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Abstract: This study investigates the asymptotic synchronization in fractional memristive neural
networks of the Riemann–Liouville type, considering mixed time delays and jump mismatches.
Addressing the challenges associated with discrepancies in the circuit switching speed and the
accuracy of the memristor, this paper introduces an enhanced model that effectively navigates these
complexities. We propose two novel event-based hybrid impulsive controllers, each characterized
by unique triggering conditions. Utilizing advanced techniques in inequality and hybrid impulsive
control, we establish the conditions necessary for achieving synchronization through innovative
Lyapunov functions. Importantly, the developed controllers are theoretically optimized to minimize
control costs, an essential consideration for their practical deployment. Finally, the effectiveness of
our proposed approach is demonstrated through two illustrative simulation examples.

Keywords: synchronization; fractional memristive neural networks; mixed delays; jump mismatches;
event-based impulsive control

1. Introduction

Compared to continuous control techniques such as feedback [1] and adaptive control [2],
impulsive control technology represents an efficient discrete control method, only modifying
the system state instantaneously under specific conditions [3]. Consequently, impulsive
control can save communication bandwidth and energy consumption. It has found extensive
applications in time-varying delay systems [4], chaotic systems [5], and neural networks [6].
On the other hand, the event-triggered mechanism, as a control strategy that updates control
information based on the system state, can effectively conserve communication resources,
reduce energy consumption, and boasts high robustness and adaptability. It has been applied
in fields such as neural networks [7], singular systems [8], affine systems [9], PDE systems [10],
and multiagent networks [11]. However, isolated impulsive control can lead to frequent energy
expenditures [12], and event-triggered control might result in communication congestion
when implemented in multi-node neural networks [11]. Hence, many researchers have
integrated the advantages of these two control strategies, proposing event-based impulsive
control strategies and achieving significant results in the domain of neural networks [13–17].

The memristor, first proposed by Chua in 1971 [18] and physically realized by HP
Laboratories in 2008 [19], is acknowledged as the fourth fundamental circuit element.
Its compact size, low energy consumption and intrinsic memory function, and ability
to emulate brain synapses accurately, make it an ideal basis for constructing artificial
neural networks that closely mimic biological brain functions [20]. In leveraging these
strengths, a category of neural networks based on memristors, referred to as MNNs,
has emerged [21]. Fractional-order differential operators, in comparison to integer-order
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ones, offer a more precise depiction of physical processes due to their non-local and
memory properties, enhancing the adaptability of system processes [22]. The integration
of traditional MNNs with fractional-order operators, resulting in fractional memristive
neural networks (FMNNs) [23], has seen widespread application in image encryption [24],
audio encryption [25], and secure communication [26]. Moreover, due to active device and
amplifier switching speed limitations, neuron interactions often introduce time-varying
delays, including discrete delays [27], distributed delays [28], and leakage delays [29]. To
our knowledge, studies on fractional memristive neural networks that simultaneously
consider these three types of time-varying delays have just commenced, limiting their
practical engineering applications—a gap that this study aimed to bridge.

Synchronization in FMNNs, a key aspect of neural network dynamics, has attracted
extensive academic interest [30,31]. Song and colleagues [32] crafted an adaptive con-
tinuous controller to robustly synchronize FMNNs, utilizing the continuous frequency
distributed equivalent model as an analytical tool. Incorporating the reaction–diffusion
phenomenon into FMNNs, Wu and associates [28] introduced both the pinning continuous
feedback controller and the pinning continuous adaptive controller to ensure the asymp-
totic synchronization of FMNNs. Drawing upon the continuous hybrid adaptive controller,
Kao et al. [29] delved into the Mittag–Leffler synchronization of FMNNs, specifically con-
sidering leakage delay. In the real-world context, driven–response FMNNs invariably
suffer from imperfectly matched connection weights, termed jump mismatches [27,33,34].
Addressing this, Ding et al. [27] and Zhang et al. [34] explored lag projective synchroniza-
tion, employing sliding-mode control and linear feedback control, respectively. Further,
Zhang et al. [33] devised a feedback controller to elucidate the quasi-synchronization
conundrum. Despite their successes, these methods demand substantial communication
resources, necessitating continuous control data transmission, which limits their practical
applicability for FMNNs synchronization. This underscores the need for an event-based
impulsive control approach, aiming for efficient control with minimized costs.

In this investigation, we present a novel event-based hybrid impulsive controller, specifi-
cally tailored to synchronize Riemann–Liouville-type FMNNs faced with mixed delays and
jump mismatches. Our key advancements can be distilled into the following highlights:

• With comprehensive consideration of discrete, distributed, and leakage delays, com-
bined with jump mismatches, we augment the relevance of FMNNs to practical
systems in industry.

• With the aim of achieving control objectives for a controlled network at a lower
control cost, we unveil two innovative event-based hybrid impulsive controllers,
incorporating both static and dynamic event-triggering mechanisms.

• Leveraging novel Lyapunov functions, we establish a duo of sufficient criteria, theo-
retically ensuring asymptotic synchronization in the aforestated FMNNs.

This research navigates the complexities of integrating mixed time delays and jump
mismatches, enhancing model practicality and significantly challenging controller de-
sign. Furthermore, the inherent discontinuity of the memristor and the versatility of
fractional-order operators make devising suitable trigger functions for our event-based
hybrid impulsive controller particularly challenging, which is a crucial step to maintaining
control effectiveness and avoiding Zeno behavior.

The structure of this paper unfolds as follows. In Section 2, we provide a detailed
mathematical model of the aforementioned FMNNs. Section 3 lays out the foundational
concepts and preliminaries essential for validating our proposed theories. In Section 4, we
introduce the two proposed controllers along with their associated conditions, ensuring
asymptotic synchronization, while circumventing the potential for Zeno behavior. Section 5
presents two illustrative simulation examples. Finally, Section 6 summarizes the essence
and findings of this research.

