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Abstract: In the last decade, rainfall radars have been deployed at volcanoes such as Mt. Merapi in
Indonesia and can even cover a whole country such as in Japan, where the X-Rain (eXtended Radar
Information network) product has been available for local research. However, the linkage between
rain gauge data and spatial radar data (over a 250 m × 250 m grid) still presents discrepancies, and
these challenges are particularly acute in regions of high local-topographic variations such as at
Mount Unzen in Japan. As the volcano is located in the Shimabara peninsula, it is surrounded by the
sea, with a topography locally rising to 1483 m. To improve the forecast and to better understand
the triggering mechanisms of lahars (volcanic debris-flows) at Mount Unzen, quantifying the spatial
distribution of rainfalls is essential, and first, it is important to understand how data taken locally by
rain gages relate to spatial radar data. Because empirical models have not been able to show any clear
correlation, the present contribution has been developing a neural network with two hidden layers
that takes into account the rainfall per hour, the temperature and the wind speed and direction. The
model takes a logistic activation function, and the loss function is optimized using the Mean Squared
Errors and the Mean Absolute Error. The choice of the activation function and the optimizer is the
result of running several combinations of optimization functions with different activation functions.
Once the best fit was chosen, the sigmoid with a SGD (Stochastic Gradient Descent) optimizer was
chosen, and when training the model for 120 cycles, Shimabara station and the Xrain data showed
an error of <4 mm rainfall, while at the Unzen summit, even after 300 cycles, the validation error
remained at 8 mm while the training loss was <4 mm. This shows that location specific functions
might be necessary for each location, not only taking into account the weather data but also the local
topographic variability and the topographic position on slopes.

Keywords: machine learning; rainfall; rainfall radar; volcanic hazards; lahars

1. Introduction

Stratovolcanoes’ eruptions create pyroclasts of sizes varying from ash to several meters
clasts with events ranging from valley-size pyroclastic density currents and surges [1–4] to
large explosions that can even trigger tsunamis (e.g., the prehistoric eruptions in Alaska [5]).
These deposits are then remobilized over time—or instantly—by rainfall and transported
further downstream, forming lahars [6,7], where mixtures of blocks and sediment and water
flow in a “fluid manner” in and from valleys on volcanoes [8,9]. Lahars can be triggered
by a variety of processes but are dominantly rainfall-triggered, a process well-studied in
South America at Colima Volcano [10] at Popocatepetl [11], or at Cotopaxi Volcano [12], for
instance. In East Asia, Indonesia, the Philippines and Japan have provided numerous case
studies, e.g., Merapi Volcano in Indonesia [6,7,13], Semeru Volcano in Indonesia [14,15], etc.

One of the research gaps that remains, despite this large breadth of research, is the
establishment of a predictive level of relations between rainfalls and lahars. This is essential
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for scientific and applied hazards and disaster risk purposes as well. Unfortunately, the
rain gauges are never in the exact location where rainfall occurs, and the several-centimeter
squares of the rain gauge are not representative of rainfalls that present high-spatial
variability. To fill this gap, rainfall radar has been developed, notably by Japan, and applied
to volcanoes such as Merapi Volcano [16]; however, the significance of the radar data in
comparison with rain gauge data have not been assessed systematically as of yet, and the
radar data have just been used to find thresholds of lahars [17] and only calibrated using
mathematical models. Unfortunately, these relations do not address the problems of each
site-location variability due to topographic and meso-scale level atmospheric conditions
that are site-specific as well.

Consequently, the present contribution, therefore, aims to simulate the relation be-
tween rain gauge data and Xrain radar data so that periods, when no radar data existed,
could be simulated back and then used to improve the simulation of rainfall-lahars’ trigger-
ing processes.

2. Research Location, Data and Methods
2.1. Research Location

The present research occurred at Shimabara peninsula in South Japan (Figure 1).
Shimabara peninsula is dominated by Unzen Volcano, which last erupted in 1991–1995
following a long slumber. This eruption occurred at the Fugen-Dake, and a hundred years
ago, a major flank collapse at Mt. Mayuyama (Figure 1) had then triggered a tsunami that
took the lives of 15,000.
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2.2. Data and Method

To reach this goal, a neural network model was programmed in Python programming
environment, starting from a set of data collected at Unzen Volcano, starting from rain
gauge and rainfall radar data (Figure 1). ANN (Artificial Neural Network) is a popular
method used to predict rainfall from rain gauges [18]. Therefore, a similar type of model
was chosen to link the spatial distribution of the representation of the rainfall (Xrain radar
data) to the rain gauge data.

