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Abstract: In this study, we develop a comprehensive mathematical model to analyze the dynamics of
epidemic cholera, characterized by acute diarrhea due to pathogen overabundance in the human body.
The model is first developed from a deterministic point of view, and then it is modified to include
the randomness by stochastic differential equations. The study selected Lévy noise above other
well-known types of noise, emphasizing its importance in epidemic modeling. Besides presenting a
biological justification for the stochastic system, we demonstrate that the equivalent deterministic
model exhibits possible equilibria. The introduction is followed by theoretical analysis of the model.
Through rigorous analysis, we establish that the stochastic model ensures a unique global solution.
Lyapunov function theory is applied to construct necessary conditions, which on average, guarantee
the model’s stability for Rs

0 > 1. Our findings suggest the likelihood of eradicating the disease when
Rs is below one, a significant insight supported by graphical simulations of the model. Graphical
illustrations were generated from simulating the model in order to increase the analytical results’
robustness. This work provides a strong theoretical framework for a thorough comprehension of a
range of such diseases. This research not only provides a deeper understanding of cholera dynamics
but also offers a robust theoretical framework applicable to a range of similar diseases, alongside a
novel approach for constructing Lyapunov functions for nonlinear models with random disturbances.

Keywords: Lévy noise; threshold; extinction; persistence; numerical simulation

MSC: 15B51; 26A18; 37H05

1. Introduction

Vibrio cholera is a pathogen that causes cholera and is mostly found in marine ani-
mals, and this disease is characterized by intestinal infections. There are over 200 known
serogroups in this bacterium species, which spans a wide variety. Nevertheless, among
these serogroups, only O139 and O1 can cause cholera illnesses [1,2]. Surprisingly, these
bacteria have an amazing ability to withstand the harsh acidic environment of the stomach
before they rupture the mucous membrane that covers the epithelial cells of the intes-
tine [1,3]. The colonized gut produces enterotoxins, which cause the small intestine’s
endothelial cells to secrete more water and electrolytes in response [1]. In 1854, John Snow
demonstrated that consuming contaminated food or water might potentially trigger cholera
outbreaks [4]. There are, nonetheless, other channels of transmission. For instance, the
virus may spread among those who are susceptible through contact with ill persons. These
individuals may spread the disease to other family members who cook or share water
containers if they are more likely to get it [4]. People can spread the virus even if they do
not show any symptoms, and symptoms can appear anywhere from a few hours to five
days following infection. Still, symptoms usually start to appear in the first two to three

Fractal Fract. 2024, 8, 293. https://doi.org/10.3390/fractalfract8050293 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8050293
https://doi.org/10.3390/fractalfract8050293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-4442-4756
https://orcid.org/0000-0003-0463-0360
https://orcid.org/0000-0001-9328-0774
https://orcid.org/0000-0003-4758-2872
https://doi.org/10.3390/fractalfract8050293
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8050293?type=check_update&version=2


Fractal Fract. 2024, 8, 293 2 of 31

days [5]. Watery diarrhea, vomiting, and severe leg cramps are common symptoms of the
condition. Patients who have an infection must receive treatment as soon as possible, since
waiting too long increases the danger of dehydration, acidosis, and circulatory collapse.
Notably, there is a 12 to 24 h mortality risk associated with severe episodes of this condition
[4,6]. Studies indicate that those who make a full recovery can become immune to the
disease for a duration of 3 to 10 years. However, studies also indicate that this immunity
may diminish a few weeks or months afterward [4,7]. Due in part to the challenges associ-
ated with obtaining clean water and sanitary facilities in developing and underdeveloped
countries, diarrheal illnesses continue to be the leading cause of death for newborns and
young children [8]. Moreover, as noted by Sun et al. [9], this disease has a poor surveillance
system and poses a serious risk to human civilization because of its high rates of morbidity
and mortality. Therefore, to comprehend the disease’s progression and develop control
measures, it is imperative to look at mathematical models that make clear the paths by
which cholera is transmitted.

The literature, including references [1,4,6–9], has evaluated some mathematical models
to understand the cholera transmission patterns. Two different bacterial concentrations—
less-infectious and antibiotic-resistant—were included in the work reported in [7] to
create the Susceptible–Infectious–Recovered (SIR) model. Within the infected category,
asymptomatic and symptomatic subcategories were further differentiated. The authors
investigated the cost-effectiveness of several management strategies in two communities
that were assumed to have endemic cholera through the use of numerical simulations,
optimal control theory, and sensitivity analysis. Furthermore, the SIR-type model that
Wang and Modnak [10] studied included a class that deals with vibrio bacterium abun-
dance in the environment. The strategy includes three preventative measures: vaccines,
clean water, and medical treatment. The authors determined the stability of the equilib-
rium points by assigning constant values to the control parameters. Using Pontryagin’s
Maximum Principle, they carried out a further examination of a more comprehensive
cholera model with time-dependent controls. This study demonstrated the optimum con-
trol problem’s solution and provided the required optimality conditions. The authors in [6]
incorporated a variety of control strategies, including treatment, immunization, isolation,
and public health awareness campaigns. In addition, the model had a separate class for
the microbe concentration. By comparing the combined threshold parameter and the
basic reproduction number with threshold values linked to therapy, immunization, and
education, the authors carried out a comparison study. The purpose of this study was to
examine possible advantages for the community. The authors used a Lyapunov functional
technique to examine the stability of fixed points.

As highlighted in references [11–18], the use of mathematical modeling tools is highly
advised for examining the dynamics of epidemic spread and developing successful control
strategies. These models provide a well-rounded approach by bridging the gap between
biological scenario to show the infection’s natural progression and its dependency on the
associated data. Many researchers developing models that shed light on cholera dynamics-
related topics. Reference [19] highlights the great interest of epidemiologists researching
the dynamics and management of cholera epidemics in including environmental factors for
a more thorough understanding, even though most models use a deterministic approach.
Unpredictable factors, such as social interactions or other population features, such the
onset and spread of diseases, worsen the situation. That being said, the diversity and
unpredictable nature of an epidemic’s environment can have a substantial impact on both
its current and future behavior.

Stressing the critical connection between bacterial persistence and spread and environ-
mental changes is essential. The dynamics of an infection necessarily involve stochastic
components, impacting both parameters and states. In epidemic modeling, stochasticity
is acknowledged by epidemiology as a basic component. The model’s disturbances are
random by nature, but they also have to show positive autocorrelation. Moreover, these
variations may be obtained analytically from the related issue by using the probability
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density function, as is covered in references [20–22]. The two main methods used in epi-
demic modelling are stochastic and deterministic. The stochastic modelling technique is
frequently preferred in biological system modelling because it can provide a more realistic
model than deterministic models, as sources [23–26] emphasize. Determining a distribution
of expected outcomes, such as the number of infected people over time, t, is made easier
using stochastic differential equations (SDEs). Furthermore, a stochastic model creates
various outcomes through repeated simulations, delivering more meaningful information
than deterministic models.

To better understand the dynamics of cholera transmission and its long-term behavior
in the setting of moving populations that are prone to bacterial contamination, we built a
stochastic epidemic model in the current study. Both people and microbes are included
in the population, which is divided into four compartments. The susceptible, infected,
recovered, and pathogen groups are represented by the compartments with the designations
S(t), I(t), R(t), and B(t), respectively. Lévy noise is crucial in modeling systems where
significant, abrupt changes are important. It captures both continuous fluctuations and
discrete jumps, making it essential for realistic dynamics in various phenomena. In the
context of epidemic modeling, such as in SIR models, Lévy noise allows us to simulate
sudden large-scale changes like super-spreading events that are not well modeled by
Gaussian noise alone.

Lévy noise derives from Lévy processes, which extend Brownian motion to include
jumps, providing a more comprehensive representation of random phenomena. These
processes have independent, stationary increments and stochastically continuous paths,
ideal for modeling sudden, unpredictable changes in dynamic system.

The characteristic function of a Lévy process is given by [27],

E[eiuL(t)] = exp
(

t
(

iuγ − 1
2

σ2u2 +
∫
R\{0}

(eiux − 1 − iux1|x|<1)ν(dx)
))

,

where γ represents the drift coefficient, σ2 is the variance of the Gaussian part, and ν is the
Lévy measure that describes the jump intensity and distribution. This formulation enables
the modeling of both minor fluctuations and major shifts within a single framework. In
stochastic SIR models, incorporating Lévy noise enhances the model’s ability to reflect the
inherent variability and unpredictability of epidemic spread. It is particularly effective in
accounting for overdispersion in disease transmission rates, which is a common real-world
phenomenon [28,29].