Notations: The set of real numbers is denoted by R = (−∞,+∞), and the set of
positive real numbers is R+ = (0,+∞). An n-dimensional Euclidean space is represented
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by Rn. Additionally, N is the set of integers, while N+ is the set of positive integers. The
well-known Dirac and Gamma functions are denoted by δ(·) and Γ(·), respectively.

2. Model for FMNNs

Based on [29,34] and our previous work [28], the n-dimensional FMNNs with mixed
delays and jump mismatches can be mathematically represented as shown below:

Dq
Rµi(t) =− ηiµi(t − τ1(t)) +

n

∑
j=1

κij
(
µj(t)

)
Fj
(
µj(t)

)
+

n

∑
j=1

ξij
(
µj(t)

)
Gj

(
µj(t − τ2(t))

)
+

n

∑
j=1

ρij
(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds, q ∈ (0, 1)

(1)

where i, j = 1, 2, · · · , n. The state of the ith neuron associated with time t (t > 0) could
be denoted as µi(t), and its self-feedback parameter is ηi ∈ R+. It is worth mentioning
that the value of the memristor is dependent on the system’s state. Thus, the memeristive
connection weights κij(·), ξij(·), and ρij(·) can be described as follows:

κij
(
µj(t)

)
=

{
κ́ij,

∣∣µj(t)
∣∣ > Wj

κ̀ij,
∣∣µj(t)

∣∣ ≤ Wj
, ξij

(
µj(t)

)
=

{
ξ́ij,

∣∣µj(t)
∣∣ > Wj

ξ̀ij,
∣∣µj(t)

∣∣ ≤ Wj
,

ρij
(
µj(t)

)
=

{
ρ́ij,

∣∣µj(t)
∣∣ > Wj

ρ̀ij,
∣∣µj(t)

∣∣ ≤ Wj
,

where κ́ij, κ̀ij, ξ́ij, ξ̀ij, ρ́ij, ρ̀ij ∈ R, and switching jumps satisfy Wj ∈ R+. The activation
functions Fj(·), Gj(·), and Hj(·) satisfy some conditions that are shown in Assumption 1.
τ1(t), τ2(t), and τ3(t) are time-varying leakage delays, discrete delays, and distributed
delays, respectively, in which τm(t) ∈ (0, τm), τm ∈ R+, τ̇m(t) ∈ (0, hm), hm ∈ (0, 1), and
m = 1, 2, 3. The following are the initial criteria for FMNNs (1):

Dq−1
R µi(s) = ϕi(s), s ∈ [−τmax, 0], τmax = max{τ1, τ2, τ3}, (2)

where ϕi(s) is bounded and continuous on [−τmax, 0].

Remark 1. Memristive neural networks (MNNs) inherently face time delays due to circuit limita-
tions, which can compromise their performance. Previous research [27–29,35] has tended to address
discrete, distributed, or leakage delays either singly or in pairs, limiting holistic comprehension
and application. Our work expands the conventional FMNN model to include these mixed delays,
significantly improving its applicability and accuracy in real-world scenarios.

3. Preliminaries

Definition 1 ([35]). The Riemann–Liouville fractional integral and derivative are respectively
defined as follows:

D−q
R µ(t) =

1
Γ(q)

∫ t

t0

(t − s)(q−1)µ(s)ds,

Dq
Rµ(t) =

1
Γ(n − q)

dn

dtn

∫ t

t0

(t − s)(n−q−1)µ(s)ds,

where q ∈ (n − 1, n) for n ∈ N+, and t0 is the initial moment of the function µ(·).

Property 1 ([35]). For a function µ(t) where p ∈ (0,+∞), q ∈ (0, p) and c ∈ R, the following
inequalities hold:

Dq
R
(

D−p
R µ(t)

)
= Dq−p

R µ(t), Dq
R
(
cµ(t)

)
= cDq

Rµ(t).
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Lemma 1 ([35]). In assuming the existence of a differentiable function vector µ(t) : Rn → Rn, the
following inequality holds:

Dq
R

(
µT(t)µ(t)

)
≤ 2µT(t)Dq

Rµ(t), ∀q ∈ (0, 1).

Lemma 2 ([35]). The inequality 2ϵT
1 ϵ2 ≤ ιϵT

1 ϵ1 +
1
ι ϵT

2 ϵ2 always holds ∀ ϵ1, ϵ2 ∈ Rn and ι ∈ R+.

Lemma 3 ([28]). The integration of the vector function ϵ(t): [ς1, ς2] → Rn is well defined as

[
∫ ς2

ς1

ϵ(s)ds]T [
∫ ς2

ς1

ϵ(s)ds] ≤ (ς2 − ς1)[
∫ ς2

ς1

ϵT(s)ϵ(s)ds].

where ς1, ς1 ∈ R and ς1 < ς2.

Lemma 4 ([36] Fractional Barbalat’s lemma). The vector function, defined as µ(t) : Rn → Rn,
will converge to 0 if

∫ t
t0

µ(s)ds and Dq
Rµ(t) (q ∈ (0, 1)) both have a finite limit when t → +∞.

Assumption 1. The neural activation functions satisfy Fj(0) = 0, Gj(0) = 0, Hj(0) = 0, and the
following inequalities for the jth neuron:

|Fj(ϵ1)− Fj(ϵ2)| ≤ Fj|ϵ1 − ϵ2|,
|Gj(ϵ1)− Gj(ϵ2)| ≤ Gj|ϵ1 − ϵ2|,
|Hj(ϵ1)− Hj(ϵ2)| ≤ Hj|ϵ1 − ϵ2|.

where Fj,Gj,Hj ∈ R+.

