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Abstract: The application of computer vision in conjunction with GPS is essential for autonomous
wind turbine inspection, particularly when the drone navigates through a wind farm to detect
the turbine of interest. Although drones for such inspections use GPS, our study only focuses on
the computer vision aspect of navigation that can be combined with GPS information for better
navigation in a wind farm. Here, we employ an affordable, non-GPS-equipped drone within an
indoor setting to serve educational needs, enhancing its accessibility. To address navigation without
GPS, our solution leverages visual data captured by the drone’s front-facing and bottom-facing
cameras. We utilize Hough transform, object detection, and QR codes to control drone positioning
and calibration. This approach facilitates accurate navigation in a traveling salesman experiment,
where the drone visits each wind turbine and returns to a designated launching point without relying
on GPS. To perform experiments and investigate the performance of the proposed computer vision
technique, the DJI Tello EDU drone and pedestal fans are used to represent commercial drones and
wind turbines, respectively. Our detailed and timely experiments demonstrate the effectiveness of
computer vision-based path planning in guiding the drone through a small-scale surrogate wind farm,
ensuring energy-efficient paths, collision avoidance, and real-time adaptability. Although our efforts
do not replicate the actual scenario of wind turbine inspection using drone technology, they provide
valuable educational contributions for those willing to work in this area and educational institutions
who are seeking to integrate projects like this into their courses, such as autonomous systems.

Keywords: autonomous drone; Tello EDU drone; object detection; path planning; inspection; wind
turbine; vision positioning system; snake path planning; simulated annealing

1. Introduction

With the increasing deployment of wind energy as a renewable power source, the
maintenance and inspection of wind turbines have become crucial. It is estimated that
cumulative operation and maintenance (O&M) costs can represent 75–90% of the total
turbine’s investment cost [1]. Offline monitoring requires that the machinery be taken out
of service for inspection by maintenance personnel, which is inefficient in most applications.
Generally, these offline inspections are scheduled at regular intervals and consist of routine
procedures. Research suggests that optimal inspection intervals for visual inspections
should occur every three months [2], and a significant portion of inspection costs arises
from the manual labor required to ascend the structure and the energy loss incurred when
a turbine must be taken out of service for significant periods. Therefore, unmanned aerial
vehicles (UAVs) have emerged as a promising technology for efficient and cost-effective
wind turbine inspection [3–5]. The cost benefits of using drone technologies include
decreasing injury liability risks and reducing offline time. For drone routing, path planning
plays a pivotal role in the rapidly growing UAV applications [6] and is used in optimizing
the inspection process, ensuring thorough coverage of a wind farm [7], and improving
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overall inspection efficiency. The significance of path planning in wind turbine inspection
can be summarized in the following key points:

1. Maximizing inspection coverage: Path planning algorithms help determine the most
efficient routes for drones to follow while ensuring complete coverage of the wind
turbine farms [8]. A well-developed path planning algorithm can ensure thorough
inspection and reduce the risk of undetected turbines by minimizing the overlaps and
avoiding missed areas.

2. Time and cost efficiency: Proper path planning enables drones to navigate optimal
routes based on relative distances and weather, minimizing unnecessary flight time
and energy consumption [9]. By reducing the inspection time, path planning con-
tributes to cost savings and increases the overall efficiency of wind turbine inspection.

3. Collision avoidance and safety: Path planning algorithms incorporate collision avoid-
ance mechanisms to prevent accidents and ensure the safety of the drone, wind
turbine, and surrounding structures [10]. By considering the physical constraints and
obstacles in the environment, path planning algorithms guide drones in a safe and
controlled manner.

4. Data accuracy and consistency: Well-planned inspection paths facilitate consistent
data collection, ensuring uniform image and sensor data quality around the points of
interest [11]. This improves data collection for machine learning (ML) model training
and enables accurate results when the trained ML models are tested for crack and
anomaly detection.

Currently, wind turbine inspections using drones require taking the turbine out of
service to prevent damage from drones that are manually flown by pilots using controllers.
Images of the turbine structure are taken and then analyzed by personnel for cracks
and anomalies. Newer methods involve using ML models in collected datasets for the
automated detection of surface blade cracks [12,13]. Furthermore, the latest methods
are accomplished via autonomous drones, which replace human flight control for visual
navigation [14,15] in conjunction with deep learning for damage inspection [16].

Drone automation is a relatively new field of research, especially when integrated
with computer vision techniques to detect wind turbines [17] and track large-scale turbine
blades in the aerial shooting environment [18].

Research on computer vision-based drone path planning is gaining significant interest
for several reasons:

1. Indoor navigation: GPS signals are often unreliable indoors due to signal blockage or
multipath effects. Computer vision allows drones to navigate indoor environments
where GPS signals are weak or nonexistent [19].

2. Precision and accuracy: Computer vision enables drones to perceive their surround-
ings with high precision, allowing for obstacle avoidance and enhanced path planning
when combined with GPS data. This is crucial for tasks that require precise move-
ments, such as inspection of infrastructure or delivery in dense urban areas [4,15].

3. Real-time adaptability: Computer vision systems can process real-time data from
cameras, enabling drones to adapt their paths on the fly, based on changing environ-
mental conditions or unexpected obstacles. This adaptability is essential for safe and
efficient drone operations [20].

4. Security: GPS signals can be susceptible to jamming or spoofing attacks, compro-
mising the security of drone navigation [21]. Computer vision-based systems are
less vulnerable to such attacks, enhancing the security of drone operations. Thus,
taking advantage of the combination of GPS data and computer vision through the
live camera feed of the drone is beneficial.

5. Collaborative swarm robotics: Drones often work in swarms for environmental moni-
toring or search and rescue missions. Computer vision enables drones to communicate
and coordinate with each other, leading to more efficient swarm behavior without
relying solely on GPS signals [22].
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6. Research and development: Advancements in computer vision algorithms and hard-
ware technology have opened up new avenues for research and development. Re-
searchers are exploring innovative techniques such as simultaneous localization and
mapping (SLAM) [23] and deep learning-based object recognition to enhance drone
navigation capabilities.

The educational objective of our study is to provide a cheap and easily accessible
manner to learn about computer vision and path planning in the area of UAVs. Thus, we
simplified the problem by making a surrogate case in an indoor environment. Using a
low-cost drone and pedestal fans in place of turbines, the cost of a GPS module is eliminated
along with the regulations of large-scale operations. The Tello EDU drone from the educa-
tional division of DJI products was selected for the surrogate study due to its educational
potential in autonomous systems, computer vision, and control engineering [24]. This
drone is made by Ryze Technologies but uses a DJI flight control system and Intel processor,
which allows it to be programmable by the Tello SDK. The Tello SDK gives this surrogate
project the ability to provide a lot of course material and student enrichment in future
courses [25].

The computer vision-aided GPS approach will become crucial when the drones under-
take long-range journeys to inspect turbines within a wind farm. In such cases, while GPS
coordinates assist the drone in reaching the vicinity of the turbines, they do not disclose
the turbine’s yaw or the blade orientation. Such visual information is required to establish
path planning in a new coordinate system originating from the hub, which is essential
for inspecting turbine blades [4]. While our manuscript does not address the entire scope
of this challenge, it focuses on an exploratory path-planning approach that is reliant on
computer vision rather than GPS.

Previous research on autonomous drone-based wind turbine inspection [4,15] has
utilized techniques such as Hough transforms and object detection for visual navigation.
In our study, we employ both methods to provide feedback to the autonomous system,
enabling the drone to adjust its position in real time based on visuals from both frontal and
bottom-facing perspectives. In a scalable implementation, these methods could complement
GPS for comprehensive and autonomous inspection. Since our approach uses object
detection and Hough transform to guide the drone by comparing the center pixel to the
center of detection, the scalable concept could use the same methods to guide the drone
around the blades by detecting the hub and blades. Additionally, other techniques used in
the paper, such as Cartesian calibration, while not a direct replacement of GPS, enable a
computer vision-focused approach in an indoor environment.