Moreover, because the local terrain and other geographic factors influence the rain-
fall beyond what the rain gauge data can record, we posited that a BPNN (Backward
Propagation Neural Nework) model was appropriate to integrate these different factors.

The model uses meteorological data from the Japan Meteorological Agency and rainfall
data from the Xrain radar from 2018 to 2021. We built the model using the keras library in
python, tuning the parameters until the result was good enough.

2.3. Data Preparation

The meteorological data was downloaded from the Japan Meteorological Agency
website, and included hourly rainfall, wind speed, direction and temperature from 2018 to
2021 at three observation stations named Unzen, Kuchimozu and Shimabara, around the
target sites. The Xrain data (the Japanese rainfall radar) were obtained from the Ministry
of Land Infrastructure Transport and Tourism of Japan. The data was integrated over a
regular time-step in two time-series over time, and the missing values and data without
rainfall were separated. The wind direction was divided into 16 different directions, and
all the data was integrated into a table-matrix of data, which was then separated between a
training dataset (80%) and a validation dataset (20%). The sampling was randomized, and
the test was run several times.

2.4. Model Building

BPNN is a concept proposed by scientists led by Rumelhart and McClelland in 1986. It
is a multi-layer feedforward neural network trained according to the error backpropagation
algorithm, and it is one of the most widely used neural network models. The BPNN
algorithm is based on a gradient descent method, using gradient search technology, in
order to minimize the deviation of the mean square error between the actual and the
expected output value of the BPNN. The algorithm works as a two-step system, with
the signal forward propagation and the error backpropagation. That is, the error output
is calculated in the direction from input to output, while the weight and threshold are
adjusted in the direction from output to input.

In forward propagation, the characteristics of the sample are data from the input layer,
and the signal is processed at each hidden layer; finally, the calculation is transmitted
to the output layer. For the error between the actual output and the expected output
of the network, the error signal is transmitted back from the last layer, layer by layer,
so as to obtain the error learning signal of each layer, and then the weight of neurons
in each layer is corrected according to the error learning signal. The process of weight
adjustment is the process of network learning and training. This process is performed
until the network output error decreases below a set threshold or if it exceeds the preset
maximum training times.

The model structure is made of two sub-routines, with (1) building the relation between
Xrain and the rain gauge, and (2) using Xrain data from three locations, attempting to infer
the rainfall data. For this process, the model structure has one input layer and two or three
hidden layers and one output layer (Figure 2). This model accepts traditional ANN inputs:
η: learning rate; λ: regularization; L: the number of layers of the neural network; j: the
number of neurons in each hidden layer; Echo: number of rounds learned; batch: the size of
the mini-batch data; how output neurons are encoded; loss function; weights initialization;
types of neuron activation functions; and the scale of the data in the training model. Then,
the optimizer is used to guide the parameters of the loss function to update the appropriate
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size in the correct direction, so that the updated parameters keep the loss function value
approaching the global minimum. The following optimizers are tried in this study: SGD,
AdaGrad, RMSProp and Adam.
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For the present research, the model parameters have been set differently from trial
and error depending on the location as follows (Table 1):

Table 1. The adjusted parameters of the ANN model.

Parameter Value or Function

η 0.0005

λ Z-Score

L Input + Hidden × 2 + Output

j 32, 32, 32

batch 32

ECHO (U, K, S) 1 300, 120, 130

Loss MSE

optimizer SGD

activation sigmoid
1 U:Unzen, K:Kuchinozu, S:Shimabara.

3. Results and Discussion

Once the model was trained and the results optimized using the SGD optimizer
(Table 1), the results demonstrated that the prediction of rain gauge data from the XRain
data is a good model fit, although it shows discrepancies depending on the station (Figure 3).
At Unzen, the rain gauge model predicts a high peak of hourly rainfall > 10 mm successfully,
but for smaller peaks, it tends to under-estimate the peaks between 5 mm and 10 mm hourly
rainfalls (Figure 4).
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Figure 4. Predicted and modeled (test) results at Unzen Station.