Lemma 5 ([34]). Based on Assumption 1, we obtain

1. |κ∗ij
(
νj(t)

)
Fj
(
νj(t)

)
− κij

(
µj(t)

)
Fj
(
µj(t)

)
| ≤ κ̆ijFj|ζ j(t)|+ Tj|κ́ij − κ̀ij|,

2. |ξ∗ij
(
νj(t)

)
Gj

(
νj(t − τ2(t))

)
− ξij

(
µj(t)

)
Gj

(
µj(t − τ2(t))

)
| ≤ ξ̆ijGj|ζ j(t − τ2(t))|+

Tj|ξ́ij − ξ̀ij|,
where κ̆ij = max{|κ́ij|, |κ̀ij|}, ξ̆ij = max{|ξ́ij|, |ξ̀ij|}, and Tj = max{Wj,Vj}.

Lemma 6. If Assumption 1 is satisfied, the following inequality will hold:∣∣∣∣ρ∗ij(νj(t)
) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds − ρij

(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds

∣∣∣∣
≤ ρ̆ijHj

∫ t

t−τ3(t)
|ζ j(s)|ds + τ3Tj|ρ́ij − ρ̀ij|,

where ρ̆ij = max{|ρ́ij|, |ρ̀ij|}.

Proof. If |µj| ≤ Wj, one has:∣∣∣∣ρ∗ij(νj(t)
) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds − ρij

(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds

∣∣∣∣
≤

∣∣∣∣ρij
(
νj(t)

) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
− Hj

(
µj(s)

)
ds

∣∣∣∣
+

∣∣∣∣[ρij
(
νj(t)

)
− ρij

(
µj(t)

)] ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds

∣∣∣∣
≤ ρ̆ijHj

∫ t

t−τ3(t)

∣∣Hj
(
νj(s)

)
− Hj

(
µj(s)

)∣∣ds + |ρij − ρij|
∫ t

t−τ3(t)

∣∣Hj
(
µj(s)

)∣∣ds

≤ ρ̆ijHj

∫ t

t−τ3(t)
|ζ j(s)|ds + |ρij − ρij|τ3HjWj.

(3)
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If |µj| > Wj and |νj| > Vj, we obtain:∣∣∣∣ρ∗ij(νj(t)
) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds − ρij

(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds

∣∣∣∣
≤ ρ̆ij

∫ t

t−τ3(t)

∣∣Hj
(
νj(s)

)
− Hj

(
µj(s)

)∣∣ds

≤ ρ̆ijHj

∫ t

t−τ3(t)
|ζ j(s)|ds.

(4)

If |µj| > Wj and |νj| ≤ Vj, we have:∣∣∣∣ρ∗ij(νj(t)
) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds − ρij

(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds

∣∣∣∣
≤

∣∣∣∣ρij
(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
− Hj

(
µj(s)

)
ds

∣∣∣∣
+

∣∣∣∣[ρij
(
νj(t)

)
− ρij

(
µj(t)

)] ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds

∣∣∣∣
≤ ρ̆ijHj

∫ t

t−τ3(t)

∣∣Hj
(
νj(s)

)
− Hj

(
µj(s)

)∣∣ds + |ρij − ρij|
∫ t

t−τ3(t)

∣∣Hj
(
νj(s)

)∣∣ds

≤ ρ̆ijHj

∫ t

t−τ3(t)
|ζ j(s)|ds + |ρij − ρij|τ3HjVj.

(5)

From (3)–(5), Lemma 6 always holds. The proof is completed.

4. Main Results

In this section, we will explore the asymptotic synchronization problem of the FMNNs
and describe the corresponding response system for (1) as follows:

Dq
Rνi(t) =− ηiνi(t − τ1(t)) +

n

∑
j=1

κ∗ij
(
νj(t)

)
Fj
(
νj(t)

)
+

n

∑
j=1

ξ∗ij
(
νj(t)

)
Gj

(
νj(t − τ2(t))

)
+

n

∑
j=1

ρ∗ij
(
νj(t)

) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds + ψi(t),

(6)

where νi(t) is represented as a neuron state, and ψi(t) is the novel controller to be designed.
And κ∗ij(·), ξ∗ij(·), and ρ∗ij(·) are described as follows:

κ∗ij
(
νj(t)

)
=

{
κ́ij,

∣∣νj(t)
∣∣ > Vj

κ̀ij,
∣∣νj(t)

∣∣ ≤ Vj
, ξ∗ij

(
νj(t)

)
=

{
ξ́ij,

∣∣µj(t)
∣∣ > Vj

ξ̀ij,
∣∣µj(t)

∣∣ ≤ Vj
,

ρ∗ij
(
νj(t)

)
=

{
ρ́ij,

∣∣µj(t)
∣∣ > Vj

ρ̀ij,
∣∣µj(t)

∣∣ ≤ Vj
,

where switching jumps satisfy Vj ∈ R+. Just like (2), the initial criteria for FMNNs (6) are

Dq−1
R ν(s) = φi(s), s ∈ [−τmax, 0], τmax = max{τ1, τ2, τ3}, (7)

where φi(s) is bounded and continuous on [−τmax, 0].

Remark 2. The FMNNs, as outlined by Equations (1) and (6), are state-dependent differential
systems where the connection weights are determined by the states of the neurons. Given that
disturbances, whether internal or external, can lead to variations in connection weights between
driven and response systems, addressing jump mismatches becomes essential.
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Let ζi(t) = νi(t)− µi(t) denote the synchronization error. Therefore, according to (1)
and (6), we know that the synchronization error system is

Dq
Rζi(t) =− ηiζi(t − τ1(t)) +

n

∑
j=1

[
κ∗ij

(
νj(t)

)
Fj
(
νj(t)

)
− κij

(
µj(t)

)
Fj
(
µj(t)

)]
+

n

∑
j=1

[
ξ∗ij

(
νj(t)

)
Gj

(
νj(t − τ2(t))

)
− ξij

(
µj(t)

)
Gj

(
µj(t − τ2(t))

)]
+

n

∑
j=1

[
ρ∗ij

(
νj(t)

) ∫ t

t−τ3(t)
Hj

(
νj(s)

)
ds − ρij

(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds

]
+ ψi(t).