Lévy noise is included in the model as it has more benefits over normal Gaussian
noises, particularly in disease-related mathematical models. More specifically, we take
into account the period between getting the infection and the moment at which symptoms
appear in a person.

1.1. Motivation

The impetus for this research is the critical challenge posed by cholera, a global public
health concern. Current deterministic models serve as a foundation but are limited in their
ability to represent the stochastic behaviors and intricate patterns of disease transmission.
Given the direct impact of environmental factors on cholera’s spread, there is a clear
necessity for a model that incorporates stochasticity to reflect the unforeseen fluctuations
and perturbations that characterize epidemic outbreaks.

The motivation for integrating Lévy noise into our epidemic modeling framework
stems from its proven ability to capture the inherently random and discontinuous nature
of disease transmission, which traditional Gaussian noise models often fail to represent
accurately. Recognized for its capacity to model random fluctuations with unpredictable
jumps, Lévy noise provides a more realistic simulation of the stochastic dynamics observed
in real-world disease outbreaks. This approach is particularly relevant for diseases like
cholera, where transmission through multiple vectors introduces additional complexity
and unpredictability. Studies [30–32] have demonstrated that Lévy noise can significantly
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reduce the disease extinction threshold and enhance the suppression of outbreaks in
network-based models, making it a compelling choice for our analysis. Further support for
the use of Lévy noise is provided by [31], who found that it could influence the dynamics
of hepatitis B more effectively than Gaussian noise, highlighting its potential in enhancing
disease modeling across various epidemiological contexts [31]. These findings collectively
motivate our choice of Lévy noise to achieve a deeper understanding of the transmission
dynamics and control strategies for cholera, aiming to provide insights that are not only
theoretically rigorous but also practically applicable in public health responses.

1.2. Contribution

This paper endeavors to contribute to the field of epidemic modeling by introducing
a novel approach to understanding cholera dynamics. The primary contributions are
twofold. First, we propose a mathematical model that extends the conventional Susceptible–
Infectious–Recovered (SIR) framework. Our model incorporates the pathogen concentra-
tion explicitly, aiming to provide a more nuanced view of the transmission mechanisms
of cholera.

Second, we integrate Lévy noise into the epidemic model. This integration seeks to
capture the unpredictable fluctuations in disease spread more accurately than traditional
deterministic models. Specifically, the Lévy noise is adept at modeling sudden and sporadic
changes, which are characteristic of real-world disease dynamics. This enhancement allows
our model to better reflect the complex interplay between environmental variables and
human behavior that influences cholera propagation.

Through the analysis of this stochastic model, we uncover insights into the thresholds
that govern disease persistence versus extinction. These findings have potential impli-
cations for public health strategies. Additionally, we introduce a novel technique for
constructing Lyapunov functions, which facilitates the examination of stationary distri-
butions in nonlinear systems affected by random perturbations. Although demonstrated
in the context of cholera, this method has the potential for application to a variety of
infectious diseases.

2. Models Formulation

In this section, we proposed a mathematical model employing the spread of cholera
disease with environmental exposure. Thus, we will build a model that integrates the
Susceptible–Infectious–Recovered (SIR) framework and takes into consideration the
pathogen’s concentration or population density while describing the dynamics of cholera.
The whole human population N(t) is divided into three sub-groups at every given time
t ≥ 0: susceptible S(t), infected I(t), and recovered R(t). The sizes of people in each
category are represented by the respective sub-groups. Moreover, B(t) represents the
amount of bacteria present in the food or water. The letter ξ refers to the continuous
influx that the population experiences. We add a uniform mortality rate µ > 0, which
applies evenly across all compartments. Two types of interactions were assumed: β1
represents the interaction between the human population and the environment and β2
represents the interaction between humans. The notion γ is the recovery rate of the infected
individuals and η is the inflow rate of cholera bacteria from the infected human. The
vibratory bacteria are perishing at a steady δ pace. In addition to this, we have enforced the
further supposition onto the model:

A1 : Every parameter within the system is a non-negative, positive real number.
A2 : Both the pathogen in the environment and every individual in the population have

the same probability of shifting into a new class. Put another way, the movement
probability between the compartments is determined by the distribution of exponen-
tial types. The inverse of that parameter in an exponential distribution may be used
to calculate the estimated average time spent in a class.

A3 : We assume a constant population in a sense that no infection can enter into the
community neither we assume immigration into the population, and the only inflow
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into the susceptible compartment is due to births. This implies that the disease is
solely spreading inside the population and that external infections have no effect on
the dynamics of the epidemic.

A4 : Individuals who have recovered from cholera are no longer vulnerable to the disease
and so do not need medical care. People who have recovered from cholera cannot
exit the group and natural death is the sole way for a cholera-recovered individual to
leave the class.

The resulting mathematical model from the previously stated assumptions is as follows:

S(t)
dt

= ξ − β1B(t)S(t)
N(t)

− β2I(t)S(t)
N(t)

− µS(t),

I(t)
dt

=
β1B(t)S(t)

N(t)
+

β2I(t)S(t)
N(t)

− (µ + γ)I(t),

R(t)
dt

= γI(t)− µR(t),

B(t)
dt

= ηI(t)− δB(t).

(1)

The state transition diagram of the proposed SIRB model is demonstrated in Figure 1.

Figure 1. Flow chart of the proposed model (1).

Fundamental Properties of Model (1)

Proposition 1. For the system of differential equations given above, under the Lipschitz condition
and continuity in the variable t, there exists a unique solution (S(t), I(t),
R(t),B(t)) for each initial condition (S(0), I(0),R(0),B(0)), which continues to exist for all
t ≥ 0.

Proof. Define the vector

X(t) =


S(t)
I(t)
R(t)
B(t)

,
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and

f(X(t), t) =


ξ − β1B(t)S(t)

N(t) − β2I(t)S(t)
N(t) − µS(t)

β1B(t)S(t)
N(t) + β2I(t)S(t)

N(t) − (µ + γ)I(t)
γI(t)− µR(t)
ηI(t)− δB(t)

.

Each component of f(X(t), t) is a polynomial in terms of S , I ,R,B.
Since polynomials are continuously differentiable [33,34], f(X(t), t) is Lipschitz contin-

uous in X on any compact subset of R4. Therefore, by the Lipschitz condition, there exists a
constant L > 0 such that for any X, Y ∈ R4, the inequality ∥f(X, t)− f(Y, t)∥ ≤ L∥X − Y∥
holds for all t [35].

By the Picard–Lindelöf theorem [36], given the Lipschitz continuity of f and the initial

condition X(0) =


S(0)
I(0)
R(0)
B(0)

, there exists a unique solution X(t) that satisfies this system of

ODEs for all t ≥ 0.

This proof confirms that the deterministic part of our model behaves predictably under
these conditions, which allows us to introduce stochastic elements as perturbations to this
deterministic framework, contributing to a deeper understanding of the system’s behavior
under uncertainty.

Proposition 2. Given the non-negative initial conditions S(0), I(0), R(0), B(0) and positive
parameters ξ, µ, β1, β2, γ, η, δ, the solutions S(t), I(t), R(t), B(t) of the system are bounded for
all t ≥ 0.

Proof. Summing all four equations of model, we obtain

d
dt
(S(t) + I(t) +R(t) + B(t)) = ξ − µ(S(t) + I(t) +R(t) + B(t)).

Let N(t) = S(t) + I(t) +R(t) + B(t). The equation simplifies to

dN(t)
dt

= ξ − µN(t).

This is a linear first-order ordinary differential equation, which can be solved using an
integrating factor

N(t) =
ξ

µ
+

(
N(0)− ξ

µ

)
e−µt.

As t → ∞, N(t) → ξ
µ . Therefore, N(t) is bounded by ξ

µ for all t ≥ 0, assuming N(0) is finite.
Since S(t), I(t), R(t), and B(t) are all non-negative and part of N(t), they are indi-

vidually bounded as well. Specifically, each of these variables is bounded by ξ
µ , as none can

exceed N(t).
This completes the proof that the solutions S(t), I(t), R(t), and B(t) to the system

are bounded, ensuring the model’s stability over time.