At Kuchinozu station, the predictions and the test are of lower quality; neither the
peaks nor the background rainfalls are well predicted, and this can certainly be attributed
to the limited variability in the dataset, generating combinations that are two similar to one
another if one wants to predict the changes (Figure 5).
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Finally, at Shimabara station, peaks superior to 10 mm/h are well predicted, al-
though the value is slightly underestimated. Peak rainfalls of 10 to 15 mm/h also show
two occasions when the peak rainfalls were slightly overestimated (between the samples
200 and 250). The model also finds peak rainfalls between 5 and 10 mm/hour (Figure 6),
but they are underestimated.
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Figure 6. Predicted and modeled (test) results at Shimabara station.

To understand the importance of these errors: the error of the values of the rainfall
against the test events shows that an hourly rainfall of 15 mm/h and higher are system-
atically underestimated. The worst estimate was for Mt. Unzen station when 35 mm/h
was underestimated by 10 mm/h (Figure 7). The two other stations near sea level showed
lower errors, with error values less than 4 mm for most values: only two values exceeded
this error at Kuchinozu and a dozen at Shimabara station (Figures 8 and 9). This issue
emphasizes the necessity to separate the data of different seasons and from different wind
directions in order to work on the topographic effects, which may affect the correspondence
between the values of the XRAIN dataset and the rain gauge station.
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4. Conclusions

According to the results of the model calculation and error analysis, BP neural network
can describe the relationship between rain gauge and spatial rainfall radar data to a certain
extent. Additionally, the error of the model can be followed regularly. If the research
continues in this direction, it is believed that it will be possible to calculate more accurate
spatial rainfall data through rain gauges and other meteorological data.

Author Contributions: All the authors contributed to the fieldwork; Writing of the manuscript (M.Z.
and C.G.); Conceptualization (C.G.); Realization, data preparation, analysis and model construction
(M.Z.); Correction of the manuscript and discussion (M.Z., C.G., B.B., H.N. and S.Y.). All authors
have read and agreed to the published version of the manuscript.

Funding: The present research did not receive external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be made available upon reasonable request.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by
the author contribution or funding sections. This may include administrative and technical support,
or donations in kind (e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.



Proceedings 2022, 87, 11 8 of 8

References
1. Gomez, C.; Lavigne, F.; Lespinasse, N.; Hadmoko, D.S.; Wassmer, P. Longitudinal structure of pyroclastic-flow deposits, revealed

by GPR survey, at Merapi Volcano, Java, Indonesia. J. Volcanol. Geotherm. Res. 2008, 176, 439–447. [CrossRef]
2. Gomez, C.; Lavigne, F.; Hadmoko, D.S.; Lespinasse, N.; Wassmer, P. Block-and-ash flow deposition: A conceptual model from a

GPR survey on pyroclastic-flow deposits at Merapi Volcano, Indonesia. Geomorphology 2009, 110, 118–127. [CrossRef]
3. Burgisser, A.; Bergantz, G.W. Reconciling pyroclastic flow and surge: The multiphase physics of pyroclastic density currents.

Earth Planet. Sci. Lett. 2002, 202, 405–418. [CrossRef]
4. Girolami, L.; Druit, T.H.; Roche, O. Towards a quantitative understanding of pyroclastic flows: Effects of expansion on the

dynamics of laboratory fluidized granular flows. J. Volcanol. Getherm. Res. 2015, 296, 31–39. [CrossRef]
5. Beget, J.; Gardner, C.; Davis, K. Volcanic tsunamis and prehistoric cultural transitions in Cook Inlet, Alaska. J. Volcanol. Geotherm.

Res. 2008, 176, 377–386. [CrossRef]
6. Lavigne, F.; Thouret, J.-C.; Voight, B.; Young, K.; LaHusen, R.; Marso, J.; Suwa, H.; Sumaryono, A.; Sayudi, D.S.; Dejean, M.

Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia. J. Volcanol. Geotherm. Res. 2000, 100, 457–478.
[CrossRef]

7. Lavigne, F.; Thouret, J.C.; Voight, B.; Suwa, H.; Sumaryono, A. Lahars at Merapi Volcano, Central Java: An overview. J. Volcanol.
Geotherm. Res. 2000, 100, 423–456. [CrossRef]

8. Starheim, C.A.; Gomez, C.; Davies, T.; Lavigne, F.; Wassmer, P. In-flow evolution of lahar deposits from video-imagery with
implications for post-event deposit interpretation, Mount Semeru, Indonesia. J. Volcanol. Geotherm. Res. 2013, 256, 96–104.
[CrossRef]

9. Gomez, C.; Lavigne, F.; Hadmoko, D.S.; Wassmer, P. Insights into lahar deposition processes in the Curah Lengkong (Semeru
Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling. J. Volcanol.
Geotherm. Res. 2018, 353, 102–113. [CrossRef]

10. Vazquez, R.; Capra, L.; Caballero, L.; Arambula-Mendoza, R.; Reyes-Davila, G. The anatomy of a lahar: Deciphering the
15th September 2012 lahar at Volcan de Colima, Mexico. J. Volcanol. Geotherm. Res. 2014, 272, 126–136. [CrossRef]

11. Caballero, L.; Capra, L. The use of FLO2D numerical code in lahar hazard evaluation at Popocatepetl volcano: A 2001 lahar
scenario. Nat. Hazards Earth Syst. Sci. 2014, 14, 3345–3355. [CrossRef]

12. Pistolesi, M.; Cioni, R.; Rosi, M.; Aguilera, E. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano,
Ecuador: Results from multiscale lahar simulations. Geomorphology 2014, 207, 51–63. [CrossRef]

13. De Belizal, E. Lahar-related impacts after the 2010 eruption of Merapi Volcano (Java, Indonesia). Geomorphol. Relief Process.
Environ. 2013, 4, 463–480. [CrossRef]

14. Gomez, C.; Lavigne, F. Transverse architecture of lahar terraces, inferred from radargrams: Preliminary results from Semeru
Voclano, Indonesia. Earth Surf. Process. Landf. 2010, 35, 1116–1121. [CrossRef]

15. Lavigne, F.; Tirel, A.; Le Floch, D.; Veryat-Charvillon, S. A real-time assessment of lahar dynamics and sediment load based on
video-camera recording at Semeru Volcano, Inodnesia. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment;
Rickenmann, D., Chenn, C., Eds.; Millpress Science Publishers: Rotterdam, The Netherlands, 2003; Volumes 1 and 2, pp. 871–882.

16. Syarifuddin, M.; Hapsari, R.I.; Legono, D.; Oishi, S.; Mawanda, H.G.; Aisyah, N.; Shimomura, M.; Nakamichi, H.; Iguchi, M.
Monitoring the rainfall intensity at two active volcanoes in Indonesia and Japan by small-compact X-band radars. IOP Earth
Environ. Sci. 2020, 437, 012040. [CrossRef]

17. Hapsari, R.I.; Oishi, S.; Syarifuddin, M.; Asmara, R.A.; Legono, D. X-MP Radar for Developing a Lahar Rainfall Threshold for the
Merapi Volcano Using a Bayesian Approach. J. Disaster Res. 2019, 14, 811–828. [CrossRef]

18. Nastos, P.T.; Moustris, K.P.; Larissi, I.K.; Paliatsos, A.G. Rain intensity forecast using Artificial Neural Networks in Athens, Greece.
Atmos. Res. 2013, 119, 153–160. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jvolgeores.2008.04.012
https://doi.org/10.1016/j.geomorph.2009.03.024
https://doi.org/10.1016/S0012-821X(02)00789-6
https://doi.org/10.1016/j.jvolgeores.2015.03.008
https://doi.org/10.1016/j.jvolgeores.2008.01.034
https://doi.org/10.1016/S0377-0273(00)00151-7
https://doi.org/10.1016/S0377-0273(00)00150-5
https://doi.org/10.1016/j.jvolgeores.2013.02.013
https://doi.org/10.1016/j.jvolgeores.2018.01.021
https://doi.org/10.1016/j.jvolgeores.2013.11.013
https://doi.org/10.5194/nhess-14-3345-2014
https://doi.org/10.1016/j.geomorph.2013.10.026
https://doi.org/10.4000/geomorphologie.10406
https://doi.org/10.1002/esp.2016
https://doi.org/10.1088/1755-1315/437/1/012040
https://doi.org/10.20965/jdr.2019.p0811
https://doi.org/10.1016/j.atmosres.2011.07.020

	Introduction 
	Research Location, Data and Methods 
	Research Location 
	Data and Method 
	Data Preparation 
	Model Building 

	Results and Discussion 
	Conclusions 
	References