(8)

The innovative event-based impulsive controller ψi(t) is designed as follows:

ψi(t) = −p1iζi(tk−1)− p2i sgn
(
ζi(tk−1)

)
+

+∞

∑
k=1

[
αik

(
ζ(t)

)
− ζi(t)

]
δ(t − tk), (9)

where k ∈ N represents the kth impulsive instant. The feedback control gains are
p1i ∈ R+ and p2i ∈ R, respectively. The impulsive moment sequence {tk} is a mono-
tonically increasing series and satisfies tk → ∞ as k → +∞. For the purpose of subsequent
proofs, this paper supposes that the neuron’s state is right-continuous in an impulsive
instant, i.e., it satisfies the conditions ζi(t−k ) = ζi(tk) and ζ(t+k ) = limt→t+k

ζi(t). Instead

of assuming the impulsive strength as the constant, we consider it the function αik
(
ζ(t)

)
satisfying Assumption 2.

Remark 3. The controller introduced herein was designed to efficiently achieve the control objective,
using minimal resources and exhibiting resilience to unforeseen perturbations. To this end, a static
event trigger strategy is detailed in Section 4.1, which is later refined to a dynamic strategy in
Section 4.2 for heightened adaptability.

According to the controller (9), (8) could be translated as

Dq
Rζi(t) = −ηiζi(t − τ1(t)) + ∑n

j=1

[
κ∗ij

(
νj(t)

)
Fj
(
νj(t)

)
− κij

(
µj(t)

)
Fj
(
µj(t)

)]
+∑n

j=1

[
ξ∗ij

(
νj(t)

)
Gj

(
νj(t − τ2(t))

)
− ξij

(
µj(t)

)
Gj

(
µj(t − τ2(t))

)]
+∑n

j=1 ρ∗ij

[(
νj(t)

) ∫ t
t−τ3(t)

Hj
(
νj(s)

)
ds − ρij

(
µj(t)

) ∫ t
t−τ3(t)

Hj
(
µj(s)

)
ds

]
−p1iζi(tk−1)− p2i sgn

(
ζi(tk−1)

)
, t ̸= tk,

ζi(t+k ) = αik
(
ζ(t)

)
, t = tk.

(10)

The specific control process is depicted in Figure 1. The value of the error FMNNs
(ζ(t)) is obtained by calculating the difference between the states of the neurons in the
response FMNNs (ν(t)) and the driven FMNNs (µ(t)) at the current instant. The signal
receiver in the controller collects the value of the error system neurons and decides whether
to update the value of the signal exporter based on the trigger condition. The response
FMNNs update the state of their own neurons according to the output signals given by the
controller (ψ(t)) in order to facilitate asymptotic synchronization with the driven FMNNs.

Assumption 2. The impulsive strength function αik
(
ζ(t)

)
satisfies

∣∣αik
(
ϵ1(t), ϵ2(t), · · · , ϵn(t)

)∣∣ϱ ≤
n

∑
j=1

αk
ij
∣∣µj(t)

∣∣ϱ,

where αk
ij ∈ (0,+∞), ϱ ∈ N+, and k ∈ N.



Fractal Fract. 2024, 8, 297 7 of 17

Driven FMNNsDriven FMNNs

Response FMNNsResponse FMNNs

Error FMNNsError FMNNs

--

Signal receiverSignal receiver

Signal exporterSignal exporter

Trigger function

Signal receiver

Signal exporter

Trigger function

Controller

Signal receiver

Signal exporter

Trigger function

Controller

Synchronization

𝜇 𝑡  

𝜈 𝑡  

𝜁 𝑡  

𝜓 𝑡  

Relationships between neurons

Neurons

Relationships between neurons

Neurons

Figure 1. Schematic block diagram for synchronization of FMNNs.

Remark 4. Within numerous impulsive control frameworks, the impulsive strength is often as-
sumed to be constant, expressed as µi(t+k ) = rikµi(tk), where rik is a constant. It is evident that
Assumption 2 is satisfied when αk

ii = rik and αk
ij = 0 for i ̸= j. Consequently, the controller

formulated in this study offers a more encompassing and versatile approach.

4.1. Static Event Trigger Strategy

Let the measurement error function be

εi(t) = ζi(tk−1)− ζi(t), t ∈ [tk−1, tk). (11)

Then, the trigger function is defined as follows:

ω(t) = εmax(t)−
ιΞminζmin(tk−1) + ςΘmin

p1max + ιΞmax
, (12)

where ι, ς ∈ R, εmax(t) = max{|εi(t)|},ζmin(tk−1) = min{|ζi(tk−1)|}, p1max = max{p1i},
Ξmax = max{Ξi}, Ξmin = min{Ξi}, Θmin = min{Θi} and

Ξi = −1
2

n

∑
j=1

ηi
1 − h1

+ κ̆ij + κ̆jiF 2
i + ξ̆ij +

ξ̆ ji

1 − h2
G2

i + ρ̆ij +
ρ̆ji

1 − h3
H2

i τ3 + p1i,

Θi = −
n

∑
j=1

|κ́ij − κ̀ij|Tj + |ξ́ij − ξ̀ij|Tj + |ρ́ij − ρ̀ij|Tjτ3 + p̄2i,

where

{
p2i ≥ p̄2i,

sgn(ζi(tk−1))
sgn(ζi(t))

> 0,
p2i < −p̄2i, others,

. Thus, the static event trigger condition is

tk = inf{t ∈ (tk−1,+∞)|ω(t) > 0}. (13)

