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Abstract: The segmentation of crops and weeds from camera-captured images is a demanding
research area for advancing agricultural and smart farming systems. Previously, the segmentation
of crops and weeds was conducted within a homogeneous data environment where training and
testing data were from the same database. However, in the real-world application of advancing
agricultural and smart farming systems, it is often the case of a heterogeneous data environment
where a system trained with one database should be used for testing with a different database
without additional training. This study pioneers the use of heterogeneous data for crop and weed
segmentation, addressing the issue of degraded accuracy. Through adjusting the mean and standard
deviation, we minimize the variability in pixel value and contrast, enhancing segmentation robustness.
Unlike previous methods relying on extensive training data, our approach achieves real-world
applicability with just one training sample for deep learning-based semantic segmentation. Moreover,
we seamlessly integrated a method for estimating fractal dimensions into our system, incorporating it
as an end-to-end task to provide important information on the distributional characteristics of crops
and weeds. We evaluated our framework using the BoniRob dataset and the CWFID. When trained
with the BoniRob dataset and tested with the CWFID, we obtained a mean intersection of union
(mIoU) of 62% and an F1-score of 75.2%. Furthermore, when trained with the CWFID and tested with
the BoniRob dataset, we obtained an mIoU of 63.7% and an F1-score of 74.3%. We confirmed that
these values are higher than those obtained by state-of-the-art methods.

Keywords: weed and crop semantic segmentation; deep learning; small training data; heterogeneous
data; fractal dimension estimation

1. Introduction

Expanding crop efficiency is becoming increasingly important as food security con-
cerns are increasing globally. However, it faces many challenges, such as a lack of man-
power, uncertain environmental conditions, soil factors, and scarcity of water. To achieve
high yields and address such problems, previous research used plant phenotyping methods
and monitoring systems to strengthen crop productivity in precision agriculture [1,2]. Over
time, traditional farming has shifted toward modern automated farming to increase yields
and minimize labor costs, individual effort, and time.

Image processing has been widely adopted in various fields [3–11]. In addition, re-
cently, deep learning methods have offered various solutions, and the use of computer
vision has grown significantly in various applications including building monitoring, image
enhancement, medical image processing, biomedical engineering, and underwater com-
puter vision, where some research has adopted fractal-related perspectives, also in [9–16].
Although the studies adopt similar concepts of fractal dimension (FD) estimations [12,13,15],
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their applications are different in terms of building monitoring and medical image process-
ing. Semantic segmentation also exhibits a fundamental role in the accurate recognition of
crops and weeds [17,18]. Two mainstream methods exist for crop and weed detection. The
first is box-based detection [19,20]; however, it has the drawback of overlooking specific
regions in weeds and crops. The second type is semantic segmentation or pixel-based de-
tection [21–23], which detects precise regions of weeds or crops at the pixel level. Therefore,
correctly identifying the crop and weed segments is essential. Crop and weed segments
typically have irregular shapes, and training with these irregularly shaped segments comes
with an imbalance in the data. The irregular shapes of “sugar beets” (BoniRob) [24] and
crop/weed field image datasets (CWFIDs) [25] are shown in Figure 1. A considerable
amount of data is usually required during training, particularly in segmentation cases. To
acquire more data, it may be necessary for experts to create a large number of annotations,
which would require considerable time and effort. In some scenarios, if a considerable
amount of training data are unavailable, the testing performance decreases. To avoid such a
drop in performance owing to insufficient training data, a method using small amounts of
training data was proposed by Nguyen et al. [26], which also achieved good performance.
Homogenous data usually show satisfactory results; however, when applied to hetero-
geneous environments, where the testing and training datasets are completely different,
the overall results decrease significantly. Abdalla et al. [27] showed that the efficacy of
these algorithms is compromised in complex environments due to their heavy reliance
on various factors, including lighting conditions and weed density, for feature extraction.
Thus, it is essential to propose an effective and reliable framework that segments crops and
weeds accurately, even in complex heterogeneous environments.
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Figure 1. Sample images (left) and ground-truth masks (right) for crops (white pixels) and weeds
(gray pixels) in BoniRob dataset (upper) and CWFID (lower).

To solve these issues, we propose an approach for weed and crop segmentation and
fractal dimension estimation using a small amount of training data in a heterogeneous data
environment. The contributions of this study include the following:

• This is the first study that considers the segmentation of crops and weeds within a
heterogeneous environmental setup utilizing one training data sample. We rigorously
investigate the factors that cause performance degradation in heterogeneous datasets,
including variations in illumination and contrast. To address this problem, we propose
a method that applies the Reinhard (RH) transformation, leveraging the mean and
standard deviation (std) adjustments.