A major area of focus on drone path planning is the ability to safely fly to points of
interest as quickly as possible to preserve the drone’s onboard battery power. This type
of problem can be referred to as the traveling salesman problem. One approach to the
traveling salesman problem, as it applies to drone path planning, is the use of simulated
annealing to find an optimal cyclical path, allowing the drone to traverse the area directly to
the points of interest and return to the launch location while traveling the shortest possible
total distance [26]. While not being the only heuristic method capable of generating an
optimized path, this method is typically reliable while using accurate GPS coordinates
for both the targets and the drone within the area of operation. This allows for precise
positioning of the drone within the algorithm at all times. However, the approach detailed
in this surrogate work will demonstrate a method to work with a small-scale drone with no
onboard GPS equipment. The lack of a GPS will naturally result in the drone accumulating
small amounts of drift over time that could ultimately result in the drone being off from its
intended location after multiple movements.

A solution presented to the problem of drift accumulation requires occasional resetting
of the drone’s current internal coordinates using image analyses of known locations. A
problem with this recalibration method is that the distance between the targets and known
locations must also be accounted for in the drone’s path planning optimization. Other work
has shown that similar techniques have been implemented into automated drone path



Drones 2024, 8, 154 4 of 31

planning by having the drone occasionally visit refueling depots while traveling between
targets [27,28]. The method being used in the study would require the drone to re-calibrate
its Cartesian coordinates between every two targets, and the process may require the drone
to spend significant amounts of time hovering around the vicinity of a known location
(helipad in this study) if the known location is not detected immediately. The solution
tested was found to be battery-intensive and less effective compared to an alternative
method that utilized front-camera image analysis and QR codes attached to the pedestal
fans. The alternative method has a trade-off of being less accurate in updating Cartesian
coordinates yet adequate to complete the mission in significantly less time than helipad
calibration. Instead of placing multiple helipads in the experiment area, only one would be
used, which will reside under the drone takeoff location at the end of the defined mission
where the drone detects the helipad to land on. The precise landing will be conducted
using Hough transforms, used for line and shape detection in drones utilizing computer
vision [29]. Hough transforms are applied to the image captured by the downward-facing
camera mounted on the drone to identify the circular shape of the helipad when the drone
approaches to land exactly where it took off. Notice that in the realistic wind turbine
inspection, one can use RTK (real-time kinematic)-supported drones, which also replace
the helipad calibration in our surrogate study. In our study, we only focus on computer
vision with non-GPS-supported drones. Other approaches to address the odometry drift
of GPS-denied environments include SLAM-based methods [30,31]. However, due to the
use of small, low-cost Tello EDU drones, neither SLAM nor LiDAR is employed in our
study. In indoor navigation, QR codes provide an advantage with real-time validation and
correction capabilities.

This paper aims to optimize path planning solutions via an autonomous drone for the
small-scale proof of concept that surrogates wind farm navigation. The main contributions
are as follows:

• Computer vision-based path planning: A path planning approach for autonomous
drones that relies on computer vision techniques is proposed. This approach enables
drones to navigate based on front and bottom-facing visuals to aid in GPS-based
inspections or where GPS signals are weak or unavailable.

• Indoor navigation of low-cost autonomous drones: The research demonstrates that
it is possible to develop low-cost autonomous drone systems that can perform com-
plex tasks in indoor environments such as real-time decision-making, adaptability,
determining real positions on the defined Cartesian coordinate system (CCS), and
self-correction of its position as necessary without the use of GPS.

• Small-scale proof of concept: The research provides a small-scale proof of concept
for indoor navigation that surrogates wind farm navigation and computer vision-
based adaptability.

• Educational aspects and applications: This paper also resembles a project that can
be used in machine learning and drone-related introductory courses. The GitHub
repository with a README.md file showing how to use the developed autonomous
drone system with functions, drone commands, images, and videos, is included. Such
tools to accelerate on-boarding can be reused for various applications and lectures. In
addition, the pseudo-code has been provided for implementation in Algorithms 1–4.
The effectiveness of the developed computer vision-based navigation system for
low-cost drones is attractive for educational purposes.

This paper is organized as follows. The previous and related works are in Section 2.
Section 3 briefly discusses the simulated annealing algorithm and its implementation, creat-
ing an optimized path for the drone. Section 4 explores computer vision-based navigation
using Haar-feature cascade classifiers, object detection bounding boxes for trigonometric
path planning, circle detection for vision-positing system (VPS), and QR scanning for target
verification. Section 5 describes the integration of simulated annealing with computer vi-
sion and path planning to create an autonomous drone with real-time adaptability. Section 6
shows the initial testing phase that reveals the results of the traveling salesman experiments



Drones 2024, 8, 154 5 of 31

where the coordinates of each fan are known, and the drone starts at either the helipad
or an incorrect starting point. Section 7 depicts the results of the snake path exploration
experiments where the coordinates of each fan are unknown, but the quantities of each fan
are either known or unknown. Section 8 highlights the educational contributions of this
work, which can be applied to smart autonomous systems and computer vision courses.
Sections 9 and 10 present the conclusion and future work.

Algorithm 1 Simulated annealing traveling salesman (SATS).

Inputs: data = Array of all target coordinates beginning and ending at the launch
point, with iter denoting the desired number of iterations, and T denoting the
starting temperature

Output: An optimized array of coordinates to minimize distance
1: Let size be the length of the input data array
2: Let T be the starting temperature
3: Let E1 and Emin denote the starting energy
4: Let pathmin denote the path found with the lowest energy
5: Let energy_calc() denote an outer function that calculates the energy of an array of

coordinates using the point-distance formula and return the result
6: while T > 1 do
7: for i = 0; i < iter; i++ do
8: if E1 < Emin then
9: Emin = E1

10: end if
11: rand_index = randint(1, size − 3)
12: pathtemp = pathmin
13: pathtemp[rand_index] = pathmin[rand_index + 1]
14: pathtemp[rand_index + 1] = pathmin[rand_index]
15: E2 = energy_calc(pathtemp)
16: if E2 < E1 then
17: E1 = E2
18: pathmin = pathtemp
19: else
20: mac = exp

(
−(E2−E1)

T

)
21: if mac > rand() then
22: E1 = E2
23: pathmin = pathtemp
24: end if
25: end if
26: end for
27: T = 0.99 × T
28: end while
29: return pathmin
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Algorithm 2 Coordinate calibration algorithm (CCA).
Inputs:

QR = fan identification per QR code
target_ f an = identification of expected fan to be found

Outputs:
drone_x_coordinate = newly updated x coordinate of drone
drone_y_coordinate = newly updated y coordinate of drone

1: Drone moves laterally to the center fan in the camera frame and moves forward to the
fan stopping in front

2: drone_y_coordinate = y coordinate of target_ f an
3: Drone lowers in front of the fan and approaches the range of reading the QR code
4: if QR == target_ f an then
5: drone_x_coordinate = x coordinate of target_ f an − 122(cm)
6: else
7: Move the drone to the helipad vicinity to find the helipad and land, mission failed
8: end if

Algorithm 3 Robust coordinate calibration algorithm (RCCA).
Inputs:

QR = fan identification of the QR code scanned
target_ f an = identification of expected fan to be found

Outputs:
drone_x_coordinate =newly updated x coordinate of drone
drone_y_coordinate =newly updated y coordinate of drone

1: Drone moves laterally to the center fan in the camera frame and moves forward to the
fan stopping in front

2: drone_y_coordinate = y coordinate of target_ f an
3: Drone lowers in front of the fan and approaches the range of reading the QR code
4: if QR == target_ f an then
5: drone_x_coordinate = x coordinate of target_ f an − 122(cm)
6: else
7: drone_x_coordinate = x coordinate of fan with QR − 122(cm)
8: drone_y_coordinate = y coordinate of fan with QR
9: Use updated coordinates to move the drone to the current progress in the optimized

path and reattempt detection of target_ f an
10: end if

Algorithm 4 Snake path flight algorithm (SPFA).
Inputs:

x_step = Step length the drone moves forward and backward
y_step = Step length the drone moves left
x_boundary = x-axis boundary of experiment
y_boundary = y-axis boundary of experiment

Functions:
check_ f or_ f ans()

if there are no fans detected in the frame then
return

else
Move the drone laterally to center the fan in the frame
Move the drone forward toward the fan, stopping in close proximity
Lower the drone and move closer to the fan to be in range to read the QR code
Once the QR code is in a readable range and scanned, raise the drone back to the
original height

end if
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Algorithm 4 Snake path flight algorithm (SPFA).