Theorem 1. With the assistance of the proposed controller (9) with static trigger condition (13),
asymptotic synchronization is achieved in FMNNs (1) and (6) if Assumptions 1 and 2 and the
following inequalities hold:

1. 0 < ∑n
j=1 αk

ij < 1;
2. Ξi, Θi ≥ 0;
3. ι, ς, ∑n

j=1 αk
ij ∈ (0, 1).
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Proof. Pick an appropriate Lyapunov function:

V(t) = V1(t) + V2(t) + V3(t) + V4(t), (14)

where

V1(t) =
1
2

n

∑
i=1

Dq−1
R ζ2

i (t),

V2(t) = (2 − 2h2)
−1

n

∑
i=1

n

∑
j=1

ηi

∫ t

t−τ1(t)
ζ2

i (s)ds,

V3(t) = (2 − 2h2)
−1

n

∑
i=1

G2
i

n

∑
j=1

ξ̆ij

∫ t

t−τ1(t)
ζ2

i (s)ds,

V4(t) = τ3(2 − 2h3)
−1 ∑

i=1
H2

i ∑
j=1

ρ̆ij

∫ 0

−τ3(t)

∫ t

t+s
ζ2

i (θ)dθds.

When t ̸= tk, according to Lemmas 5 and 6, the derivative of V1(t) is

V̇1(t) ≤
n

∑
i=1

ζi(t)Dq
Rζi(t)

≤
n

∑
i=1

{
− ηiζi(t)ζi(t − τ1(t)) + |ζi(t)|

n

∑
j=1

[
κ̆ijFj|ζ j(t)|+ Tj|κ́ij − κ̀ij|

]
+ |ζi(t)|

n

∑
j=1

[
ξ̆ijGj|ζ j(t − τ2(t))|+ Tj|ξ́ij − ξ̀ij|

]
+ |ζi(t)|

n

∑
j=1

[ρ̆ijHj

∫ t

t−τ3(t)
|ζ j(s)|ds

+ τ3Tj|ρ́ij − ρ̀ij|]− p1iζi(t)ζi(tk−1)− p2i sgn
(
ζi(tk−1)

)
ζi(t)

}
.

(15)

According to Lemmas 2 and 3, one obtains

−ηiζi(t)ζi(t − τ1(t)) ≤
1
2

ηi
(
ζ2

i (t) + ζ2
i (t − τ1(t))

)
, (16)

|ζi(t)|
n

∑
j=1

κ̆ijFj|ζi(t)| ≤
1
2

n

∑
j=1

(
κ̆ij + κ̆jiF 2

i
)
ζ2

i (t), (17)

|ζi(t)|
n

∑
j=1

ξ̆ijGj|ζi(t − τ2(t))| ≤
1
2

n

∑
j=1

ξ̆ijζ
2
i (t) + ξ̆ jiG2

i ζ2
i (t − τ2(t)), (18)

|ζi(t)|
n

∑
j=1

ρ̆ijHj

∫ t

t−τ3(t)
|ζ j(s)|ds ≤ 1

2

n

∑
j=1

ρ̆ijζ
2
i (t) + ρ̆jiH2

i
( ∫ t

t−τ3(t)
|ζ j(s)|ds

)2

≤ 1
2

n

∑
j=1

ρ̆ijζ
2
i (t) + ρ̆jiH2

i τ3

∫ t

t−τ3(t)
ζ2

j (s)ds.
(19)

Combining (16)–(19) with (15), one could obtain
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V̇1(t) ≤
1
2

n

∑
i=1

n

∑
j=1

(
ηi + κ̆ij + κ̆jiF 2

i + ξ̆ij + ρ̆ij
)
ζ2

i (t)

+
n

∑
i=1

n

∑
j=1

(
|κ́ij − κ̀ij|Tj + |ξ́ij − ξ̀ij|Tj + |ρ́ij − ρ̀ij|Tjτ3

)
|ζi(t)|

+
1
2

n

∑
i=1

[
ηiζi(t − τ1(t)) +

n

∑
j=1

ξ̆ jiG2
i ζ2

i (t − τ2(t)) + ρ̆jiH2
i τ3

∫ t

t−τ3(t)
ζ2

i (s)ds
]

−
n

∑
i=1

p1iζi(t)ζi(tk−1)−
n

∑
i=1

p2iζi(t) sgn(ζi(tk−1)).

(20)

At the same time, one could obtain

V̇2(t) = (2 − 2h1)
−1

1

∑
i=1

n

∑
j=1

ηi

(
ζ2

i (t)−
(
1 − τ̇1(t)

)
ζ2

i (t − τ1(t))
)

≤
n

∑
i=1

n

∑
j=1

( ηi
2(1 − h1)

ζ2
i (t)−

ηi
2

ζ2
i (t − τ2(t))

)
,

(21)

V̇3(t) = (2 − 2h2)
−1

1

∑
i=1

G2
i

n

∑
j=1

ξ̆ ji

(
ζ2

i (t)−
(
1 − τ̇2(t)

)
ζ2

i (t − τ2(t))
)

≤
n

∑
i=1

n

∑
j=1

( ξ̆ jiG2
i

2(1 − h2)
ζ2

i (t)−
ξ̆ ji

2
G2

i ζ2
i (t − τ2(t))

)
,

(22)

V̇4(t) = τ3(2 − 2h3)
−1

n

∑
i=1

H2
i

n

∑
j=1

ρ̆ij

(
τ3(t)ζ2

i (t)−
(
1 − τ̇3(t)

) ∫ t

t−τ3(t)
ζ2

i (s)ds
)

≤
n

∑
i=1

n

∑
j=1

( ρ̆ijH2
i τ3

2(1 − h3)
ζ2

i (t)−
ρ̆ijH2

i τ3

2

∫ t

t−τ3(t)
ζ2

i (s)ds
)

.