Through some basic mathematical computations, we can easily derive the disease-free
equilibrium (DFE) points for the model outlined in (1). Consequently, the equilibrium state
for the deterministic model we have proposed is described as follows.
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To find the disease-free equilibrium (DFE), we set the derivatives of the infected
compartments (I , R, B) to zero:

dI
dt

= 0 ⇒ β1B(t)S(t)
N(t)

+
β2I(t)S(t)

N(t)
− (µ + γ)I(t) = 0,

dR
dt

= 0 ⇒ γI(t)− µR(t) = 0,

dB
dt

= 0 ⇒ ηI(t)− δB(t) = 0.

Since dI
dt = 0, dR

dt = 0, and dB
dt = 0, and assuming no infection is present in the disease-free

state, we have

I(t) = 0,

R(t) = 0,

B(t) = 0.

Substituting I(t) = 0, R(t) = 0, and B(t) = 0 into the equation for dS
dt

dS
dt

= ξ − µS(t).

At equilibrium, dS
dt = 0, thus

0 = ξ − µS0,

S0 =
ξ

µ
.

Thus, the disease-free equilibrium is

E0 =
(
S0, I0,R0,B0

)
=

(
ξ

µ
, 0, 0, 0

)
.

Reproduction number

F =

[
β2 β1
0 0

]
,

V =

[
γ + µ 0
−η δ

]
.

To find R0, we first calculate the inverse of V

V−1 =

[
1

γ+µ 0
η

δ(γ+µ)
1
δ

]
.

Multiplying F by V−1 gives

FV−1 =

[
β2 β1
0 0

][ 1
γ+µ 0

η
δ(γ+µ)

1
δ

]
=

[
β2

γ+µ + β1
η

δ(γ+µ)
β1
δ

0 0

]
.

The dominant eigenvalue of this matrix, representing R0, is

R0 =
β2

γ + µ
+ β1

η

δ(γ + µ)
=

1
γ + µ

(
β2 + β1

η

δ

)
.
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The threshold quantity or the basic reproduction number is (the dominant eigenvalue of
the matrix FV−1)

R0 =
1

γ + µ

(
β2 + β1

η

δ

)
. (2)

Based on the framework of [11], the disease-free equilibrium is locally asymptotically stable
when R0 < 1 and the same fixed point will lose the stability if R0 > 1. Moreover, when
R0 > 1, the model has a fixed point called the endemic equilibrium. To find the endemic
equilibrium, where dS

dt = 0, dI
dt = 0, dR

dt = 0, and dB
dt = 0, we consider

0 = ξ − β1BS
N

− β2IS
N

− µS ,

0 =
β1BS
N

+
β2IS
N

− (µ + γ)I ,

0 = γI − µR,

0 = ηI − δB.

To find the endemic equilibrium points E∗ = (S∗, I∗,R∗,B∗) of the system, we first solve
for R and B using the given relationships

R =
γ

µ
I ,

B =
η

δ
I .

Substituting these into the equations for S and I , we obtain

0 = ξ −
β1
( η

δ I
)
S

N
− β2IS

N
− µS ,

0 =

(
β1

η
δ + β2

N

)
IS − (µ + γ)I .

Simplifying these equations,

0 = ξ −
(

β1
η
δ + β2

N

)
IS − µS ,

0 =

(
β1

η
δ + β2

N

)
IS − (µ + γ)I .

Isolating I :

I
[(

β1
η
δ + β2

N

)
S − (µ + γ)

]
= 0.

As I > 0 as given, we solve for S

S∗ =
(µ + γ)N

β1
η
δ + β2

.

ξ =

(
β1

η
δ + β2

N

)
I∗S∗ + µS∗,

I∗ =
ξ − µS∗(

β1
η
δ +β2
N

)
S∗

.
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Substituting S∗,

I∗ =
ξ(β1

η
δ + β2)− µ(µ + γ)N

(µ + γ)(β1
η
δ + β2)

.

Finally, we compute R∗ and B∗ using the initial relationships:

R∗ =
γ

µ
I∗,

B∗ =
η

δ
I∗.

Hence, the endemic equilibrium points are

E∗ = (S∗, I∗,R∗,B∗).

This foundational understanding aids in appreciating the stochastic elements introduced to
the model, as stochastic processes can then be seen as perturbations to this deterministic
framework, contributing additional insights into the system’s behavior under uncertainty.

3. Stochastic Model

Incorporating Lévy noise can be beneficial, particularly when the noise-scaled drift
velocity scheme functions inside a threshold-valued interval. The interaction between local
and non-local conditions of Lipschitz shows that inserting Lévy noise can boost shared
information or bit count in various feedback illness issues that conform to random SDEs.
Lévy noise has more benefits over normal Gaussian noises in mathematical models of
epidemics, despite increasing mathematical complexity associated with their inclusion,
as detailed in references [24,37,38]. Compared with the conventional Lévy model, the
existence of jump-diffusion Lévy noise is especially useful as it offers a more precise
explanation for the evolution of the membrane potential of the neuron. We next add Lévy
noise to model (1), which yields the stochastic model that follows:

dS =

[
ξ − β1B(t)S(t)

N(t)
− β2I(t)S(t)

N(t)
− µS(t)

]
dt + δ1S(t)dW1(t) + Λ1,

dI =

[
β1B(t)S(t)

N(t)
+

β2I(t)S(t)
N(t)

− (µ + γ)I(t)
]

dt + δ2I(t)dW2(t) + Λ2,

dR =

[
γI(t)− µR(t)

]
dt + δ3R(t)dW3(t) + Λ3,

dB =

[
ηI(t)− δB(t)

]
dt + δ4B(t)dW4(t) + Λ4.

(3)

And let

Λ1 =
∫

X
Z1(x)S

(
t−
)

Ñ(dt, dx),

Λ2 =
∫

X
Z2(x)I

(
t−
)

Ñ(dt, dx),

Λ3 =
∫

X
Z3(x)R

(
t−
)

Ñ(dt, dx),

Λ4 =
∫

X
Z4(x)B

(
t−
)

Ñ(dt, dx).

(4)

Wi(t) for i = 1, · · · , 4 are referred to as Brownian motions have biological meanings
and show the addition of environmental variations. For every i = 1, · · · , 4, the intensity
corresponding to these noises are denoted by δi. , a Poisson count measure Ñ(dt, dx),
and Zi, i = 1, 2, 3, 4 represents the intensity of jump. The state transition diagram of the
proposed stochastic model SIRB is demonstrated in Figure 2.
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Figure 2. Flow chart of the proposed stochastic model (3).

3.1. Basic Concept

We will discuss several valuable and important concepts from nonlinear dynamics
and contemporary calculus [39,40]. Consider the following initial value problem

dx = g(x, t)dt, x(t0) = x0, (5)

one can incorporate randomness into it by integrating a white noise process. In Stochastic
Differential Equations (SDEs), a variable signifies random white noise, and its integral is
often modeled using Brownian motion, also known as the Wiener process. This terminology
honors Norbert Wiener, an American mathematician renowned for his extensive analysis
of the mathematical properties of one-dimensional Brownian motion. The Wiener process
represents a stochastic process with continuous temporal variation. The phrase ‘’Brownian
motion”, sometimes used interchangeably with the Wiener process, pays homage to the
initial observation of this physical phenomenon by the Scottish botanist Robert Brown.
Among the most popular Lévy processes, this one has applications in several disciplines,
such as economics, physics, quantitative finance, applied and pure mathematics as well as
in evolutionary biology. Here is a general description of an SDE

dF (t, v) = g(X(t, v), t) + f (F (t, v), t)dB(t, v), (6)

here, the notion v stands for an element of the space and the stochastic process shown
by X = X(t, v) with X(0, v) = X0; a Lévy noise incorporates irregular fluctuations and
sudden, discontinuous jumps.