1: Let the starting location of the drone be (0, 0)
2: while drone’s y coordinate ≤ y_boundary do
3: while drone’s x coordinate ≤ x_step + x_boundary do
4: check_ f or_ f ans()
5: Move the drone forward by x_step
6: end while
7: if drone’s y coordinate +y_step ≤ y_boundary then
8: Move the drone left by y_step
9: else

10: break
11: end if
12: while drone’s x coordinate −x_step ≥ 0 do
13: temp_x_coordinate = drone’s x coordinate
14: check_ f or_ f ans()
15: Move the drone back to temp_x_coordinate
16: Move the drone back x_step
17: end while
18: temp_x_coordinate = drone’s x coordinate
19: check_ f or_ f ans()
20: Move the drone back to temp_x_coordinate
21: if drone’s y coordinate +y_step ≤ y_boundary then
22: Move the drone left by y_step
23: else
24: break
25: end if
26: end while

2. Previous Related Works

In our previous work [32], object detection of the fans via Haar feature-based cascade
classifiers was used; the training included many positive and negative images of the
pedestal fans, where the bounding box annotations just encompassed the circular cage
around the blades. The ML model was then applied to frames received from the drone to
return images of bounding boxes over each detected object in the frame, and the distance
of the fans to the drone was calculated utilizing the bounding boxes obtained.

In the proceeding work [33], the drone approached fans of an area using the calculated
distance before lowering the drone altitude to scan the QR code attached to the pedestal.
The CCM (Cartesian coordinate movement) algorithm was developed to allow the drone to
operate in the Cartesian space and update its recorded coordinates. Movements, including
rotation, are determined based on the coordinates and yaw of the drone and its desired
position and yaw.

The work proposed here will utilize the same object detection model, distance equation,
and CCM algorithm. However, unlike the previous work on this subject, the placement
of the fans will be known to the algorithm prior to the launch to facilitate the simulated
annealing optimization solution to the traveling salesman problem. Python scripts are
employed to capture images and videos of each fan during the flight, with the media then
categorized into designated folders based on the scanned QR codes. The testing phase of
this case study will first run the simulated annealing on the coordinates of all targets as a
solution to the traveling salesman problem before giving the optimized route to the drone
to follow. The Tello EDU will visit all target locations while recalibrating its position during
flights before returning to the launch point helipad. The number of targets will increase
at each stage until all targets are included within the flight path. In addition, the flight
time will be reported for each stage. In addition, another testing phase will proceed in
which the coordinates of all targets are unknown. Thus, the drone must complete a snake
exploration path to find each target in the exploration area. To make the problem even
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more challenging, we further consider cases where the number of targets is either known or
unknown. In the known quantity scenario, the drone will return to the takeoff helipad once
all targets have been found and verified. In the unknown quantity scenario, the drone will
always complete the entire exploration path, return to the helipad, and report the number
of unique targets discovered. Finding targets will be achieved through object detection,
and to ensure that each target is unique and not previously detected, unique QR codes will
be used for each target.

3. Proposed Autonomous Path Planning for Indoor Cartesian Coordinate System

This study is a continuation of a proof of concept for navigating an autonomous
drone in a field of wind turbines [32,33]. For this smaller-scale concept, the targets of
wind turbines will be replaced by black pedestal fans with QR codes attached near the
bottom for fan identification. The fans were randomly placed within an area of interest
with parameters to prevent any fan from being too close to another. The DJI Tello EDU
drone was used due to its low cost, small size, and popularity as a platform for research
and education [34,35]. The coordinate system of the body frame of the drone is depicted in
Figure 1.

Figure 1. DJI Tello EDU quadcopter equipped with a front-facing camera (used for object detection)
and bottom camera (used for vision position system) with the coordinate system of the body frame.

The drone had no GPU to perform ML calculations and image analysis. Instead, a
local computer connected to the drone via WiFi ran a Python script that automated the
flight, requiring no human input throughout its duration. The Tello SDK was connected to
the drone through a Wi-Fi UDP port. While the local computer sent movement commands
to the drone, the drone sent back camera frames and sensor info for the Python script
to determine which action to take next. A diagram of this communication cycle can be
observed in Figure 2. Since the experiment used no human input during the flight, the
flight was fully autonomous, from takeoff to landing. This autonomy was performed by
the movement.py script in the following link, which contains functions that combine the
lower-level functions of the Tello SDK. The functions of the movement class are described
in detail in the README of the GitHub link.
Link: GitHub repository: Surrogate wind farm navigation with the Tello EDU drone:
https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram.

https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram
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Figure 2. Flowchart depicting the communication cycle between the local computer with Python
scripts and DJI Tello EDU drone.

3.1. Simulated Annealing
The classic traveling salesman problem (TSP) is famous for being a deceptively simple

problem in which a salesman is given a list of n cities and a means to calculate the cost of
traveling between any two cities; the salesman’s route must then be planned to visit every
city once while minimizing the total cost [36]. The difficulty in solving TSP stems from its
computational complexity, which requires comparing every possible path permutation to
find the shortest overall distance. An approach used to compute an efficient path is heuristic
simulated annealing (SA), which is often compared to hill-climbing, where the algorithm
accepts—within a certain probability—a neighbor worse than the current solution in an
attempt to find a better overall solution, which may seem less optimized initially, similar to
taking a more direct but initially more difficult approach up a hill [37].

The SA algorithm comes in varying forms, including list-based simulated annealing
(LSBA), where a list-based cooling schedule schedules the decrease in temperature [38].
The LSBA is outlined in the flow chart in Figure 3. Other algorithm variations consider an
array of initial temperatures and cooling schedules. A study by Nourani and Andresen
considered schedules of constant thermodynamic speed, along with exponential, logarith-
mic, and linear cooling schedules, and found that the thermodynamic speed schedule is
the most effective in reaching the lowest energies within a finite time [39]. In this study,
the temperature is decreased by multiplying the current temperature by 0.99 to achieve a
geometric temperature decay.

3.2. Generating Optimized Traveling Salesman Path in Python

The pseudo-code of the simulated annealing algorithm used in this study is outlined
in Algorithm 1. This algorithm works by taking an array consisting of Cartesian x and
y coordinates, a starting temperature, and several desired iterations for each instance of
the decreasing temperature. These variables can be changed depending on the size of
the input array, as a smaller array will take less computational time (and vice-versa). A
separate function is also used, named energy_calc(), which takes the array of coordinates
and calculates then returns the total distance traveled between the coordinates in the order
they are presented in the array using the Euclidean distance formula.

The algorithm will randomly select two points in the array to swap, not including
the first or last index, to make the resulting path cyclical. If the total energy of the new
array (E2) is less than the previously recorded minimum energy (E1), then the new path
is accepted as the new minimum. If not, the path may still be accepted if the metropolis
acceptance criterion (mac), as seen in (1), is calculated to be less than that of a random float
value less than 1 [36].

mac = exp
(
−(E2 − E1)

T

)
(1)
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As the temperature (T) decreases within the algorithm iterations, the probability of
acceptance for a less optimal outcome will also decrease. At the end of the algorithm, an
array containing the optimized cyclical path of sequential points will be returned. An
example of the output can be seen in Figure 4, in which a series of randomly chosen points
(25 in our case) were placed into an array that begins and ends at the coordinates (0,0). The
resulting total energy after optimization is reduced by approximately 68% using a beginning
temperature of T = (150 × array_size) and (30 × array_size) iterations per temperature
decrease. This results in a computational time of approximately 20 s to optimize 25, i.e.,
1.55 × 1025 possible permutations. Although we are focusing on the simulated annealing
approach in our study, other heuristic methods could also be used to generate better initial
routes for quicker optimization [40]. The implementation of Algorithm 1 in Python can be
found in the provided GitHub repository link below.
Link: GitHub repository: Surrogate wind farm navigation with the Tello EDU drone:
https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram.

Figure 3. Flowchart of list-based simulated annealing (LSBA) algorithm [38].