(23)

From (20) to (23) and the measurement error function (11), we could obtain

V̇(t) ≤
n

∑
i=1

[
− (Ξi − p1i)ζ

2
i (t)− (Θi − p̄2i)|ζi(t)|

− p1iζi(t)ζi(tk−1)− p2iζi(t) sgn(ζi(tk−1))
]

≤
n

∑
i=1

[
− Ξiζ

2
i (t)− Θi|ζi(t)|

]
+

n

∑
i=1

p1i|ζi(t)||εi(t)|.

(24)

Moreover, the following inequalities hold according to the measurement error function
(11) and ω(t) ≤ 0:

p1i|εi(t)| ≤ s1maxεmax(t)

≤ ιΞminζmin(tk−1) + ςΘmin − ιΞmaxεmax(t)

≤ ιΞi|ζi(tk−1)|+ ςΘi − ιΞi|εi(t)|
≤ ιΞi|ζi(t)|+ ςΘi.

(25)

Putting (25) into (24), one obtains V̇(t) ≤ ∑n
i=1(ι − 1)Ξiζ

2
i (t) + (ς − 1)Θi|ζi(t)| < 0.

When t = tk, according to Assumption 2 and Theorem 1, one obtains

V1(t+k ) =
1
2

n

∑
i=1

Dq−1
R ζ2

i (t
+
k ) ≤

1
2

n

∑
i=1

n

∑
j=1

αk
ijD

q−1
R ζ2

i (tk) ≤ V1(tk).



Fractal Fract. 2024, 8, 297 10 of 17

Thus, inequality V(t+k ) ≤ V(tk) will hold.
Let B(t) = ∑n

i=1 ζ2
i (t) hold; then, one could easily obtain V(t) + 1

2

∫
Φ B(t)dt ≤ V(t0).

Consequently, B(t) is bounded when t → +∞. According to Equation (10),
(

Dq
Rζi(t)

)2 is
bounded. From Lemma 4, ∑i=1 ζ2

i (t) → 0 as t → +∞. The proof is completed.

Remark 5. Our research diverges from the existing literature [27–29,32,34,35] by implementing
an event-based hybrid impulsive controller, as opposed to continuous or partially discrete con-
trollers. This innovative strategy significantly reduces the need for continuous control information
transmission, thereby decreasing energy and bandwidth consumption.

Definition 2 ([37]). When ∃h̄ ∈ R+ s.t. infk∈N{tk − tk−1} > h̄, the system is said to evade Zeno
behavior under the effect of the proposed controller.

Theorem 2. The FMNNs (6) could evade Zeno behavior with the effect of controller (9) under
static trigger function (13) when Theorem 1 is satisfied.

Proof. Based on Theorem 1, we could obtain that
(

Dq
Rζi(t)

)2 is bounded. Thus, one could
simpley infer that Dq

Rζi(t) is also bounded, i.e.,

∃Pi ∈ R+, s.t. |Dq
Rζi(t)| ≤ Pi. (26)

According to the Riemann–Liouville fractional definition (Definition 1) and relating
property (Property 1), one could obtain the following inequality:∣∣εi(t)

∣∣ = ∣∣ζi(t)− ζi(tk−1)
∣∣ = ∣∣D−q

R
(

Dq
Rζi(t)

)
− D−q

R
(

Dq
Rζi(tk−1)

)∣∣
=

∣∣(Γ(q))−1( ∫ t

t0

Dq
Rζi(s)(t − s)q−1ds −

∫ tk−1

t0

Dq
Rζi(s)(tk−1 − s)q−1ds

)∣∣
≤ (Γ(q))−1∣∣ ∫ tk−1

t0

(
Dq

Rζi(s)(t − s)q−1 − ζi(s)(tk−1 − s)q−1)ds
∣∣

+ (Γ(q))−1∣∣ ∫ t

tk−1

Dq
Rζi(s)(t − s)q−1ds

∣∣.
According to (26), one could obtain

∣∣εi(t)
∣∣ ≤ (Γ(q))−1Pi

∣∣ ∫ tk−1

t0

(t − s)q−1 − (tk−1 − s)q−1ds
∣∣

+ (Γ(q))−1Pi
∣∣ ∫ t

tk−1

(t − s)q−1ds
∣∣

= (Γ(q + 1))−1Pi
(
|(t − tk−1)

q − (t − t0)
q + (tk−1 − t0)

q|+ (t − tk−1)
q)

≤ 2(Γ(q + 1))−1Pi(t − tk−1).

Obviously, the inequality always holds:

εmax(t) ≤ 2(Γ(q + 1))−1Pmax(t − tk−1), Pmax = max{Pi}. (27)

According to trigger condition (13), one obtains

ℓ
(
tk−1

)
=

ιΞminζmin(tk−1) + ςΘmin
s1max + ιΞmax

≤ εmax(t).

Thus, the lower bound of Tk−1 is

0 < h̄ <
1
2

P−1
maxℓ(t)Γ(q + 1) < Tk−1,
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where Tk−1 = t − tk−1. Based on Definition 2, the proof is completed.

4.2. Dynamic Event Trigger Strategy

To further enhance the flexibility of the controller, we defined the auxiliary dynamic
function (28), which translates the static trigger condition (13) into a dynamic one:

ϖ̇(t) = −ϖ(t) +
n

∑
i=1

(
ιΞiζ

2
i (t) + ςΘi|ζi(t)| − p1i|εi(t)||ζi(t)|

)
, (28)

with the initial conditions ϖ(0) > 0. Thus, we define the dynamic trigger function as

υ(t) = ω(t)− p1min
(p1max + ιΞmax)ζmax(t)

ϖ(t), (29)

where ζmax(t) = max{ζi(t)}, and p1min = min{p1i}. Thus, the dynamic trigger condition
is

tk = inf{t ∈ (tk−1,+∞)|υ(t) > 0}, (30)

Theorem 3. The controller with dynamic trigger condition (30) will help FMNNs (1) and
FMNNs (6) achieve asymptotic synchronization if Theorem 1 holds.