3.2. Euler–Maruyama Method

The Euler–Maruyama technique is used in Ito calculus to estimate the solution of
SDEs. The ideas of the Euler technique, which was originally created for ODEs, are
extended to the field of SDEs by means of this method. The technique is named in honor
of Gisiro Maruyama and Leonhard Euler, who were instrumental in its development.
It is important to emphasize that not all deterministic approaches can benefit from this
adaptation. Consider the following SDE:

dS(t) = α(S(t), t)dt + β(S(t), t)dF (t), (7)

subject to starting value S(0) = s0 and in the presence of Wiener process F (t). The main
objective is to solve SDE (7) in the desired interval [0, N]. After the descritization of the
time interval, the problem is converted into a scheme as follows:

Sn+1 = Sn + α(Sn, tn)∆t + β(Sn, tn)∆Fn. (8)
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Here, Sn is the approximate value of S(t) at time tn = n∆t, and ∆Wn represents a portion
from the Wiener process increment, often produced by multiplying a normal random
variable by the value

√
∆t.

3.3. Wiener Process

The Wiener process is a countably additive function that transforms a Boolean σ-
algebra of spatial subsets into independent random variables over non-overlapping sets,
essentially representing a generalization of an independent increment stochastic method.
This process was named to acknowledge the significance of Wiener’s contributions. Ex-
hibiting a range of distinct mathematical properties, the Wiener process stands as a pivotal
concept in stochastic calculus. A key characteristic of this process is its continuous sample
paths, indicating that W(t) maintains continuity over time. This process follows the well-
known Gaussian distribution W(t) N(0, t) with variance t and mean of zero at any fixed
time t1. Among other properties, the distinguishing feature of the Wiener process is the
independence of the statistics over non-intersecting intervals of time.

4. Positive Global Solution of the Model

In this part of the manuscript, we want to show that the suggested stochastic epidemic
model with jumps has a global positive solution. We will make two assumptions, Hypothe-
sis 1 and Hypothesis 2, to simplify our analysis. A global positive solution for the system (3)
must be shown to exist and be unique, and this requires a number of assumptions.

Hypothesis 1. ∀ M > 0 ∃ LM > 0 such that∫
F
|Qi(v1, x)−Qi(v2, x)|2v(dx) ≤ LM|v1 − v2|2, i = 1, 2, 3, 4

with |w1| ∨ |w2| ≤ M where

Q1(v, x) = Z1(x)v for v = S(t−),
Q2(v, x) = Z2(x)v for v = I(t−),
Q3(v, x) = Z3(x)v for v = R(t−),
Q4(v, x) = Z4(x)v for v = B(t−).

Hypothesis 2. C ≥ |log(Zi(x) + 1)| for −1 < Zi(x), i = 1, · · · , 4, here C ∈ R+.

Theorem 1. A solution (S(t), I(t),R(t),B(t)) of model (3) on t ≥ 0 for any initial value
(S(0), I(0),R(0),B(0)) ∈ R4

+, and the solution will remain in R4
+ with probability one, i.e., for

all t ≥ 0, namely, (S(t), I(t),R(t),B(t)) ∈ R4
+.

Proof. Keeping in view assumption (Hypothesis 1), we can argue that the diffusion and
drift are locally Lipschitz. This ensures that the underlying system has a unique local
solution in the time interval [0, τe). The explosion time is denoted by the notation τe;
readers are referred to [37,38] for a more thorough explanation. To prove the solution’s
global character, it suffices to show that τe = ∞. In order to support this assertion, take into
account a big enough positive real integer k0 such that all possible solutions to the issue fall
inside the interval [ 1

k0
, k0]. Furthermore, assuming k ≥ k0, allow

τk = in f {t ∈ [0, τe) :
1
k
≥ min{S(t), I(t),R(t),B(t)}, or

k ≤ max{S(t), I(t),R(t),B(t)}.
(9)

In this research, if inf ϕ = ∞, the empty set is denoted as ϕ. As k → ∞, τk grows,
according to the definition. Given that τ∞ represents the limit of τk, it follows that, virtually
surely, τ∞ ≤ τe (a.s.). Stated otherwise, we need to prove that τ∞ = ∞ a.s. Should this
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claim be untrue, then there are two constants, T > 0 and ϵ ∈ (0, 1), which are associated in
the following manner:

ϵ < P{τ∞ ≤ T}. (10)

Consequently, we have for the value k0 ≤ k1

P{T ≥ τk} ≥ ϵ, ∀ k1 ≤ k.

Before we continue, let us define a Lyapunov function of the following form:

V = (S − c1log
S
c1

− c1) + (I − 1 − log I) + (R− logR− 1)

+ (B − 1 − logB),
(11)

and following that, we shall obtain the value of the constant c1. Through the use of Itô’s
formula, we obtain

dV(S , I ,R,B) = LV(S , I ,R,B)dt + δ1(S − c1)dW1(t) + δ2(I − 1)dW2(t)

+ δ3(R− 1)dW3(t) + δ4(B − 1)dW4(t)

+
∫
F
[Z1(x)S − c1 log(1 +Z1(x))]Ñ(dt, dx)

+
∫
F
[Z2(x)I − log(1 +Z2(x))]Ñ(dt, dx)

+
∫
F
[Z3(x)R− log(1 +Z3(x))]Ñ(dt, dx)

+
∫
F
[Z4(x)B − log(1 +Z4(x))]Ñ(dt, dx).

(12)

In Equation (12), LV : R4
+ → R+ is defined by the following formula, and by applying

condition (Hypothesis 2), we obtain

LV =

(
1 − c1

S

)(
ξ − β1BS

N
− β2IS

N
− µS

)
+

c1

2
δ1

2

+

(
1 − 1

I

)(
β1BS
N

+
β2IS
N

− (µ + γ)I
)
+

1
2

δ2
2

+

(
1 − 1

R

)(
γI − µR

)
+

1
2

δ3
2 +

(
1 − 1

B

)(
ηI − δB

)
+

1
2

δ4
2

= ξ − β1BS
N

− β2IS
N

− µS − c1ξ +
c1β1B
N

+
c1β2I
N

+ c1µ +
c1

2
δ1

2

+
β1BS
N

+
β2IS
N

− (µ + γ)I − β1BS
IN − β2S

N
+ (µ + γ) +

1
2

δ2
2

+ γI − µR− γI
R + µ + ηI − δB − ηI

B + δ +
1
2

δ3
2 +

1
2

δ4
2

+
∫
F
[c1Z1(x)− c1 log(1 +Z1(x))]ν(dx) +

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

+
∫
F
[Z3(x)− log(1 +Z3(x))]ν(dx) +

∫
F
[Z4(x)− log(1 +Z4(x))]ν(dx).

(13)

Taking c1 = δ
β1

, such that c1β1 − δ = 0. Moreover 1 ≥ S +R+ I ,

LV ≤ξ + c1µ + β2 + 2µ + γ + δ +
c1

2
δ1

2 +
1
2

δ2
2 +

1
2

δ3
2 +

1
2

δ4
2

+
∫
F
[c1Z1(x)− c1 log(1 +Z1(x))]ν(dx) +

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

+
∫
F
[Z3(x)− log(1 +Z3(x))]ν(dx) +

∫
F
[Z4(x)− log(1 +Z4(x))]ν(dx). = K.

(14)
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As a result, for Theorem 1 , the proof structure is substantially the same as that of [37].
Therefore, the proof of the theorem is completed by removing the unnecessary steps.

5. Extinction

It is widely acceptable that an epidemic must be eradicated gradually by determining
the right conditions and implementing proper strategies, which may be found by examining
the behavior of the infectious illness. We shall examine necessary criteria for disease
extinction in the stochastic model in this section. It is necessary to determine the stochastic
threshold prior to examining the dynamics of the stochastic epidemic model with jumps (3).
The expression for the threshold quantity Rs is as follows:

Rs =
β1η

δ + β2(
µ + γ +

λ2
2

2 +
∫
F [Z2(x)− log(1 +Z2(x))]ν(dx)

) . (15)

The notion presented below is worthy of use in subsequent parts of the paper:

⟨H(t)⟩ = 1
t

∫ t

0
H(s)ds. (16)

Lemma 1. If for system (3) (S,I,R,B) is a solution with initial conditions (S(0),I(0),R(0),B(0))
∈ R4

+, then a.s.,

lim
t→∞

S(t) + I(t) +R(t) + B(t)
t

= 0. (17)

Moreover, if µ >
(δ2

1∨δ2
2∨δ2

3∨δ2
4)

2 , then

lim
t→∞

∫ t
0 S(s)dZ1(s)

t
= 0,

lim
t→∞

∫ t
0 I(u)dZ2(u)

t
= 0,

lim
t→∞

∫ t
0 R(s)dZ3(s)

t
= 0,

lim
t→∞

∫ t
0 B(s)dZ4(s)

t
= 0, a.s.