According to the developed simulated_annealing.py script in this repository, the points
are randomly chosen in a 1000 × 1000 unit area. Later on, this code will be called in
traveling_salesman_geometric.py, where the visiting points are known and the resulting
optimized path is given to the drone.

https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram
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Figure 4. A demonstration of the heuristic simulated annealing on a cyclic path of 25 randomly
selected points. The arrows indicate the direction the drone is to travel in the exploratory area.

4. Proposed Computer Vision-Based Navigation

This section proposes a computer vision-based navigation system for object detection,
vision positioning, and path calculations.

4.1. Object Detection via Cascade Classifier
OpenCV, a library of programming functions, offers object detection for real-time

computer vision [41] with varying tools, such as the Haar cascade classifier algorithm [42].
The cascade classifier, introduced by Viola and Jones in 2001, is a pivotal object detection
technique. It operates on a series of stages, each containing a set of weak classifiers.
These classifiers, trained on subsets of Haar-like features, work collaboratively to discern
objects within images. The cascade architecture ensures computational efficiency by quickly
eliminating non-object regions, allowing intensive processing on potential object-containing
areas. Haar-like features are rectangular filters that capture local intensity patterns in an
image, such as those depicted in Figure 5. These features are instrumental in object detection
as they efficiently compute the difference between pixel intensities in white and black
regions. The simplicity and effectiveness of Haar features make them ideal for real-time
applications, enabling the rapid evaluation of image regions to identify objects accurately.

Figure 5. Each Haar feature depicted is a single value obtained by subtracting the sum of pixels
under the white rectangle from the sum of pixels under the black rectangle [43].

Image annotation is a fundamental step in training cascade classifiers. Annotated im-
ages provide labeled examples of target objects, allowing the algorithm to learn distinctive
features. Bounding boxes, drawn around objects of interest, serve as ground truth data
for the training process. Accurate annotations are pivotal, as they directly influence the
classifier’s ability to detect objects precisely. Several annotation tools simplify the annota-
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tion process, ensuring accuracy and consistency. These tools offer features such as object
tracking, segmentation, and labeling. Polygon-based annotation and instance segmentation
enhance annotation precision, creating high-quality datasets that are indispensable for
practical classifier training.

A diverse and representative dataset is paramount for training a robust cascade
classifier. The dataset should encompass various object instances, backgrounds, scales,
and orientations. Careful curation of the dataset ensures that the classifier generalizes
well to unseen data, enhancing its real-world applicability. The cascade classifier learns
to distinguish between positive (object) and negative (non-object) instances based on the
annotated dataset during training. The algorithm iteratively refines its parameters to
minimize classification errors. Training involves adjusting the thresholds and weights of
weak classifiers and optimizing their performance on the given dataset.

In our case, the computer vision algorithm was trained to detect the fan blades in
the real-time drone imagery feed. Here, positive images would be those of the black
metal encasing over the blades, while negative images would be images of the same flight
environment without fans. All training images were taken from an airborne DJI Tello EDU
drone. The model was trained on a dataset of positive and negative images and learned to
distinguish between the two. Once the model was trained, it could classify new images as
positive or negative.

The cascade classifier was then trained with OpenCV annotations for Haar feature
detection. In Python, the findTurbine function was implemented whose only parameter
was an image frame extracted from the front-facing drone camera. The function takes the
input image, searches for the target object using an XML file, and returns the image with
boundaries drawn around the detected object, the x and y values of the center of the target
in the image, as well as the area of the detection boundary. The Python implementation of
object detection can be found in the provided GitHub repository link below.
Link: GitHub repository: Surrogate wind farm navigation with the Tello EDU drone:
https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram.

The script haar_cascade.py contains the function findTurbine, which uses a .xml file that
contains features of the trained machine learning (ML) model to detect fans within the fed
image. As a result, it draws bounding boxes over the image and returns the processed
image with arrays containing bounding box widths and center pixel coordinates. Using
the parameters shown in Figure 6, computer vision-based navigation can be achieved as
explained in Section 4.3.

Figure 6. The parameters returned from Haar cascade object detection are used to calculate the x/y
distance and angle of the fans for the drone. The size and center of the bounding box may not always
represent the precise location of fans (turbines), as demonstrated in the recorded videos.

https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram
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4.2. Vision Positioning System for Calibration and Precise Landing

Considering that our small drone does not have access to a GPS to track its exact
location as it traverses the environment, it may be expected to accumulate drift over time
from various factors. These factors could include drag, a sudden change in wind speed,
or eventual rounding errors in traversal algorithms. One solution to compensate for this
accumulated drift is to occasionally visit a nearby helipad with known coordinates and
use image processing on the bottom camera frames to recalibrate the software’s known
drone location.

When calibration is needed, the drone would first be instructed to visit the vicinity of
the closest landing pad. The Tello EDU is equipped with a downward-facing IR camera
capable of 320 × 240 pixel images. The taken images are then subjected to a small amount
of Gaussian blur to remove unnecessary details from the image, and the captured frames
are then processed through the OpenCV Hough transform function. The parameters are set
to return the position of the white circle found on the helipads, the frames are marked with
the circle’s outline in green, and the center pixels are marked in red for user reference.

A recursive helipad positioning function then creates a vector from the center pixel
to the red center of the detected circle. The vector is inputted into the remote control (RC)
commands acting as virtual sticks to position the drone directly above the helipad center.
Then, the drone resets its internal Cartesian coordinates to match the known coordinates of
the helipad, and either continues the mission or lands. This process is depicted in Figure 7.
The Python implementation of this drone behavior can be found in the provided GitHub
repository. The find_circles processes frames from the drone’s bottom camera, returning
the processed image and the coordinates of the detected circle. find_circles is invoked in
downvision_calibration.py, where the coordinates of the detected circle center are used to
gently maneuver the drone over the helipad.

Figure 7. An example showing the drone centers over the helipad using Hough transforms to provide
feedback on the drone’s current position.

4.3. Trigonometric Calculations for the Path Using a Bounding Box

Here, the ML model is applied to frames received from the drone to return images of
bounding boxes over each detected object in the frame. The distance between the fans and
the drone is calculated by utilizing the bounding boxes and applying triangle symmetry [32]
as (2).

d = l f (wr/wp), (2)
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where
d is the approximate distance of the detected object to the drone’s camera (cm),
l f is the calculated focal length of the camera for a 720 × 420 resolution image,
wr is the real-world width of the object (cm), and
wp is the width of the object in the frame (pixels).

However, rigorous testing before the final experiments is necessary since the bounding
box accuracy may vary. Possibilities for error include the bounding box not being consistent
frame after frame, even for static positioning of the drone and fan, and the bounding box
may not necessarily fit the object even if annotations were tightly fit in training the ML
model. Testing was planned for when the drone hovered at the traversal altitude to avoid
collision with the fans (≈140 cm), where a fan would be set at 200 cm, 300 cm, and 400 cm.
Based on (2), the distance would be calculated and saved into a designated CSV file
for 48 calculations (as that was how many images would be processed before the drone
performed automatic landing due to the lack of incoming movement commands). In the
implemented experiments, the fan was placed exactly from the drone camera. However,
the Tello drones experienced a moment of instability immediately after takeoff before fully
stabilizing, which caused the drone to drift away from its initial takeoff location. The
discrepancy between the calculated and actual distance in the experiments is noteworthy,
as the actual distance may vary from pre-takeoff to post-takeoff. To mitigate this issue, a
helipad center was strategically positioned to align with the actual distance from the fan.
The VPS was then employed to center the drone precisely over the helipad after takeoff.
Following this alignment step, distance calculations commence with the drone hovering
at the specified distance from the fan. This approach ensures a consistent and accurate
starting point for distance computations, addressing the potential variations in the actual
distance encountered during takeoff. The recordings of these experiments can be found in
the link Distance Calculation Experiments.

The analysis of calculated distances, along with their corresponding averages, for
actual distances of 200 cm, 300 cm, and 400 cm, is illustrated in Figure 8. The graphical
representation depicts a comparison between the calculated and actual distance values.
Notably, the comparison plot reveals a linear relationship, with the average computed
distances closely aligning with the actual distances. This observation suggests a high
degree of accuracy and consistency in the computed distance measurements relative to the
actual distances.