Proof. We construct the new Lyapunov function V̄(t) = V(t) + ϖ(t). According to in-
equality (24), its derivative is

˙̄V(t) ≤ −ϖ(t) +
n

∑
i=1

(
(ι − 1)Ξiζ

2
i (t) + (ς − 1)Θi|ζi(t)|

)
, t ∈ [tk−1, tk). (31)

Owing to the trigger function υ(t) ≤ 0 and the measurement error function (11), the
following inequality is obtained:

p1i|εi(t)| ≤ s1maxεmax(t) ≤ ιΞminζmin(tk−1) + ςΘmin − ιΞmaxεmax(t) +
s1min

ζmax(t)
ϖ(t)

≤ p1i
|ζi(t)|

ϖ(t) + ιΞi|ζi(tk−1)|+ ςΘi − ιΞi|εi(t)|

≤ p1i
|ζi(t)|

ϖ(t) + ιΞi|ζi(t)|+ ςΘi.

(32)

Putting (32) into (28), one could obtain ϖ̇(t) ≥ −(1+∑n
i=1 p1i)ϖ(t). If ϖ̄ is the solution

of differential equation ˙̄ϖ(t) = −(1 + ∑n
i=1 p1i)ϖ̄(t) with initial condition ϖ̄(0) ≥ 0, then

the following inequality holds:

ϖ̄(t) = ϖ̄(0)e−(1+∑n
i=1 p1i)t ≥ 0.

Based on the comparison principle, the following inequality holds:

ϖ(t) ≥ ϖ̄(t) ≥ 0. (33)

Putting (33) into (31), the inequality ˙̄V(t) < 0 holds.
When t = tk, one could obtain the following inequality:

V̄(t+k ) = V(t+k ) + ϖ(t+k ) ≤ V(t) + ϖ(t) ≤ V̄(t). (34)

The proof is completed.

Remark 6. The controller is activated by a static event trigger condition, given by Equation (13),
when ω(t) exceeds zero. This suggests that the difference between the error system value ζi(tk−1) at
the last triggering instant and ζi(t) at the current time exceeds a fixed constant (ιΞminζmin(tk−1) +
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ςΘmin)/(p1max+ ιΞmax). To enhance adaptability and reduce trigger occurrences, we incorporate
an auxiliary dynamic function ϖ(t) to adjust the triggering criterion.

Theorem 4. Similar to in Theorem 2, FMNNs (6) could also evade Zeno behavior with controller
(9) under dynamic trigger function (30) when Theorem 3 is satisfied.

Proof. When t ∈ [tk−1, tk), one obtains the following inequality based on the dynamic
trigger function υ(t) ≤ 0, t ∈ [tk−1, tk):

ℓ̄(t) =
ιΞminζmin(tk−1) + ςΘmin

p1max + ιΞmax
+

p1min
(p1max + ιΞmax)ζmax(t)

ϖ(t) ≤ εmax(t).

Owing to (27), the lower bound of Tk−1 is

0 < ¯̄h =
1
2

P−1
max ℓ̄(t)Γ(q + 1) < Tk−1,

where Tk−1 = t − tk−1. The proof is completed.

Remark 7. It can be observed that the control design in this paper includes many fixed parameters,
such as Θ, Ξ, and so on. However, in the practical application of networks, excessive parameter
designs often increase the engineering complexity. Therefore, reducing the total number of parameters
in such controllers will be a problem worthy of careful consideration.

5. Numerical Example

This section presents two examples to illustrate the effectiveness of the proposed
controller.

Example 1. Initially, we examine the static event trigger strategy within three-neuron FMNNs
with mixed delays. The model can be represented as follows:

Dq
Rµi(t) =− ηiµi(t − τ1(t)) +

3

∑
j=1

κij
(
µj(t)

)
Fj
(
µj(t)

)
+

3

∑
j=1

ξij
(
µj(t)

)
Gj

(
µj(t − τ2(t))

)
+

3

∑
j=1

ρij
(
µj(t)

) ∫ t

t−τ3(t)
Hj

(
µj(s)

)
ds,

(35)

with the parameters set as q = 0.8 and η1 = η2 = η3 = 1. The leakage, discrete, and dis-
tributed delays are τ1(t) = et

1+et , τ2(t) = 0.6τ1(t), and τ3(t) = 0.2τ1(t), respectively. Therefore,
τ1 = 1, τ2 = 0.6, and τ3 = 0.2 and h1 = 0.25, h2 = 0.15, and h3 = 0.05. The activation
functions were chosen as Fj(µi(t)) = tanh

(
µj(t)

)
, Gj

(
µi(t − τ2(t))

)
= sin

(
µj(t − τ2(t))

)
,

and Hj(µj
(
t)
)
= 0.3 sin

(
µj(t)

)
, which implies that Fj = Gj = 1 and Hj = 0.3. The connection

weights are

(κ́ij) =

−0.5 0.3 −0.5
−0.9 0.2 −0.1
0.3 −0.1 −0.3

, (κ̀ij) =

 0.3 0.6 0.45
−0.7 0.3 0.3
−0.25 0.25 0.3

,

(ξ́ij) =

 −0.8 0.45 −0.8
−0.9 0.2 −0.1
−0.35 −0.2 −0.3

, (ξ̀ij) =

 −0.3 0.3 0.1
−0.8 0.3 0.2
−0.45 0.3 0.1

,

(ρ́ij) =

 −0.4 0.2 −0.6
−0.6 −0.2 −0.1
−0.25 −0.15 −0.3

, (ρ̀ij) =

0.2 −0.5 0.3
0.4 0.3 0.2
0 0.2 0.1

,
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and Wj = 2. The initial conditions of system (35) are Dq−1
R µi(s) = (1, 1.8,−1.6). In the driven

system for system (35), we define that the jump threshold Vj = 3. The initial conditions are