(18)

Then, the solution of system (3)

lim sup
t→∞

S(t) = ξ

µ
,

lim sup
t→∞

I(t) = 0,

lim sup
t→∞

R(t) = 0,

lim sup
t→∞

B(t) = 0, a.s.

(19)

Proof. From the system (3), we can have

d(S+I+R+B) = ξ −µ(S+I+R)− δB−+δ1SdW1 + δ2IdW2 + δ3RdW3 + δ4B dW4.

Solving this equation, we can obtain
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S(t) + I(t) +R(t) + B(t) = ξ

µ
+

(
S(0) + I(0) +R(0)− xi

µ

)
e−µt − (B(0)− 1

δ
)e−µt

+ δ1

∫ t

0
S(u)e−µ(t−u)dW1(u) + δ2

∫ t

0
I(u)e−µ(t−u)dW2(u)

+ δ3

∫ t

0
R(u)e−µ(t−u)dW3(u) + δ4

∫ t

0
B(u)e−δ(t−u)dW4(u).

(20)

Define
X(t) = X(0) + A(t)− Q(t) + M(t),

where

X(0) =S(0) + I(0) +R(0) + B(0),

A(t) =
ξ

µ
(1 − e−µt),

Q(t) =(S(0) + I(0) +R(0))(1 − e−µt) + B(0))(1 − e−δt),

M(t) =δ1

∫ t

0
S(u)e−µ(t−u)dW1(u) + δ2

∫ t

0
I(u)e−µ(t−u)dW2(u)

+ δ3

∫ t

0
R(u)e−µ(t−u)dW3(u) + δ4

∫ t

0
B(u)e−δ(t−u)dW4(u).

M(t) is a continuous local martingale with M(0) = 0. From (20) , we have S(t) + I(t) +
R(t) + B(t) ≤ X(t) a.s. ∀t > 0. One can see that A(t) and Q(t) are continuous adapted
increasing processes on t ≥ 0 with A(0) = Q(0). From large number theorem for the
martingale in [41], we can obtain that limt→∞ X(t) < ∞ a.s. Hence

lim sup
t→∞

(S(t) + I(t) +R(t) + B(t)) < ∞, a.s. (21)

In view of above inequality, we can easily obtain

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

R(t)
t

= 0, lim
t→∞

B(t)
t

= 0, a.s.

Set

M1(t) =
∫ t

0
S(u) dW1(u), M2(t) =

∫ t

0
I(u) dW2(u),

M3(t) =
∫ t

0
R(u) dW3(u), M4(t) =

∫ t

0
B(u) dW4(u).

Due to the quadratic variations, we can have

⟨M1(t), M1(t)⟩ =
∫ t

0
S2(u) du ≤

(
sup
t≥0

S2(t)

)
t.

By the large number theorem for martingales and these quadratic variations, we can obtain

lim
t→∞

∫ t
0 S(u) dW1(u)

t
= 0, lim

t→∞

∫ t
0 I(u) dW2(u)

t
= 0,

lim
t→∞

∫ t
0 R(u) dW3(u)

t
= 0, lim

t→∞

∫ t
0 B(u) dW4(u)

t
= 0, a.s.

This finishes the proof.
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Theorem 2. Assume that (S(t), I(t),R(t),B(t)) correspond to initial data (S , I ,Q,R,B)(0) ∈
R4
+ be a solution of model (3). Further, if Rs < 1, then such a solution of system (3) satisfies the

following relations:

lim
t→∞

〈
S(t)

〉
=

Π
µ

, a.s.,

lim
t→∞

〈
I(t)

〉
= 0, a.s.,

lim
t→∞

〈
R(t)

〉
= 0, a.s.,

lim
t→∞

〈
B(t)

〉
= 0, a.s.

(22)

This suggests that eventually the virus inside the population will undoubtedly be eliminated.

Proof. By integrating the system (3), we were able to obtain the following set of equations:

(S(t)− S(0))
t

= ξ −
β1
〈
BS
〉〈

N
〉 −

β2
〈
IS
〉〈

N
〉 − µ

〈
S
〉
+

δ1
∫ t

0 S(r)dW1(r)
t

,

+
1
t

∫ t

0

[ ∫
F
Z1(x)S

(
t−
)
Ñ(dt, dx)

]
dr,

(I(t)− I(0))
t

=
β1
〈
BS
〉〈

N
〉 −

β2
〈
IS
〉〈

N
〉 − (µ + γ)

〈
I
〉
+

δ2
∫ t

0 I(r)W2(r)
t

,

+
1
t

∫ t

0

[ ∫
F
Z2(x)I

(
t−
)
Ñ(dt, dx)

]
dr,

(R(t)−R(0))
t

= γ
〈
I
〉
− µ

〈
R
〉
+

δ3
∫ t

0 R(r)dW3(r)
t

,

+
1
t

∫ t

0

[ ∫
F
Z3(x)R

(
t−
)
Ñ(dt, dx)

]
dr,

(B(t)−B(0))
t

= η
〈
I
〉
− δ
〈
B
〉
+

δ4
∫ t

0 B(r)dW4(r)
t

.

+
1
t

∫ t

0

[ ∫
F
Z4(x)B

(
t−
)
Ñ(dt, dx)

]
dr,

(23)

Considering the second-to-last relation of the aforementioned system, we obtain

〈
B
〉
=

η

δ

〈
I
〉
− 1

δ

(
B(t)−B(0)

t

)
+

δ4

δ

(∫ t
0 B(r)dW4(r)

t

)
+
∫
F
[log(1 +Z4(x))]Ñ(dt, dx),

=
η

δ

〈
I
〉
+M1(t),

(24)

where

M1(t) = −1
δ

(
B(t)−B(0)

t

)
+

δ4

δ

(∫ t
0 B(r)dW4(r)

t

)
+
∫
F
[log(1 +Z4(x))]Ñ(dt, dx). (25)

Direct application of the Itô formula to V = logI(t) yields the following outcomes:

dlogI(t) = LVdt + δ2dW2(t) +
∫
F
[log(1 +Z2(x))]Ñ(dt, dx). (26)

where

LV =

[
β1BS
IN +

β2S
N

− (µ + γ)−
δ2

2
2

]
dt −

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx). (27)
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Then, Equation (26) becomes

d log I =

[
β1BS
IN +

β2S
N

− (µ + γ)−
δ2

2
2

]
dt −

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

+ δ2dW2(t) +
∫
F
[log(1 +Z2(x))]Ñ(dt, dx),

≤
[

β1B
I + β2 − (µ + γ)−

δ2
2
2

]
dt −

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

+ δ2dW2(t) +
∫
F
[log(1 +Z2(x))]Ñ(dt, dx).

(28)

From 0 to t, one can easily integrate Equation (28) and divide the result by t to obtain the
following relation:

log I − logI(0)
t

≤
[

β1
〈
B
〉〈

I
〉 + β2 − (µ + γ +

λ2
2

2
)−

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

]
+

δ2dW2(t)
t

+

∫
F [log(1 +Z2(x))]Ñ(dt, dx)

t
.

(29)

If we substitute relation (24) in Equation (29), we have the following expression:

logI(t)
t

≤
[

β1(
η
δ

〈
I
〉
+M1(t))〈
I
〉 + β2 − (µ + γ +

λ2
2

2
)−

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

]
+

logI(0)
t

+
δ2dW2(t)

t
+

∫
F [log(1 +Z2(x))]Ñ(dt, dx)

t

≤
[ β1η

δ

〈
I
〉〈

I
〉 + β2 − (µ + γ +

λ2
2

2
)−

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

]
+

β1M1(t)〈
I
〉 +

logI(0)
t

+
δ2dW2(t)

t
+

∫
F [log(1 +Z2(x))]Ñ(dt, dx)

t

=

[
β1η

δ
+ β2 − (µ + γ +

λ2
2

2
)−

∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

]
+

β1M1(t)〈
I
〉 +

logI(0)
t

+
δ2dW2(t)

t
+

∫
F [log(1 +Z2(x))]Ñ(dt, dx)

t
.