Figure 8. Illustration of the relationship between the actual and calculated distance based on object
detection bounding boxes.

https://1drv.ms/f/s!AilkyzYik19MhpMGOUUwvF-evbqeuw?e=h79iAb
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The averages were computed to obtain the average percentage error, with the highest
error being 5.4271%. These results are displayed in Table 1. Based on these results, fan
distances are calculated with an error margin of less than 6%. Accurate estimations are
vital to determine how much the drone needs to move forward and how much to shift the
drone laterally to position the fan to the center of the drone’s camera frame. The angle
required for the drone to face the detected fan, calculated with a processed image width of
720 pixels, is expressed as follows:

θ =
(
|360 − x|/360

)
FOV/2 (3)

where
θ is the angle to turn the drone to center the detected object in the frame (degrees),
x is the location of the center of the bounding box in the frame (from pixels 0–720),
FOV is the field of view of the drone in degrees (82.6◦ for Tello drones), and 360 is half the
image width in pixels.
For cases where x is less than half the image width, θ is counterclockwise; otherwise, it
is clockwise.

Table 1. Result of the average calculated distances for actual distances of 200, 300, and 400 cm, where
the average percentage error is included.

Actual Distance (cm) Average Calculated Distance (cm) Average Error (%)

200 189.1458 5.4271

300 313.5417 4.5139

400 393.9167 1.520825

It is important to note that there are two distinct methods for centering the fan in the
frame: rotating the drone or laterally shifting it to the left or right. In our experiments, we
primarily employed the shifting method. This decision was based on the expectation that
QR codes are oriented toward the negative x−direction of the Cartesian plane, facilitating
straightforward reading by the drone without the need for angular approaches, which may
complicate QR code recognition. Figure 9 provides an aerial view, illustrating two cases
utilized for calculating parameters d, and θ.

Figure 9. The aerial view of two cases used for calculating d, θ, and s. The left/right diagram refers
to the case where the x-center of the bounding box is less/greater than half of the pixel width of
the image.
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5. Integration of Path Planning with Computer Vision

In our Python scripts, the drone enabled object detection and QR code literacy with its
front-facing camera and circle detection with its bottom-facing camera (see Figure 10). To
facilitate precise and optimized navigation for the Tello EDU drone, a meticulously crafted
set of coordinates was fed into the drone’s control system. These coordinates, generated
through rigorous computational methods of simulated annealing, represent specific points
in space that define the drone’s flight path. Each coordinate pair denotes a distinct location
in the drone’s environment, calculated to optimize the overall trajectory. Utilizing the
Python programming language and relevant libraries, these coordinates are systematically
passed to the drone’s control interface, enabling the drone to navigate through the desig-
nated points autonomously. The Python implementation of the drone—following an array
of Cartesian coordinates—can be found in the provided GitHub repository link below.
Link: GitHub repository: Surrogate wind farm navigation with the Tello EDU drone:
https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram.

The script traveling_salesman_geometric.py has a for-loop that iterates through each
coordinate pair in the order of the optimized path. Each coordinate pair is fed into a drone
movement class function from movement.py. This coordination of coordinates not only
ensures the drone’s adherence to a predefined flight path but also maximizes efficiency,
making it a fundamental component in achieving seamless and optimized drone operations.

Figure 10. From left to right the OpenCV’s rectangle function is applied to Haar detection boundaries
for the red bounding boxes. The QR code is used for target verification and is read by the Python
library ‘pyqrcode’. Using frames from the bottom camera live stream window, the Hough transform
function is applied to detect the helipad circle and displays the modified image in a new window.

The exact targets were randomly selected and included in the missions in these
experiments. The declared initial path followed the random order the targets were selected.
An example of optimizing the initial path is shown in Figure 11. In the traveling salesman
experiments, the number of targets increased from three to seven. A comparison of the path
distances for the same targets before and after optimization is illustrated in Figure 12. The
path distances in the plot were averaged over 100 scenarios for each number of fans to visit.
Given the limited flight time of drones, minimizing the travel time is crucial. Although
we attempted to explore more sophisticated scenarios during experimentation, constraints
such as the flight time of the Tello EDU drone, which was less than 13 min on a full
charge, prevented us from conducting experiments with additional fans or larger distances
between them. Commencing with a random route is not ideal; instead, employing heuristics
to generate a well-informed initial route is advisable. We also acknowledge that other
heuristic methods could yield similar solutions with lower computational requirements
for this indoor simulation. However, we used the simulated annealing method due to its
scalability; it is suited for more complex scenarios where a centroid is filled with locations to
visit, and the drone may be situated outside the wind farm boundaries, requiring flexibility

https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram
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in flight direction. We demonstrated the robustness of our algorithm when dealing with
a larger number of locations to visit. Visiting N turbines presents an N! problem, and
depending on the wind directions, the turbines may not necessarily be aligned along the
same direction with equally spaced locations, underscoring the suitability of the simulated
annealing optimization method for this project, although it is not the only optimization
approach available.

Figure 11. A demonstration of the heuristic simulated annealing for 7 randomly ordered fans used in
experiments where fan identification is labeled.

Figure 12. A comparison of path distances before and after optimization for the number of fans to
visit in the traveling salesman experiments.

While Cartesian coordinate calibration via VPS holds theoretical effectiveness, practical
implementation encountered challenges such as drift effects over time and inefficient battery
consumption associated with multiple VPS checkpoints. The drone lacked programming
to persist with the mission upon detecting the wrong fan, impeding the attainment of
VPS calibration in certain instances. In this context, the operational flow of the traveling
salesman-based testing is delineated in the flowchart presented in Figure 13. The drone
exhibited significantly higher success rates in fan detection through object recognition
than in navigating to the anticipated fan location. Consequently, the decision was made to
prioritize navigation toward the target_ f an based on computer vision rather than Cartesian
movement. In other words, testing was refocused to ensure that every flight case followed
the ‘Yes’ path after the ‘Fan Object Detected?’ decision block in Figure 13. Through
experimentation, it was observed that object detection was not robust when the fan was at
an oblique angle relative to the drone’s POV or when the fan was situated at a considerable
distance. Fans were found to be more detectable from frontal or rear perspectives, leading
to the utilization of the width, wr in (2), based on these angles. To ensure the generation of
accurate distance estimations, a solution was implemented to position the drone directly in
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front of the target_ f an using the known Cartesian coordinates and facing forward. This
strategic repositioning, performed at 300 cm in front of the fan, enhanced object detection
accuracy within the frame, target_ f an. Consequently, the ‘No’ path in the decision-making
process was no longer chosen, mitigating the potential issues associated with different fan
detections at varying distances.

Figure 13. Flowchart of the early version of the traveling salesman functionality in which the real-time
recorded drone location would be updated by centering over the known location of helipads.

Despite the efficacy of the new method in ensuring fans were within the front camera
frame, the detected fan objects may not be consistently centered as desired. The bounding
box tracking function introduces variable left or right shifts based on calculations from
(2) and (3). In cases where the calculated shift value is less than 20 cm (the minimum
movement distance for non-RC commands), the drone rotates by the angle of (3) to align
the bounding box center with the center of the camera frame. Experiments were performed
in the atrium of the Computer Science building at Utah Valley University as illustrated in
Figure 14. The process of centering the bounding box is illustrated in Figures 15 and 16
from left to right. This adjustment process is implemented to achieve the desired framing
of the fan within the camera view.
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Figure 14. Pictures of the traveling salesman experiment setup and environment.

Figure 15. The bounding box center pixel is deemed too far from the frame’s center pixel so that a
lateral shift can be performed.

Figure 16. After shifting laterally, the bounding box center pixel is deemed within the acceptable
range of the frame’s center pixel.

With this refined method, the expectation is that the QR code will be positioned in front
of the drone, facilitating reading by the RGB camera. Consequently, the initial approach
of circling the pedestal was abandoned. The limited and slightly varied range for QR
code reading necessitated a small snake path exploration, gradually moving the drone
toward the QR code. This alternative method ensured that the target’s location (QR code
in this case) was known to be in a specific direction (x−direction), minimizing the risk of
collision by maintaining a conservative distance from the pedestal. More advanced and
energy-intensive exploration algorithms would be required in scenarios where the target
could be positioned in any direction in the x and y planes.

