +

1
kη

∫ ∥u2∥

0
µκ(µ)dµ, (A8)

where Ps =

[
a −b
−b c

]
, xs =

[
s(u1l )

T xT
v
]T , a = aI, b = bI, c = cI, and Kc ∈ R3×3

>0 is a

positive definite symmetric matrix. The time derivative is given by

V̇s1 =
[
s(u1l )

T xT
v
]
Ps

[
Mu̇1l

−s(u1l )− s(u2l )

]

+
1
kc

∥∥u1l

∥∥κ(u1l )
uT

1l∥∥u1l

∥∥ u̇1l +
1
kη

∥∥u2l

∥∥κ(u2l )
uT

2l∥∥u2l

∥∥ u̇2l

=xT
s Ps

[
M(Kpxv − Kv(s(u1l ) + s(u2l )))

−s(u1l )− s(u2l )

]

+
1
kc

s(u1l )
T(Kpxv − Kv(s(u1l ) + s(u2l ))) +

1
kη

s(u2l )
T u̇2l

=xT
s

([
aM(Kpxv − Kvs(u1l ))

−bM(Kpxv − Kvs(u1l ))

]
+

[
bs(u1l )
−cs(u1l )

]
+

1
kc

[−Kvs(u1l )
Kps(u1l )

])

− xT
s Ps

[
MKvs(u2l )

s(u2l )

]
− 1

kc
s(u1l )

TKvs(u2l ) +
1
kη

s(u2l )
T u̇2l

(A9)

By choosing kc = kpc−1, and

u̇2l = Kη

([
KT

v MT I
]
PT

s xs + KvK−1
p cs(u1l )

)
= Kηxη (A10)

the following expression is obtained:

V̇s1 =− xs

([
M 0
0 M

][
aKv − 1

2
(
aKp + Kvb

)

− 1
2
(
aKp + Kvb

)T bKp

]
+

[
cK−1

p Kv − b 0
0 0

])
xs

=− xT
s Qmxs.

(A11)

Since M (47) is positive definite, choosing b = K−1
v aKp, and any c such that c > aK2

pK−2
v ,

it is possible to verify that V̇s ≤ 0 is negative semidefinite. Since (A8) is radially unbounded,
then for any initial condition (s(u1l ), xv, u2)(0), the sublevel set

Vs1(u1l , xv, u2l ) ≤ Vs1(u1l , xv, u2l )(0)

is compact. It follows from [32] [Theorem 4.8] that the set {u1l = xv = u2l = 0} is globally
stable, and it follows from [32] [Theorem 8.4] that V̇s1(s(u1l ), xv) converges to 0; therefore,
each solution converges to 0 asymptotically. Then, the origin of the closed-loop system (A6)
is globally asymptotically stable.
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Accounting for the interconnection term ∆, the system (A6) can be written as

ξ̇ = f1(ξ) +
[
0 (R∆(e))T]T

ė = f2(e)
, (A12)

where ξ =
[
xp xv

]
, and e represents any parameterization of the attitude error. Notice that

∆(e) is bounded by a class-K function (30) and does not depend on ξ, and that V̇s1(xs, ∆)
can be bounded by

V̇s1(xs, ∆) ≤
(
d1
∥∥s(u1l )

∥∥+ d2∥xv∥
)
∥qve∥ ≤ max(d1, d2)∥xs∥∥qve∥

∥xs∥>1
≤ max(d1, d2)

Λmin(Ps)
∥qve∥

(
Λmin(Ps)∥xs∥2 +

1
kc

∫ ∥u1∥

0
µκ(µ)dµ +

1
kη

∫ ∥u2∥

0
µκ(µ)dµ

)

∥xs∥>1
≤ max(d1, d2)

Λmin(Ps)
∥qve∥Vs1.

(A13)

for some d1 and d2 ∈ R. Then, by following the proof in [34] [Theorem 4.7], the fact that
the system (A12) is forward complete [42] and due to the assumption that the equilibrium
e = qve = 0 of ė = a(e) is to be GAS and LES, it can be deduced that there exists a time
t > 0 for which ∥e∥ exponentially converges to zero. Consequently, there exists a constant
α ∈ R>0 and a function γ(·) ∈ K, such that

V̇s1(xs, ∆) ≤ max(d1, d2)

Λmin(Ps)
γ(∥qve(0)∥)e−αtVs1, (A14)

for ∥xs∥ > 1. This analysis establishes the boundedness of Vs1. Given that Vs1 is radially
unbounded, the boundedness of Vs1 implies the boundedness of ∥ξ∥. Hence, the GAS
of the equilibrium point (xs, u2l , qve) = (0, 0, 0) follows. Therefore, by leveraging the
Lyapunov coordinate transformation (A5), it can be asserted that the equilibrium point of
the closed-loop system (A4) is globally asymptotically stable.

Appendix C

Proof of Theorem 3. By choosing w1 = kp and w2 = kv, then s = k2
v

kp
, which satisfies the

initial inequality in Theorem 1. As a result, ∥u1∥ tends to zero asymptotically, and there
exists a time t > 0 at which the original system (A4) converges to the system (49).