(30)

Further, Mi(t) = δi
t
∫ t

0 gidWi(t) +
∫
F [log(1+Zi(x))]Ñ(dt,dx)

t for i = 1, 2, · · · 4.g1 = S , g2 =
I , g3 = R, g4 = B are the continuous local martingale functions and equals 0 at t = 0. If
we let t → ∞ and use Lemma 1, we obtain

lim
t→∞

sup
1
t
Mi(t) = 0. (31)

We may readily deduce that limt→∞ supM1(t) = 0 by using a similar reasoning. With
Rs < 1 assumed, Equation (30) becomes

lim
t→∞

sup
logI(t)

t
≤
(

µ + γ +
λ2

2
2

+
∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

)(
Rs − 1

)
< 0, a.s. (32)

By virtue of relation (32), we have

lim
t→∞

〈
I
〉
= 0, a.s. (33)
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Assuming relation (33) in Equation (24) and utilizing the fact limt→∞ supM1(t) = 0,
we obtain

lim
t→∞

〈
B
〉
= 0, a.s, (34)

Likewise, we obtain
lim
t→∞

〈
R(t)

〉
= 0, a.s. (35)

Finally, considering the system’s initial Equation (23), through the application of the
relationships (34) and (35), we integrate from 0 to t and divide the result by t to obtain

lim
t→∞

〈
S
〉
=

ξ

µ
a.s. (36)

This completes the proof.

6. Persistence of the Disease

This section is devoted to analyzing the disease’s persistence. First, we review the
meaning of persistence in mean as stated in [37,38].

Definition 1 ([37,38]). The model’s persistence or durability will be guaranteed by the follow-
ing conditions

lim inf
t→∞

1
t

∫ t

0
G(r)dr > 0 a.s. (37)

The function G(r) represents the growth rate of the disease. As mentioned in [25,26], in order
to evaluate the disease’s persistence, we also need to take into account the following lemmas.

Lemma 2 (Strong Law [24,37]). If for a real valued and continuous Y = {Y}0≤t ∃ a local
martingale ∋ at t → 0 vanishes then

lim
t→∞

〈
Y ,Y

〉
t = ∞, a.s., ⇒ lim

t→∞

Yt〈
Y ,Y

〉
t
= 0, a.s.

lim
t→∞

sup

〈
Y ,Y

〉
t

t
< 0, a.s., ⇒ lim

t→∞

Yt

t
= 0, a.s.

(38)

Lemma 3. Suppose h ∈ C([0, ∞)× Ω, (0, ∞)) and H ∈ C([0, ∞)× Ω,R) ∋ limt→∞
H(t)

t = 0,
a.s. If ∀ t ≥ 0

log h(t) ≥ λ0t − λ
∫ t

0
h(s)ds +H(t), a.s.

Then
lim inf

t→∞
⟨h(t)⟩ ≥ λ0

λ
a.s.

where {λ, λ0 ∈ R ∋ λ > 0 & λ0 ≥ 0}.

The prerequisites for the system (3) to persist in the mean will now be discussed. The
finding summarizes the main conclusions of this ongoing investigation.

Theorem 3. If Rs
0 > 1, then for any initial value (S0, , I0,R0,B0) ∈ R4

+, the disease I(t) and
B(t) has the axiom

lim inf
t→∞

〈
(B(t) + I(t))

〉
≥

2ξβ2
√
Rs

0 − 1)
C1β

a.s., (39)
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where C1 = ξβ(
µ+d+

α2
1
2 +

∫
X [Z1(x)−log(1+Z1(x))]ν(dx)

) , then we can say the disease will prevail.

Let us define

Rs
0 =

ξβ2{
a1 +

α2
1

2 +
∫

X [Z1(x)− log(1 + Z1(x))]ν(dx)
}{

b1 +
∫
F [Z2(x)− log(1 +Z2(x))]ν(dx)

} .
(40)

where a1 = (d + µ) and b1 = (µ + γ +
δ2

2
2 ).

Proof. Set
H1 = −C1lnS − C2lnI , (41)

here the unknown real numbers C1 and C2 will be calculated at later stages.
By using the Itô formula to Equation (41), we obtain

dH1 = LH1 − C1δ1dW1(t)− C2δ2dW2(t)

− C1

∫
F
[Z1(x)S − log(1 +Z1(x))]Ñ(dt, dx)− C2

∫
F
[Z2(x)I − log(1 +Z2(x))]Ñ(dt, dx),

(42)

where

LH1 = −C1L(lnS)− C2L(lnI)

= −C1ξ

S +
C1β1B

N
+

C1β2I
N

+ C1µ + C1

{
δ2

1
2
+
∫
F
[Z1(x)− log(1 +Z1(x))]ν(dx)

}
− C2β1BS

NI − C2β2S
C2N(t)

+ C2(µ + γ) + C2

{
δ2

2
2
+
∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

}
≤ −C1ξ

S − C2β2S
C2N(t)

+ C1

[
µ + d +

α2
1

2
+
∫

X
[Z1(x)− log(1 + Z1(x))]ν(dx)

]
+ C2

{
µ + γ +

δ2
2
2
+
∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

}
+

C1β1B
N

+
C1β2I

N

≤ −2
√

C1C2ξβ2 + C1

[
µ + d +

α2
1

2
+
∫

X
[Z1(x)− log(1 + Z1(x))]ν(dx)

]
+ C2

{
µ + γ +

δ2
2
2
+
∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

}
+ C1β1B + C1β2I ,

(43)

let β = max{β1, β2},

C1 =
C2ξβ2{

µ + d +
α2

1
2 +

∫
X [Z1(x)− log(1 + Z1(x))]ν(dx)

} ,

C2 =
C2ξβ2{

µ + γ +
δ2

2
2 +

∫
F [Z2(x)− log(1 +Z2(x))]ν(dx)

} .
(44)

Let β = max{β1, β2}, and

x =

{
µ + d +

α2
1

2
+
∫

X
[Z1(x)− log(1 + Z1(x))]ν(dx)

}
,

y =

{
µ + γ +

δ2
2
2
+
∫
F
[Z2(x)− log(1 +Z2(x))]ν(dx)

}
.
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LH1 ≤ −2

√
(ξβ2)2ξβ2

xy
+ 2ξβ2 + C1β

[
B(t) + I(t)

]
= −2ξβ2

[√
ξβ2

xy
− 1
]
+ C1β

[
B(t) + I(t)

]
= −2ξβ2

[√
Rs

0 − 1
]
+ C1β

[
B(t) + I(t)

]
.

(45)

Equation (45) is substituted for Equation (41), and both sides of the stochastic hepatitis B
model (3) are then integrated, so we have

H1(S(t), I(t))−H1(S(0), I(0))
t

≤ −2ξβ2

[√
Rs

0 − 1
]
+ C1β

[〈
(B(t) + I(t))

〉]
−

C1δ2
1W1(t)

t
−

C2δ2
2B2(t)
t

−
C1
∫
F [Z1(x)S − log(1 +Z1(x))]Ñ(dt, dx)

t

−
C2
∫
F [Z2(x)A− log(1 +Z2(x))]Ñ(dt, dx)

t
,

≤ −2ξβ2

[√
Rs

0 − 1
]
+ C1β

[〈
(B(t) + I(t))

〉]
+ Ψ(t),

(46)

where Ψ(t) = −C1
∫
F [Z1(x)S−log(1+Z1(x))]Ñ(dt,dx)

t − C2
∫
F [Z2(x)A−log(1+Z2(x))]Ñ(dt,dx)

t .
From strong law as stated in Lemma 2, we arrive at

lim
t→∞

Ψ(t) = 0, (47)

From Equation (46), we have〈
(B(t) + I(t))

〉
≥

2ξβ2(
√
Rs

0 − 1)
C1β

− 1
C1β

Ψ(t) +
1

C1β

(
H1(S(t), I(t))−H1(S(0), I(0))

t

)
. (48)

According to Lemma 3 and Equation (47), the limit superior of Equation (6), we have

lim inf
t→∞

〈
(B(t) + I(t))

〉
≥

2ξβ(
√
Rs

0 − 1)
C1β

a.s, (49)

and likewise for lim inft→∞
〈

B(t) + I(t)
〉
≥ 0.

Finally, the proof of Theorem (3) is concluded.