This concept of halting in front of the target vicinity before initiating a snake path
exploration for detection was replicated when implementing a helipad, as depicted in
Figures 17–20, from left-to-right and top-to-bottom. If the drone’s position is particular in a
specific direction (in this case, the x−direction), the drone can efficiently snake toward the
desired location, eliminating the need for exploration in all directions.
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Figure 17. If no helipad is detected on the bottom camera, the drone performs a snake path exploration
to search for the helipad.

Figure 18. Although the helipad is in the frame, the exploration path continues since no circle
is detected.

Figure 19. Hough transform for detecting the circle and a travel vector from the frame’s central pixel
to the circle’s center pixel.
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Figure 20. The drone recursively follows computed travel vectors until the frame’s center is near the
circle center.

6. Traveling Salesman-Based Analyses and Exploration

The traveling salesman approach for the fans was tested thoroughly, encountering
many challenges. The main challenge was the inconsistent accuracy in determining the
drone’s location on the Cartesian plane, which was necessary to reach the helipad cali-
bration stage. Specifically, the recorded drone coordinates being just a few feet off from
the actual position caused the mission to fail. The experiments demonstrated that the
self-updating Cartesian position via VPS was insufficient for the drone to complete the
mission. Inaccuracies due to drag, indoor airflow, and drone imperfections necessitated the
use of additional tools to correct the recorded coordinate location of the drone. Furthermore,
we observed that in some instances, even though the drone could reach the first or second
helipad, excessive battery consumption forced the drone to make a low-voltage landing.
Thus, a robust solution would require calibration earlier in the traveling salesman mission
and more quickly to ensure enough battery life to complete the mission.

The Python script underwent revision to include the update of the drone’s y−coordinate
to align with the y−coordinate of the target_ f an (in the shared repository) after centering
the bounding box in the frame. Despite these changes, experiments revealed high failure
rates, primarily attributed to persistent inaccuracies in the drone’s x−coordinate. The issue
escalated with prolonged flight, increasing deviations in the x−coordinate. To address
this challenge, a decision was made to update the drone’s x−coordinate as frequently
and promptly as the y−coordinate. It is worth emphasizing that QR codes are used to
verify the detection of the targeted fan. Experiments demonstrated a consistent distance
range at which the drone could read the QR codes. Based on distance measurements
from multiple flights, it was concluded that the drone could successfully scan QR codes
from approximately 122 cm away. See Algorithm 2 for the drone’s revised coordinate
calibration steps.

With these revisions, the traveling salesman process was updated as illustrated in the
flowchart in Figure 21. With more frequent and efficient calibrations at the cost of losing
some accuracy, the helipad calibration process was removed. Thus, only one helipad would
be used to ensure that the drone returned to its starting point.

The Python implementation of the traveling salesman experiments can be found in
the shared GitHub repository, traveling_salesman_geometric.py. This function generates the
optimized travel path for the drone to follow while salesman_image_interface.py controls the
drone movements based on bounding box information returned from check_camera.py and
QR data returned from qr_reader.py.
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Figure 21. Flowchart of the revised traveling salesman functionality, where calibration is no longer
conducted via helipads but through object detection of the known fan locations and QR codes
confirming each location.

6.1. Traveling Salesman-Based Experiments with Correct Takeoff Locations

After implementing the QR code calibration method, there was a significant improve-
ment in the success rates of the experimental runs. Although updating coordinates with
this method is not as precise as helipad calibration, it proved sufficient for the drone to be
within a foot of its expected location. This capability mitigated the negative effects of drift
and consumed less battery than helipad calibration. The outcomes of these experiments are
detailed in Table A1 of Appendix A.

Instances of failed experiment runs were attributed to various factors, including inac-
curacies in the drone’s facing angle relative to the expected facing angle, leading to incorrect
directional travel or being too far from the helipad vicinity to locate it successfully. Other
factors contributing to failures included miscalculations in the distance to a fan, causing
the drone to overshoot and travel behind the fan to search for the QR code. Additionally,
selecting the incorrect target_ f an prompted the program to instruct the drone to return
to the helipad, terminating the mission prematurely. The live video feed from the drone
POV (point of view) can be found via the link Traveling salesman path—correct takeoff
location videos.

https://uvu365-my.sharepoint.com/:f:/g/personal/10801309_uvu_edu/ElNxYbi425dEgP0vggVN0WABlrDc231WfYIkbUq5t0mqwA?e=JpxfOV
https://uvu365-my.sharepoint.com/:f:/g/personal/10801309_uvu_edu/ElNxYbi425dEgP0vggVN0WABlrDc231WfYIkbUq5t0mqwA?e=JpxfOV
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6.2. Traveling Salesman-Based Experiments with Incorrect Takeoff Locations

Given the favorable success rates achieved in the traveling salesman-based experi-
ments (in Table A1), a decision was made to modify the protocol. Instead of directing the
drone to return to the helipad when an incorrect QR code was selected, the revised ap-
proach involved updating its coordinates and allowing it to proceed toward the target_ f an
upon scanning an incorrect QR code. The algorithm for this refined version of coordinate
calibration is presented in Algorithm 3.

A new experiment was conducted with this new possibility, i.e., of completing the
mission even if the drone was not in the predetermined traveling salesman path due to
heavy drift. In this experiment, the drone commenced its mission from a location other than
the helipad. However, the takeoff location was still designated as the helipad at coordinates
(0, 0), where the ultimate goal was to land on the helipad. This experiment assessed the
drone’s ability to redirect onto the designated path autonomously. The results of this
experiment are presented in Table A2 of Appendix A, where the first column specifies the
selected fans for the path, the second column displays a Boolean variable to denote the
success of the mission, as defined in Figure 21, the third column denotes the total flight
time from takeoff to landing, and the fourth column denotes the location from which the
drone took off. Meanwhile, the helipad remained at the (0, 0) location, as perceived by
the drone relative to the known fan locations. The results depicted in Table A2 are better
than in Table A1 regarding being able to complete the mission, but the average flight
times increased. This observation is likely due to the extra time taken to return to the
planned path when the wrong QR code is scanned. Although Algorithms 2 and 3 both
perform coordinate calibration, the results are better with this experiment, which uses
Algorithm 3, even though the drone takes off at a deceiving location. The improved results
are attributed to the autonomous system’s ability to correct itself when the wrong target
is reached, showcasing the indoor navigation improvement. The live video feed from the
drone’s POV (point of view) can be found via the link Traveling salesman path–incorrect
takeoff location videos.

7. Snake Path Area Search Analysis and Exploration

The developed computer vision-based autonomous system is put through other exper-
iments to test and demonstrate its robustness. The snake path area exploration experiment
aims to employ a drone for the systematic exploration of a predefined region to identify
and locate all fans present within that area. While the specific coordinates of the fans are not
provided, the number of fans within the search region may either be known or unknown.
If the quantity is known, the drone is directed to return to the helipad upon detecting some
unique fans equivalent to the predetermined amount. Regardless of whether the quantity
is known or unknown, the drone is instructed to return to the helipad upon completing
a comprehensive search of the designated area. The tally of unique fans detected is re-
ported upon concluding each mission. The flight algorithm is shown in Algorithm 4, which
produces the path illustrated in Figure 22.

Figure 22. The planned flight path for the snake path search algorithm, where the location of the fans
is not known.

https://uvu365-my.sharepoint.com/:f:/g/personal/10801309_uvu_edu/Eu2_hdkhtW9Fqx60BDQKK4kBBAChOdkUcledR1ZA5Z8t5g?e=X6E3jN
https://uvu365-my.sharepoint.com/:f:/g/personal/10801309_uvu_edu/Eu2_hdkhtW9Fqx60BDQKK4kBBAChOdkUcledR1ZA5Z8t5g?e=X6E3jN
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Python implementation of the snake path exploration experiments can be found in the
snake_path_experiment folder of the shared repository. The script snake_path_experiment.py
uses Algorithm 4 to guide the drone and uses check_camera.py at every step to check for
detected objects. Once the desired object (here, the pedestal fan) is found, the QR data are
returned from qr_reader.py to determine the number of detected fans.