Following the same logic as in the beginning of Theorem 2, if one applies the transfor-
mation of coordinates 


xp
xv
xη


 = TT




ep
ev
ηs


 (A15)

to the closed-loop system (49) results in the following LTI system with saturation input




ẋp
ẋv
ẋη


 =




0 I 0
0 0 0
PT

2 P4 0




︸ ︷︷ ︸
Als




xp
xv
xη


−




0
I
0




︸︷︷︸
Bls

usl︷ ︸︸ ︷
(PT

2 xp +P4xv + s(PT
5 xη︸ ︷︷ ︸

u2l

, ε2kmin)), (A16)

where PT
2 , P4, and P5 represent the LQR gains that minimize the cost function (56). These

gains correspond to the matrices derived from the positive definite solution of the following
Riccati equation

PAls + AT
lsP − 2PBlsBT

lsP = −Qs, (A17)
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where the solutions for P2, P4, and P5 are given by

P2 =Kp =

√
2q1

2
I,

P4 =Kv =

√
2

4

(√
q3 +

√
4q2 + q3 + 4

√
2q1

)
I,

P5 =Kη =

√
2q3

2
I,

(A18)

which is a subtly distinct solution compared with the conventional LQR solution, as in
this instance the state matrix Als in (A16) is dependent on matrix P . Hence, if usl achieves
asymptotic stabilization for the system (A16), the stability characteristics are then extended,
through the Lyapunov transformation T , to the closed-loop system (49).

A candidate unbounded Lyapunov function for system (A16) is

Vs2 = ktVs1 +
1
2

uT
slusl +

1
2

xT
v Kpxv (A19)

where kt ∈ R>0. The time derivative of (A19) is given by

V̇s2 = −ktxT
s Qmxs + uT

sl(M1u̇1l + M2u̇2l )− xT
v Kpusl (A20)

where M2 = d
du2l

s(u2l , ε2kmin) with
√

eig(M ′
2M2) ≤ 1 as in (47). According to Theorem 2

and Lemma 1, s(u1l ) enters the linear region in finite time. Meaning that after a t > t1,
s(u1l ) = u1l and u̇2l = Kηu1l . Consequently, V̇s2 can be written as

V̇s2
t>t1
= −

[
uT

1l
xT

v uT
sl

]



kt(aKv + cK−1
p Kv − b) −ktaKp − 1

2 KηM2

−ktaKp ktbKp 0
− 1

2 (KηM2)T 0 Kv




︸ ︷︷ ︸
Qm2




u1l
xv
usl




≤− Λmin(Qm2)
(∥∥u1l

∥∥2
+ ∥xv∥2 + ∥usl∥2

)
(A21)

which is negative semidefinite for any kt >
bkpk2

η

4kv(akv+ck−1
p kv−b)bkp−a2k2

p
, where b = ak−1

v kp,

and a and c are given in (53)–(52), respectively, for w1 = kp and w2 = kv. The Lyapunov
function (A19) admits for t > t1 the following upper bound:

Vs2≤ktΛmax(Pm)(
∥∥u1l

∥∥2
+ ∥xv∥2) +

kt

kc

∥∥u1l

∥∥2
+

kt

kη

1
κ(
∥∥u2l

∥∥)
∥∥s(u2l )

∥∥2
+

1
2
∥usl∥2 +

kp

2
∥xv∥2

≤(ktΛmax(Pm) +
kt

kc
)
∥∥u1l

∥∥2
+ (ktΛmax(Pm) +

kp

2
)∥xv∥2 +

kt

kη

1
κ(
∥∥u2l

∥∥) (∥usl∥+
∥∥u1l

∥∥)2 +
1
2
∥usl∥2

=(ktΛmax(Pm) +
kt

kc
+

kt

kη

1
κ(
∥∥u2l

∥∥) )
∥∥u1l

∥∥2
+ (ktΛmax(Pm) +

kp

2
)∥xv∥2 +

kt

kη

2
κ(
∥∥u2l

∥∥)∥usl∥
∥∥u1l

∥∥

+ (
1
2
+

kt

kη

1
κ(
∥∥u2l

∥∥) )∥usl∥2

=
[∥∥u1l

∥∥ ∥xv∥ ∥usl∥
]




ktΛmax(Pm) + kt
kc
+ kt

kη

1
κ(∥u2l∥)

0 kt
kη

1
κ(∥u2l∥)

0 ktΛmax(Pm) +
kp
2 0

kt
kη

1
κ(∥u2l∥)

0 1
2 + kt

kη

1
κ(∥u2l∥)




︸ ︷︷ ︸
Pu



∥∥u1l

∥∥
∥xv∥
∥usl∥




≤Λmax(Pu(
∥∥u2l

∥∥))
(∥∥u1l

∥∥2
+ ∥xv∥2 + ∥usl∥2

)

≤Λmax(Pu(d3Vs2(0)))
(∥∥u1l

∥∥2
+ ∥xv∥2 + ∥usl∥2

)

(A22)
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Since Vs2 ≤ Vs2(0), one can show that
∥∥u2l

∥∥ ≤ d3Vs2(0) for some d3 ∈ R>0. Consequently,
one can write

V̇s2

Vs2
≤ − Λmin(Qm2)

Λmax(Pu(d3Vs2(0)))
. (A23)

It follows that the origin of the closed-loop system (A16) is globally exponentially stable.
Therefore, leveraging the Lyapunov coordinate transformation T, it can be asserted that
for w1 = kp, w2 = kv, and Kp, Kv, and Kη given by (55), the equilibrium point of the
closed-loop system (49) is globally exponentially stable, as there is time t > t2 such that
s(u2, ε2kmin) = u2, meaning that the closed-loop system will converge to




ėp
ėv
η̇s


 =




0 R 0
−RTKp −[ω×]− RTKvR −RTKη

Kp KvR 0






ep
ev
ηs


, (A24)

which falls under the systems outlined by Theorem 1.
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