7. Numerical Scheme and Simulations

Determining suitable parameter values is crucial for empirically validating the theo-
retical results associated with system (3). To achieve this, two sets of parameter values are
being considered, along with the initial population numbers of bacteria and humans.

It is to be noted that the black line on the graphs represents the cumulative average of
a particular variable over time throughout the simulations. This line provides insights into
the overall trend and the long-term behavior of the variable, smoothing out short-term fluc-
tuations to highlight more sustained patterns. This kind of average is useful for identifying
underlying trends in data that are otherwise too erratic or noisy to analyze directly.

7.1. Numerical Simulations for Extinction

The initial conditions used for the simulations of the parameters and noise intensities
are taken from Table 1 and Zi(x) = −kiZ(x)

1+Z(x)2 . In Figure 3, the deterministic system (1)
and the perturbed system (3) are simulated and shown concerning the corresponding
stochastic threshold value, which meet Rs < 1. These graphs show the trajectory of the
type of an exponential function with probability one ensuring that the size of cholera
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virus go to zero as time evolves. Theorem 2 is mathematically validated by this finding.
Furthermore, it appears from the data that the deterministic and stochastic systems agree
closely. Furthermore, the systems’ paths eventually converge to the corresponding DFE of
the deterministic system.

(a) The blue line depicts the susceptible population’s response to disease exposure in
the stochastic model, characterized by Lévy jumps that induce immediate declines in sus-
ceptibility, while the red line shows the deterministic model’s uniform reduction without
such perturbations. (b) The infected individual count fluctuates in the stochastic model,
marked by intermittent, sharp increases that reflect outbreak events, contrasting with the
deterministic model’s smooth progression of infection rates. (c) Recovery rates, depicted
by the blue line for the stochastic model, exhibit variability reflecting changing conditions,
as opposed to the deterministic model’s consistent recovery trajectory. (d) Pathogen pop-
ulation levels experience pronounced spikes in the stochastic model, suggesting rapid
proliferation phases, while the deterministic model reveals a steady increase and decrease
in pathogen levels.

Table 1. Initial conditions and parameters values of the system (1).

Parameter/Initial Condition Value
ξ 3.50
µ 0.03
β1 0.05
β2 0.06
γ 0.03
η 0.02
δ 0.01
δ1 0.15
δ2 0.20
δ3 0.40
δ4 0.35

S(0) 0.90
I(0) 0.30
R(0) 0.50
B(0) 0.40

x 0.60
k1 0.50
k2 0.50
k3 0.30
k4 0.30
k5 0.10
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Figure 3. Examples of simulations involving the stochastic model (3) and the deterministic model (1)
when Rs < 1.
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7.2. Numerical Simulations for Persistence

From a biological perspective, we can say that Theorem 3 ensures the persistence of
the infection whose dynamics are guaranteed by model (3). We considered another set of
parameters and noise intensity values which were taken from Table 2. By closely moni-
toring the simulations, we can argue that the disease is still spreading among individuals,
particularly in environments with low levels of white noise. The non-zero trajectories of the
bacteria concentration B in Figure 4 support this finding and show that there are bacterial
concentrations present. This result is consistent with the claim in Theorem 3. Upon closer
inspection, the solution behavior of the perturbed model shows that the curves fluctuate
around the equilibrium (EE) point of the equivalent deterministic model (1). The results
for both systems under the condition of Rs

0 > 1 are shown in Figure 4. At each time t, the
bacterial concentrations, B, is consistently non-zero. The importance of Theorem 3 for the
deterministic model (1) is shown by this result. In particular, when the value of model
(3) Rs

0 exceeds unity, the corresponding solution exhibits oscillations around the endemic
equilibrium. To effectively control the spread of different bacterial strains and the related
population densities in such situations, strong policies that impose strict control measures
against different variants are necessary.

This figure compares stochastic (with Lévy jumps) and deterministic models in disease
dynamics, emphasizing Lévy noise’s utility in modeling sudden, significant changes.
(a) Susceptible dynamics show stochastic volatility versus deterministic gradual decline.
(b) Infected counts spike in stochastic simulations, underscoring potential outbreaks, unlike
the deterministic smooth increase. (c) Recovery rates in the stochastic model vary sharply,
contrasting with the deterministic consistency. (d) A late surge in pathogen levels in the
stochastic model highlights its capacity to capture critical, abrupt events, advocating for
Lévy noise over Gaussian in systems experiencing impactful, discrete changes.

Table 2. Second set of parameters and Initial conditions for the (1).

Parameter/Initial Condition Value
ξ 1.40
µ 0.35
β1 0.04
β2 0.05
γ 0.2
η 0.02
δ 0.01
δ1 0.15
δ2 0.20
δ3 0.40
δ4 0.35

S(0) 0.90
I(0) 0.30
R(0) 0.50
B(0) 0.40

x 0.70
k1 0.50
k2 0.50
k3 0.30
k4 0.20
k5 0.20
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Figure 4. The plot shows the solutions profile obtained through simulations for various compartments
of systems (1) and (3).

7.3. Effects of the Noise on Systems (1)

To show the effects of noise then we assumed parameters and noise intensities values
ξ = 1.40, µ = 0.03 ,β1 = 0.04, β2 = 0.05, γ = 0.2, η = 0.02 ,δ = 0.01 , δ1 = 0.10,
δ2 = 0.15, δ3 = 0.20 , δ4 = 0.25, S(0) = 0.90, I(0) = 0.30, R(0) = 0.50, B(0) = 0.40, and
Zi(x) = −kiZ(x)

1+Z(x)2 , x = 0.70, with k1 = 0.50, k2 = 0.50, k3 = 0.30, k4 = 0.20, k5 = 0.20. Based
on observations, it appears that the disease will continue to spread across the population,
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especially in areas with low white noise levels. This is consistent with the claim made
in Theorem 3. Furthermore, it is clear by analyzing the behaviour of solution to the
stochastic system that the curves fluctuate about the endemic fixed point of the equivalent
deterministic model (1). Under the condition Rs

0 > 1, the solutions for both the systems are
graphically shown in Figure 5.

Figure 5. Sample solutions for different classes of the deterministic model (1) and the stochastic
model (3).
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7.4. Parameter β1 Impact on I(t)
To investigate the impact of the parameter β1, we set initial conditions of the system (3)

as S(0) = 0.90, I(0) = 0.30 , R(0) = 0.50, B(0) = 0.40, and the parameters are ξ = 1.40,
µ = 0.35, β2 = 0.5, γ = 0.2, η = 0.02, δ = 0.01, and the noise intensity are δ1 = 0.10,
δ2 = 0.20, δ3 = 0.40, δ4 = 0.35, and Zi(x) = −kiZ(x)

1+Z(x)2 , x = 0.70, with k1 = 0.50, k2 = 0.50,
k3 = 0.30, k4 = 0.20, k5 = 0.20. It can be seen in Figure 6, that the fluctuation of the
value of the spreader I becomes larger if increase the value of β1. The graphical findings
in Figure 6a–c demonstrate the biological importance of β1 parameters. The course of
the disease I(t) in the SDE model is shown by the blue curve, whereas the comparable
deterministic model’s route of the disease I(t) is represented by the red curve.

As β1 increases from 0.10 in Figure 6a to 0.50 in Figure 6c, the stochastic model shows
more frequent and severe infection spikes, indicating heightened outbreak risks with greater
interaction. In contrast, the deterministic model remains largely unchanged, emphasizing
the stochastic model’s ability to capture sudden, significant epidemiological events that
deterministic models might miss.

(a) When β1 = 0.10

(b) When β1 = 0.30

(c) When β1 = 0.50

Figure 6. The path of I(t) for the stochastic model (3) and its corresponding deterministic model.
This Figure depicts the effect of β1, the interaction rate between humans and the environment, on
infection dynamics in stochastic (blue line) and deterministic (red line) models.
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7.5. Parameter β2 impact on I(t)
To investigate the impact of the parameter β1, we set initial conditions of the system

(3) as S(0) = 0.90, I(0) = 0.30, R(0) = 0.50, B(0) = 0.40, and the parameters are ξ = 1.40,
µ = 0.35, β1 = 0.2, γ = 0.2, η = 0.02, δ = 0.01 and the noise intensity are δ2 = 0.20,
δ3 = 0.40, δ4 = 0.35, and Zi(x) = −kiZ(x)

1+Z(x)2 , x = 0.70, with k1 = 0.50, k2 = 0.50, k3 = 0.30,
k4 = 0.20, k5 = 0.20. It can be seen in Figure 7, that the fluctuation of the value of the
spreader I becomes larger if increase the value of β2. The graphical findings in Figure 7a–c
demonstrate the biological importance of β2 parameters. The disease I(t) of the SDE model
is shown by the blue curve, and the disease I(t) of the matching deterministic model is
represented by the red curve.