• We address the issue of high data availability for real-world applications. For this
purpose, we improved the performance using a small amount of training data. The
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small amount of additional training data significantly improves the segmentation
performance while requiring fewer computational resources and less training time.

• We introduce the FD estimation approach in our framework, which is seamlessly
combined as an end-to-end task to provide important information on the distributional
features of crops and weeds.

• It is noteworthy that our proposed framework [28] is publicly accessible for a fair
comparison with other studies.

The structure of the remaining sections of this study is as follows: Multiple related
studies are described in Section 2. In Section 3, we outline the proposed approach. Section 4
describes a comparison between the proposed framework and the state-of-the-art (SOTA)
methods in terms of their performance. Section 5 presents a discussion, while Section 6
presents the conclusion and outlines future work.

2. Related Work

We classified previous studies on crop and weed segmentation into homogenous
data-based methods and heterogeneous data-based methods as follows.

2.1. Homogenous Data-Based Methods

Homogeneous data-based methods mostly exhibit high accuracy because their training
and testing data distributions originate from the same dataset. Many related studies using
homogenous data have been conducted to date, and they have been highly effective in
multiple domains, not only in agriculture. In general, the term “a large amount of training
data” is used extensively in the literature. Typically, a considerable amount of training data
is needed to efficiently train the model and achieve higher accuracy. Many prior studies
have been conducted using a large amount of training data. Furthermore, learning-based
methods are grouped into two main groups: the handcrafted feature-based and the deep
learning-based methods.

2.1.1. Handcrafted Feature-Based Methods

Before the significant advancements in deep learning, features were often manu-
ally engineered, referred to as manual or handcrafted features, as they were developed
progressively. In [29], a random forest classifier (RFC) is used to handle the overlap of
together-grown different crops and weed plants. A Markov random field was also applied
to smooth the sparse pixels. Another study by Lottes et al. [30] used the same RFC for
vegetation detection using local and object-based features. Lottes et al. [31] used unmanned
aerial vehicles (UAVs) and various robots to monitor weeds and crops. They implemented
and evaluated plant-tailored feature extraction. Many systems rely on these techniques,
primarily because they require fewer computations and have shorter execution times.

2.1.2. Deep Feature-Based Methods

Deep learning techniques utilizing deep features are advancing to automate precision
agriculture [32], particularly by making intelligent decisions in the semantic segmentation
of crops and weeds. Pixelwise classification networks play a crucial role in detecting
objects and properly delimiting their boundaries so that automated robotic weeders can
perform precision spraying and weeding operations. Commonly used base networks in
semantic segmentation studies include DeepLab [33], fully convolutional networks [34],
U-Net [35], and SegNet [36]. These networks, along with certain blocks proposed in various
studies, employ an encoder–decoder architecture for crop and weed segmentation. The
encoder architecture transforms input data into a compressed representation capturing
their key features, while the decoder module upsamples and restores the spatial features
of areas where the edges of objects are absent. The base U-Net encoder–decoder net-
work has undergone modifications into multiple architectures, as seen in the work by
Zou et al. [37]. They achieved this by reducing feature extraction in the encoder and adding
a skip connection at the output layer to recover object details, thereby enhancing model
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accuracy. They conducted two-stage training to accurately segment weeds and showcased
greater applicability in the field. However, the robustness of these models has not been
tested using heterogeneous datasets.