7.1. Snake Path Area Search Experiments with a Given Number of Fans

Here, the snake path area exploration experiment is performed under the assumption
of knowing the number of fans. The results of this experiment are depicted in Table A3
of Appendix A. In this table, passes represent the experiments in which the number of
unique fans found matches the known number of fans in the exploration area, and the
drone successfully returns to the helipad. A failure indicates that not all fans were found or
that the drone was unsuccessful in finding the helipad. The total flight time is calculated
from the takeoff until landing. Higher flight times are due to the fans being located near
the end of the exploration path or the drone taking longer than usual to find the helipad
circle. The recorded live video feed from the drone’s point of view (POV) can be found via
the link Snake path search experiment with fan quantity known.

7.2. Snake Path Area Search Experiments Repeated with Unknown Number of Fans

The snake path area exploration experiment is repeated here, with the difference being
that the number of fans is unknown, so the drone will always search the entire area before
returning to the helipad. It is expected that the total flight duration will be greater than that
of the original experiment. In this case, the drone will search the entire area of interest and
report the number of fans found within the given search boundaries. The flight algorithm
remains the same as in Algorithm 4. The results of this experiment are depicted in Table A4
of Appendix A. In this table, ‘passes’ represent experiment runs where the drone’s ending
report matches the number of fans within the search area, and the drone successfully found
the takeoff helipad for landing. ‘Fails’ represent flights where the ending report did not
match the actual quantity of unique fans within the search area, or the drone was unable
to find the helipad before the battery expired. The flight periods extend from takeoff to
landing. The recorded live video feed from the drone’s POV can be found via the link
Snake path search experiment with fan quantity unknown.

8. Educational Contributions

The research presented in this paper also has considerable educational contributions
that can be used to improve the quality of education in courses such as computer vision,
autonomous systems, and robotics. Included in the link below is the GitHub repository
used for this project, with a detailed README.md file for the autonomous system to be
replicated for various projects.
Link: GitHub repository: Surrogate wind farm navigation with the Tello EDU drone:
https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram.

In addition, the link below contains tutorial videos for Tello and Tello EDU drones
with code to help with the onboarding process of programming autonomous drone flights
with live video feed. The code used is provided in the GitHub link above.
Link: Drone tutorial code explanations and demonstrations: Quick-Drone-Tutorial.

The main educational applications are as follows:

• The presented research and proof of concept for the use of computer vision in the path
planning of drones can be used to improve existing educational programs, as well as
develop new educational practices, materials, theories, and educational programs that
focus on the use of computer vision in drone path planning.

• The effectiveness of the developed non-GPS computer vision-based navigation sys-
tem for low-cost drones makes it an attractive candidate for large-scale educational
purposes.

https://uvu365-my.sharepoint.com/:f:/g/personal/10801309_uvu_edu/EjePn524fSpAjafS5D_jrB0B8rcVUzxltGe-0-zH7ng8RQ?e=8676pA
https://uvu365-my.sharepoint.com/:f:/g/personal/10801309_uvu_edu/Ep9pSadhTs9Hm0s9-kK99bwBapBH1zM7FxFOZ1T7qp_PuA?e=WqaKXw
https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram
https://1drv.ms/f/s!AilkyzYik19MhpJ_KphW2kqdT4NmRg?e=rr6gIz
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• The project can be used in machine learning and drone-related courses to teach
students how to implement course concepts in real-world applications and overcome
challenges. Projects of this caliber, involving autonomous drones and computer vision,
enhance students’ understanding and ability to apply course concepts to real-world
applications while persevering through the associated challenges.

• The educational aspect of the project reveals how to implement the experiments,
simulated annealing, and image processing in detail using Python, ML libraries, path
planning with Tello drones, computer vision tools and techniques using OpenCV, and
patience in running a lot of experiments to confirm the results.

• The research can also be used to inspire students to pursue careers in the fields
of computer vision, autonomous drones, and robotics, and to help students think
critically about the role of technology in society.

9. Conclusions

This study aimed to develop a computer vision-based solution using a low-cost
autonomous drone system for wind turbine inspection that relies on a real-time camera
feed using computer vision rather than GPS data. Our study addresses a surrogate problem
of detecting the desired turbines in a wind farm, where pedestal fans simulate the turbines.
The proposed approach employs computer vision-based path planning and navigation
techniques to guide the drone, ensuring that it avoids collisions while visiting unique target
locations via energy-efficient paths and completing the mission with a precise landing
on a helipad. The presented results and analysis reveal the following aspects of the
proposed approach:

(a) The ability to achieve precise drone navigation within an indoor environment using
computer vision methods.

(b) The successful completion of traversal, detection, and landing tasks for most flights,
as demonstrated by tests conducted on a surrogate small-scale wind farm model.

(c) It offers a cost-effective alternative to GPS-based systems, making it appealing for
educational applications and scenarios for GPS-denied environments.

(d) It has the potential to enhance the autonomy and accuracy of wind farm navigation
significantly by integrating visual-based adjustments alongside GPS technology.

10. Future Work

In forthcoming investigations, a key focus will be on the automation of dataset acqui-
sition, which is essential for training and validating deep learning models. Initiatives in
this direction are in progress, including the meticulous removal of circular enclosures from
fans, thereby exposing intricate fan blades for the detailed health of the blades’ analysis.
Additionally, a novel cascade classifier tailored for Haar detection has been meticulously
trained to discern the nuanced features of the exposed fans. Furthermore, enhancements to
the existing Python scripts are underway, aimed at capturing high-resolution live images
and video feeds of the fan blades in diverse scenarios. To augment the robustness of the
dataset, the captured images will be systematically shared with the image processing and
deep learning team at Utah Valley University. This collaborative endeavor will facilitate
the utilization of their prior research findings [44,45], providing a foundation for training
deep convolutional neural networks (CNNs). The primary objective of this collaborative
effort is to refine the models, enabling them to discriminate between damaged and healthy
blades with a heightened level of accuracy and reliability.
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Data Availability Statement: The GitHub repository contains all the necessary files for running the
experiments described in this paper: GitHub repository: Surrogate wind farm navigation with the
Tello EDU drone: https://github.com/MoShekaramiz/Tello_Edu_Surrogated_Wind_Fram. Videos
containing the drone POV and console outputs for the traveling salesman experiments, where the drone’s
starting coordinates are set to the helipad location of (0, 0), and the true location is at (0, 0); traveling
salesman path—correct takeoff location videos: Traveling salesman path—correct takeoff location videos.
Videos containing the drone POV and console outputs for the traveling salesman experiments where
the drone starting coordinate is set to the helipad location of (0, 0), and the true location is at a
location indicated in the last column of Table A2; traveling salesman path—incorrect takeoff location
videos: Traveling salesman path–incorrect takeoff location videos. Videos containing the drone POV
and console outputs for the snake path experiments where the locations of the fans are unknown, but
the number of fans in the area is known; snake path search—fan quantity known: Snake path search
experiment with fan quantity known. Videos containing the drone POV and console outputs of the
snake path experiments where the locations of the fans are unknown, and the number of fans in the area
is unknown; snake path search—fan quantity unknown: Snake path search experiment with fan quantity
unknown. Introductory-level Tello drone coding tutorial videos that introduce the installation and
use of necessary libraries, such as djitellopy and OpenCV, coding basics, and running the code to
demonstrate a live video feed during flight. These resources are based on drone_tutorial.py, which
is included in the above GitHub repository. Drone tutorial code explanations and demonstrations:
Quick-Drone-Tutorial.
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CCA coordinate calibration algorithm
CCS Cartesian coordinate system
CNN convolutional neural network
FOV field of view
GPS global positioning system
GPU graphics processing unit
IR Infrared
LSBA list-based simulated annealing
ML machine learning
POV point of view
QR quick response
RC remote control
RCCA robust coordinate calibration algorithm (with incorrect takeoff location)
RGB red–green–blue (used to describe the digital color camera type)
SA simulated annealing
SATS simulated annealing traveling salesman
SLAM simultaneous localization and mapping
SPFA snake path flight algorithm
TSP traveling salesman problem
UAV unmanned aerial vehicle
VPS vision positioning system
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Appendix A

Table A1. Results of the traveling salesman experiment with correct takeoff locations.