Figure 7a–c demonstrate varying β2 levels: 0.20, 0.50, and 0.60, respectively. Increased
β2 correlates with more pronounced and erratic infection spikes in the stochastic model,
highlighting the sensitivity to human interaction levels in predicting outbreak patterns.
Conversely, the deterministic model shows only minor variations with increasing β2,
underscoring its limitations in capturing the complexity of real-world social interactions
and their impacts on disease spread.

(a) When β2 = 0.20

(b) When β2 = 0.50

(c) When β2 = 0.60

Figure 7. The path of I(t) for the stochastic model (3) and its corresponding deterministic model. This
figure explores the impact of β2 ,representing human-to-human interaction, on infection dynamics
within stochastic (blue line) and deterministic (red line) models.
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7.6. Noise Intensity Impact on I(t)
To investigate the impact of the parameter β1, we set initial conditions of the system

(3) as S(0) = 0.90, I(0) = 0.30, R(0) = 0.50, B(0) = 0.40, and the parameters are ξ = 1.40,
µ = 0.03, β2 = 0.5, γ = 0.2, η = 0.02, δ = 0.01, and Zi(x) = −kiZ(x)

1+Z(x)2 , x = 0.70, with
k1 = 0.50, k2 = 0.50, k3 = 0.30, k4 = 0.20, k5 = 0.20. It can be seen in Figure 8 that the
fluctuation of the value of the spreader I becomes larger if the increase in the value of noise
intensity are δ1, δ2, δ3 , δ4. The graphical findings in Figure 8a–c demonstrate the biological
importance of δ1, δ2, δ3, δ4. The disease I(t) in the Stochastic Differential Equation (SDE)
model is represented by the blue curve, and the disease I(t) in the comparable deterministic
model is represented by the red curve. Because of this, lower noise levels contribute to the
disease’s distinct presence and duration. On the other hand, higher white noise values
could cause disease extinction.

The progression from Figure 8a (δ1 = 0.50, δ2 = 0.35, δ3 = 0.10, δ4 = 0.15) through
Figure 8c (δ1 = 0.90, δ2 = 0.70, δ3 = 0.50, δ4 = 0.55) illustrates an increase in the frequency
and amplitude of infection spikes as noise intensities rise. This underscores the importance
of Lévy noise in capturing the unpredictable and significant fluctuations typical of epidemic
outbreaks, which are not evident in the smoother curves of the deterministic model. The
stochastic model, with its ability to simulate these complex dynamics, highlights the critical
role of modeling realistic interaction and noise impacts in disease spread predictions.

(a) When δ1 = 0.50, δ2 = 0.35, δ3 = 0.10 , δ4 = 0.15

(b) When δ1 = 0.60, δ2 = 0.30, δ3 = 0.50 , δ4 = 0.25

(c) When δ1 = 0.90, δ2 = 0.70, δ3 = 0.50 , δ4 = 0.55

Figure 8. The path of I(t) for the stochastic model (3) and its corresponding deterministic model. This
figure shows the impact of varying noise intensity parameters (δ1, δ2, δ3, δ4) on infection dynamics in
stochastic (blue line) and deterministic (red line) models.
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7.7. Comparison of Noises

Figure 9 highlights how Lévy noise can introduce significant variability and extreme
events, capturing the unpredictable nature of epidemic outbreaks. The parameters for noise
intensity (δ1, δ2, δ3, δ4) vary from (0.50, 0.35, 0.10, 0.15) in Gaussian noise to (0.90, 0.70, 0.50,
0.55) in Lévy noise, illustrating the increased amplitude and frequency of infection spikes
as noise intensities rise. These effects underscore the critical role of realistic stochastic
modeling in capturing the complexities of disease spread. Figure 9a illustrates the effect of
Gaussian noise, showing a smooth progression of the susceptible (S(t)), infected (I(t)), and
recovered (R(t)) populations, along with the pathogen load (B(t)). In contrast, Figure 9b
depicts the impact of Lévy noise, demonstrating more pronounced fluctuations and spikes
in population dynamics, particularly in the infected population.

(a) Gaussian Noise (b) Lévy Noise

Figure 9. Comparative analysis of infection dynamics under different noise models in a stochastic
simulation of an epidemic.

8. Discussion and Conclusions

This work is focused on the understanding of diarrhea transmission in the spread
of infectious diseases. We obtained a system of stochastic differential equations from the
initially developed deterministic system while considering the effectiveness of Lévy noise
in modeling epidemics. Together with stability theorems, the equilibria of the related
deterministic model were also formulated. According to our findings, the suggested
stochastic model has a single global solution. By using the Lyapunov function theory, we
have shown that the system is mean stable when Rs

0 > 1. On the other hand, our findings
imply that the illness could be effectively eliminated from the population at Rs < 1. We
provide graphical solutions to strengthen the validity of our analytical results. Our study
delved into understanding how cholera transmission behaves in the long term using
mathematical analysis.

Our research demonstrates the unique global solution and mean stability under
stochastic influences, a key finding that enhances our understanding of cholera dynamics
under random perturbations. In a similar research, [42] investigated the stochastic reso-
nance in a FitzHugh–Nagumo model with additive Lévy noise. They found that Lévy noise
induced stochastic resonance phenomena that were different and potentially more advanta-
geous than those induced by Gaussian noise. Furthermore, [43] provided insights into the
stochastic stability of cholera models, reinforcing our findings about the model’s behavior
under different stochastic conditions and adding credibility to our theoretical approach.

Below is Table 3, which lists research papers that argue the advantages of Lévy noise
over Gaussian noise in various models. Each entry includes the primary focus of the study,
and key results that highlight the benefits of using Lévy noise. These papers collectively
suggest that Lévy noise, due to its ability to model jumps and heavy tails, offers significant
advantages over Gaussian noise for systems experiencing sudden, significant changes or
systems with outliers.
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Table 3. Summary of research on noise models and their applications.

Citation Field Noise Type Findings Distinctive Points

[44] Subsurface
hydrology Both Lévy and Gaussian Highlighted advantages of fractional Lévy motion Extended fractional Gaussian noise to 3D fractals

[45] Prognostics Gaussian Discussed Gaussian noise limitations Emphasized Lévy noise for large noise levels

[46] SDEs Both Lévy and Gaussian Reviewed advantages of non-Gaussian noises Illustrated Gaussian noise limitations in SDEs

[47] Image processing Non-Gaussian Explored superiority of non-Gaussian models Highlighted robustness of Lévy noise in dense
matching

[48] Financial time
series Lévy Explored Lévy processes’ suitability Compared Lévy and Gaussian processes

Knowing how disease spreads through food and water may be very helpful in reduc-
ing the danger of cross-contamination, which differs from conventional person-to-person
cholera transmission [49–52]. The three mechanisms of transmission, foodborne, wa-
terborne, and human-to-human, must be addressed to successfully lower the total risk,
according to the researchers. The authors hope to expand on this work by including
variables linked to disease, age, and regional impacts in future research.

9. Future Recommendations

In the future, we recommend extending the scope of our cholera model to include
additional factors that can significantly influence disease dynamics. One such advancement
would be the integration of spatial and demographic variables, considering the diverse
impact of cholera across different regions and age groups. This would enable a more tailored
approach towards predicting and managing outbreaks in specific communities. Another
important area is the exploration of varying behavioral responses within populations,
especially in reaction to public health interventions, which could lead to more dynamic
and adaptive models. The exploration of other forms of stochastic disturbances, beyond
Lévy noise, may provide deeper insights into the unpredictability of epidemic patterns.
In the realm of computational analysis, the development of more sophisticated numerical
methods for solving complex stochastic differential equations could further enhance the
accuracy and efficiency of simulations. Collaborations with public health authorities for
real-world data acquisition and model validation could significantly improve the practical
applicability of our theoretical findings, leading to more effective disease control strategies.
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