Dq−1
R νi(s) = (−0.6, 0.6, 1.2), s ∈ [−τmax, 0]. Figure 2 shows the neurons’ trajectory plots of

the driven and response FMNNs, as well as the error FMNNs, without the effect of the controller.
The neurons’ trajectories of the driven–response FMNNs do not overlap in Figure 2a, and the
ones in the error FMNNs exhibit sustained oscillations in Figure 2b, which indicate the absence
of asymptotic synchronization between the driven–response systems without control intervention.
In the following, the choice of appropriate controller parameters will enable the systems to achieve
asymptotic synchronization.
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Figure 2. Trajectory plots of FMNNs without the effect of the proposed controller. (a) Trajectory plots
of driven FMNNs (µ(t)) and response FMNNs (ν(t)); (b) trajectory plots of error FMNNs (ζ(t).

The proposed controller is like (9) with the static event trigger strategy, and the parameters are
discussed as follows. Through simple calculation, we could obtain Ξ1 − p11 = −4.5488, Ξ2 − p12 =
−2.9958, and Ξ3 − p13 = −3.2408 and Θ1 − p̄21 = −3.6640, Θ2 − p̄22 = −3.1780, and
Θ3 − p̄23 = −2.8040. The feedback gains of controllers ψi(t) are p11 = 4.7, p12 = 3.1, p13 = 3.5,
and {

p21 = 4.5, (sgn(ζ1(tk−1)))/(sgn(ζ1(t))) > 0,
p21 = −4.5, others,{
p22 = 4, (sgn(ζ2(tk−1)))/(sgn(ζ2(t))) > 0,
p22 = −4, others,{
p23 = 3.5, (sgn(ζ3(tk−1)))/(sgn(ζ3(t))) > 0,
p23 = −3.5, others.

And we chose ι = 0.8 and ς = 0.6. The impulsive strengths are

α1k
(

x(t)
)
= [0.7, 0.1, 0.1] ·

[
x1(t), sin

(
x2(t)

)
, tanh

(
x3(t)

)]
,

α2k
(

x(t)
)
= [0.7, 0.1, 0.1] ·

[
x2(t), sin

(
x3(t)

)
, tanh

(
x1(t)

)]
,

α3k
(

x(t)
)
= [0.7, 0.1, 0.1] · [x3(t), sin

(
x1(t)

)
, tanh

(
x2(t)

)
],

which satisfy Theorem 1. Thus, one obtains that ∑n
j=1 αk

1j = ∑n
j=1 αk

2j = ∑n
j=1 αk

3j = 0.7. As
per Theorem 1, the driven system (35) and its response system will asymptotically synchronize
under the effect of controller ψi(t). Figure 3 illustrates the neurons’ trajectory plots of the driven–
response FMNNs, as well as the error FMNNs, with the action of controller (9) utilizing the static
trigger strategy. From Figure 3a, it can be observed that after t ≈ 0.7, the trajectories of the
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response FMNNs and the driven FMNNs coincide, indicating that they have achieved asymptotic
synchronization. Moreover, in Figure 3b, the error FMNNs also stabilize at the same moment,
further demonstrating the effectiveness of the controller. Figure 4 illustrates the time intervals
between adjacent trigger instants of the designed controller, denoted as tk − tk−1. It can be observed
that the time intervals between adjacent trigger instants are always greater than 0, demonstrating
that this controller can avoid Zeno behavior based on Definition 2.
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Figure 3. Trajectory plots of FMNNs under the effect of controller (9) with static trigger condition (13)
in Example 1. (a) Trajectory plots of driven FMNNs (µ(t)) and response FMNNs (ν(t)); (b) trajectory
plots of error FMNNs (ζ(t)).
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Example 2. In terms of the dynamic event trigger strategy, the driven and response FMNNs
with mixed delays and jump mismatches are the same as in Example 1. And the parameters
used for controller (9) are p1i and p2i in Example 1. The initial value of the auxiliary dynamic
function is ϖ(0) = 0.08. As shown in Figure 5, the driven–response system achieves asymptotic
synchronization at t ≈ 1.4. And Zeno behavior could be removed, which could be proven in Figure 6.
And the value of the auxiliary dynamic function is always greater than 0 in Figure 7, which coincides
with Theorem 3. In addition, compared to the time intervals in Figure 4, it could be observed that
the controller’s trigger frequency in Figure 6 can be greatly decreased by inserting an auxiliary
dynamic function, but at the cost of a longer period to achieve progressive synchronization owing to



Fractal Fract. 2024, 8, 297 15 of 17

the more “relaxed” trigger condition. However, this conclusion is based solely on empirical evidence
from simulation experiments. The theoretical rigor of this phenomenon remains to be established,
which is a question we need to address in our future work.
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Figure 5. Trajectory plots of FMNNs under the effect of controller (9) with dynamic trigger condi-
tion (30) in Example 2. (a) Trajectory plots of driven FMNNs (µ(t)) and response FMNNs (ν(t));
(b) trajectory plots of error FMNNs (ζ(t)).
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6. Conclusions

The present study introduced a novel mathematical model for FMNNs that incorpo-
rates mixed time delays and jump mismatches. Subsequently, we designed two innovative
hybrid impulsive controllers based on static or dynamic event-triggering mechanisms. In
leveraging inequality techniques and impulsive analysis, synchronization criteria for the in-
vestigated systems weare derived by constructing novel Lyapunov functions. Theoretically,
the design of these controllers effectively overcomes the substantial control cost challenges
identified in prior research, providing crucial insights for real-world applications.
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