Randomly Selected Fans for Path (Order-Dependent) Pass (P) or Fail (F) Total Flight Time (s)

7, 3, 1 P 287
5, 7, 6 F1, P, P, P, P NA, 159, 133, 187, 200
3, 7, 5 P 183
7, 2, 1 P 213
6, 2, 7 P 205
6, 4, 7 P 214
5, 6, 1 P 217
7, 3, 6 P 210
5, 7, 4 P 238
6, 4, 7 P 283
6, 2, 4 P 139

6, 3, 7, 5 P 285
1, 6, 7, 5 P 304
1, 3, 4, 7 P 362
1, 6, 2, 5 P 346
6, 4, 7, 5 F2, P, P, P, P NA, 245, 241, 309, 268
4, 2, 6, 3 P 268
3, 2, 6, 1 F3, P, P, P, P NA, 269, 239, 227, 290
4, 2, 6, 1 P 265

5, 4, 6, 3, 1 P 201
3, 6, 2, 4, 7 P 213
7, 4, 2, 3, 1 P 238
1, 3, 6, 2, 4 F4, P, P, P, P NA, 268, 253, 204, 233
4, 2, 6, 3, 1 P 234
5, 4, 2, 6, 1 P 283
1, 3, 6, 4, 5 P 174
1, 6, 2, 4, 5 P 216
1, 3, 4, 7, 5 P 204
3, 6, 2, 4, 5 P 278

5, 4, 2, 6, 3, 1 P 261
1, 3, 6, 4, 7, 5 P 278
1, 3, 2, 4, 7, 5 P 290
1, 3, 2, 4, 7, 5 P 276
5, 4, 2, 6, 3, 1 P 406
1, 6, 2, 4, 7, 5 P 237
1, 3, 6, 2, 4, 5 P 294
1, 3, 2, 4, 7, 5 P 260
7, 4, 2, 6, 3, 1 F5, F6, F5, P, P NA, NA, NA, 295, 359
3, 6, 2, 4, 7, 5 P 311

1, 3, 6, 2, 4, 7, 5 P 334
1, 3, 6, 2, 4, 7, 5 P 353
1, 3, 6, 2, 4, 7, 5 P 361
1, 3, 6, 2, 4, 7, 5 P 303
1, 3, 6, 2, 4, 7, 5 P 374
1, 3, 6, 2, 4, 7, 5 P 319
1, 3, 6, 2, 4, 7, 5 P 288
1, 3, 6, 2, 4, 7, 5 P 347
1, 3, 6, 2, 4, 7, 5 P 312
1, 3, 6, 2, 4, 7, 5 P 286

1 Drone successfully detected and scanned all fans before crashing into the environment boundary due to an angle
crooked enough to lead the drone in the incorrect direction. 2 Drone successfully detected and scanned all fans,
but missed the helipad, as the drone’s facing angle was crooked compared to the expected facing angle causing
the drone to be too far from the helipad vicinity to successfully find it. 3 Drone successfully detected and scanned
all fans except fan no. 1, which it overshot and searched for a QR code behind fan no. 1. 4 Drone successfully
detected and scanned all fans, but missed the helipad as the drone’s facing angle was crooked compared to the
expected facing angle, causing the drone to be too far from the helipad vicinity to successfully find it. 5 Drone
successfully detected and scanned all fans but fan no. 1 before crashing into the environment boundary. 6 Drone
drifted too far left to detect fan no. 7 within the camera frame.
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Table A2. Results of the traveling salesman experiment with erroneous takeoff locations.

Randomly Selected Fans for Path (Order-Dependent) Pass (P) or Fail (F) Total Flight Time (s) Incorrect Takeoff Location (cm)

1, 4, 7 P1 275 (−254, 254)
1, 3, 4 P 177 (−152, −152)
5, 4, 3 P 180 (152, −152)
3, 2, 4 P2 203 (−254, −254)
1, 3, 2 P3 284 (254, 254)
3, 4, 7 P4 247 (297, 211)
6, 2, 7 P5 266 (−147, 241)
5, 7, 1 P6 250 (330, 119)
7, 6, 1 P7 233 (610, 61)
4, 2, 6 P8 220 (−89, 152)

5, 4, 2, 6, 1 P9 275 (−254, 254)
3, 6, 2, 4, 7 P10 177 (−152, −152)
5, 7, 4, 2, 3 P11 180 (152, −152)
5, 4, 2, 6, 3 P12 203 (−254, −254)
3, 6, 2, 4, 5 P13 284 (254, 254)
1, 6, 4, 7, 5 P14 247 (297, 211)
5, 7, 2, 6, 1 P15 266 (0, 279)
5, 4, 6, 3, 1 P16 250 (450, 307),
5, 4, 2, 6, 1 P17 233 (589, 272),
1, 6, 2, 4, 5 P18 220 (376, 369),

1 Detected Fan #5 instead of Fan #1. 2 Detected Fan #5 instead of Fan #3. 3 Detected Fan #3 instead of Fan #1.
4 Detected Fan #2 instead of Fan #3. 5 Detected Fan #4 instead of Fan #6. 6 Detected Fan #4 instead of Fan #5.
7 Detected Fan #2 instead of Fan #7. 8 Detected Fan #3 instead of Fan #4. 9 Detected Fan #7 instead of Fan #5.
10 Detected Fan #4 instead of Fan #3. 11 Detected Fan #1 instead of Fan #5. 12 Detected Fan #3 instead of Fan #5.
13 Detected Fan #5 instead of Fan #3. 14 Detected Fan #6 instead of Fan #1 and detected Fan #3 instead of Fan #1.
15 Detected Fan #7 instead of Fan #5. 16 Detected Fan #4 instead of Fan #5. 17 Detected Fan #2 instead of Fan #5.
18 Detected Fan #2 instead of Fan #1.

Table A3. Results of the snake path search experiment with the given number of fans.

Randomly Selected Fan Location(s) Pass (P) or Fail (F) Total Flight Time (s)

One Fan

2 P 91

average: 1557 P 151
10 P 249
1 P 123

0 5 P 161

Two Fans

1, 9 P 231

average: 229.6
11, 6 P 209
5, 7 P 266

8, 10 P 303
6, 7 P 139

Three Fans

2, 9, 11 P 317

average: 318.6
2, 7, 11 P 367
1, 3, 5 P 285
4, 6, 8 P 305

1, 3, 10 P 319

Four Fans

1, 2, 3, 11 P 343

average: 335.4
1, 2, 4, 7 P 264
1, 2, 7, 11 P 287
4, 6, 9, 11 P 383

3, 8, 11, 12 P 400

Five Fans

1, 3, 5, 9, 11 P 391

average: 389.8
7, 8, 9, 11, 12 P 350

1, 3, 6, 2, 7 P 312
3, 8, 7, 9, 5 P 485

1, 2, 7, 10, 12 P 411
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Table A4. Results of the snake path search experiment with an unknown number of fans.

Randomly Selected Fan Location(s) Pass (P) or Fail (F) Total Flight Time (s)

One Fan

8 P 298

average: 327.6
7 P 313
5 P 369
4 P 324

10 P 334

Two Fans

4, 8 P 363

average: 337.4
3, 12 P 321
1, 9 P 337

6, 10 P 325
6, 11 P 341

Three Fans

8, 10, 11 P 325

average: 315
1, 5, 6 P 319

7, 10, 11 P 337
2, 5, 6 P 274
7, 9, 11 P 320

Four Fans

3, 4, 8, 10 P 383

average: 362.6
1, 2, 4, 12 P 330
1, 4, 5, 8 P 324
3, 6, 8, 10 P 451
1, 2, 8, 9 P 325

Five Fans

1, 4, 8, 10, 11 P 400

average: 373
1, 3, 5, 8, 11 P 393
1, 4, 5, 11, 12 P 358
1, 4, 8, 9, 11 P 441
1, 2, 9, 10, 11 P 273
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