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Abstract
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Abstract: We herein demonstrate the pulsed-mode temperature operation of chemical sensor devices
based on thin SnO2 films, which were synthesized by magnetron sputtering. The gas-sensitive films
were integrated on SiN-based micro-hotplate (µhp) chips, which enable operation temperatures up
to 500 ◦C. We compared the gas sensor performance in constant temperature mode with pulsed
temperature mode operation towards the test gases carbon monoxide and toluene. In contrast to
constant temperature, the pulsed temperature mode operation reveals additional information about
the type of test gas.
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1. Introduction

Nowadays, conductometric chemical sensors based on metal oxides like SnO2, ZnO,
CuOx, and WOx are the most promising and investigated types of solid-state sensors [1,2].
Gas sensor devices are of high importance for many applications, where energy-autonomous
sensor systems suitable for IoT applications could achieve wide-area pollution monitoring
and mapping. Power consumption of such sensor devices, however, is a key performance
aspect that is decisive for their application success. Pulsed temperature operation of-
fers much lower power consumption (<1 mW) as compared to conventional DC-mode
temperature operation (>30 mW). Moreover, pulsed temperature operation reveals target
gas-dependent features in the response, which can be exploited to increase the selectivity
of the sensor devices.

2. Methods and Materials

SiN-based µhp chips, which provide a heating structure for operating temperatures up
to 500 ◦C, and electrodes for contacting the SnO2 films were processed by photolithography
with a negative resist mask. Next, the SnO2 sensing layer with a thickness of 50 nm was
deposited by reactive magnetron sputtering of a Sn target in Ar + O2. Afterwards, the
sensors were functionalized with metallic nanoparticles (Ag, Ti, and Cu) synthesized by
magnetron sputter inert gas condensation [3] to improve sensitivity and selectivity. The
sensor devices were characterized in an automatized setup with synthetic air (80% N2,
20% O2, and humidity 50%) as a background gas and a constant flow rate of 1000 sccm.
The target gases are carbon monoxide (CO) and toluene (C7H8).

3. Discussion

A typical resistance measurement of a sensor device is exemplified in Figure 1a, and
the temperature cycling schematics are shown in the lower graph. First, the sensors are
heated up to 500 ◦C for 15 min (DC-mode), the test gas (indicated as a grey column) is
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inserted for 5 min, and the sensors’ resistance decreases. Next, the devices are cooled down
to room temperature for 10 min; this is followed by three subsequent heating pulses (pulsed
mode—1 min), where only the second heating pulse is applied in presence of the test
gases. This procedure is executed three times for 5, 10, and 20 ppm test gas concentration.
Figure 1b shows in detail the entirely different resistance gradient behavior (emphasized
by the blue circle) in pulsed mode operation for 5 ppm CO and C7H8.
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Figure 1. (a) Typical resistance measurement in DC- and pulsed-mode T operation for CO and C7H8

(5, 10, and then 20 ppm). (b) Comparison of pulsed-mode T operation for 5 ppm of CO and C7H8.

The sensor response (= resistance decrease) in presence of the test gases is comparable
to the DC-mode. However, it is obvious that the shape of the response curves (see blue
circle in Figure 1b) is entirely different for CO and C7H8. Thus, we conclude that pulsed
T-mode operation reveals particular information about the test gas that cannot be derived
from DC-mode operation.
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