Milioto et al. [38] designed an end-to-end model identical to the previously used
encoder–decoder format. This network is narrow and fast; however, the dataset used
here covers a very small portion of crops and weeds. The model was developed by
modifying Enet [39] and SegNet [36] through the replacement of convolutional (Conv)
layers with residual blocks. Fathipoor et al. [40], based on an encoder–decoder in U-
Net and U-Net++ [41] architectures, demonstrated promising overall results for weed
segmentation in the early stages. In a prior study [18], a two-stage approach named MTS-
CNN was proposed to segment crops and weeds utilizing U-Net with a visual geometry
group (VGG)-16 [42]. The model separates object segmentation from crop and weed
segmentation in two stages to enhance accuracy, also creating a loss function to address the
class imbalance problem of the crop and weed dataset. However, errors made by the first
model can impact overall model performance, and training takes a considerable amount
of time. Another study [43] relied on images captured by different cameras mounted on
an unmanned aerial vehicle (UAV) for crop and weed segmentation. The authors used a
modified VGG-16 encoder and modified U-Net decoder architecture, concatenating images
of different formats into channel directions to improve segmentation accuracy. Alongside
recent developments in deep convolutional neural networks (CNNs), several new networks
have been designed to enhance crop and weed segmentation. Dilated convolution [44] and
atrous convolution [33] were integrated into the network alongside a universal function
approximation block (UFAB) [45] to improve segmentation. However, these networks
require inputs of near-infrared (NIR) light and red, green, and blue (RGB) channels that
are unavailable in real time. Wang et al. [46] devised a dual attention network (DA-Net)
bridging the gap between low- and high-level featured data using branch and spatial
attention. The employed self-attention is computationally demanding due to the size of the
spatial features. Siddiqui et al. [47] explored data augmentation (DA) using CNN methods
to distinguish weeds from crops. In another study, Khan et al. [48] introduced a new
cascaded encoder–decoder network (CED-Net) modifying the base network U-Net into
four stages to distinguish between weeds and crops. The inclusion of stages in the network
enhanced crop and weed segmentation accuracy. From the above discussion, we can
conclude that these deep learning-based methods offer greater accuracy than handcrafted
feature-based methods. However, all prior studies were conducted in a homogeneous data
environment, where training and testing were performed using the same dataset.

2.2. Heterogeneous Data-Based Methods

Previous studies on crop and weed segmentation have not explored the use of hetero-
geneous data, where training and testing are conducted using different datasets. However,
a model trained with the first dataset is often applied to the second dataset without inten-
sive training using the second dataset. Additionally, sufficient training data cannot often
be acquired for real-world applications. However, no previous studies have considered in-
sufficient training data for crop or weed segmentation. Therefore, we propose a framework
for weed and crop segmentation and FD estimation utilizing limited training data in a het-
erogeneous data environment. The strengths and weaknesses of the proposed framework
for crop and weed segmentation relative to other techniques are listed in Table 1.
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Table 1. Comparisons of proposed method with previous ones on crop and weed segmentation.

Data Type Method Strength/Motivation Weakness

Homogeneous data-based

Handcrafted
feature-based

RFC [29] Handling overlapping of crops
and weeds

Overlapping of multiple plants with the
same class cannot be split

RFC + vegetation detection [30] Detection of local and
object-based features

Smoothing as post-processing on only
local features

Plant-tailored feature extraction [31] UAV intra-row-space-based weed
detection in challenging conditions

The number of weeds is much smaller in
the datasets used

Deep feature-based

MTS-CNN [18] Separate object segmentation to avoid
background-biased learning

Dependency of first stage network on
second stage network

Modified U-Net [37] Effective two-stage training method with
large applicability Only weed-targeted segmentation

SegNet + Enet [38] Fast and more accurate pixelwise
predictions

Images contain very small portions of
crops and weeds

U-Net and U-Net++ [40] Detecting weeds in the early stages of
growth

Uses a very small dataset and has no
suitable real-time application

Modified U-Net + modified VGG-16 [43]

Effective result for distribution
estimation problem with graphics
processing unit (GPU)-based embedded
board

Not focusing on the exact location of
weeds in the images

UFAB [45] Reducing redundancy by strengthening
the model diversity Unavailability of RGB and NIR input

DA-Net [46] Expanding receptive field without
affecting the computational cost

Hard and time-consuming mechanism to
parallelize the system using attention
modules

4-layered CNN + data augmentation [47]
Good for the early detection of weeds,
improving production, and is easy to
deploy because of the cheap cost

Minimizing accuracy if weeds are not
detected at the early stages

CED-Net [48] Using a light model and achieving
efficient results

Error at any level among the four levels
affects the overall performance

Heterogeneous data-based Proposed framework (proposed) Use of small training images in a
heterogeneous environment Preprocessing steps are included
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3. Proposed Method
3.1. Overview of Proposed Method

Figure 2 depicts an overview of the flow of our framework. During training, we train
the conventional semantic segmentation model with Dataset A. Next, we preprocess the
images of Dataset B using the RH transformation, which is based on the mean and std of
Datasets A and B. This transformation adjusts the visual properties of the images, such
as intensity, illumination, and contrast, to make them similar to the reference image in
a heterogeneous environment. Then, we select one training data from the preprocessed
Dataset B and perform DA on it to augment the training data. Afterward, we perform
fine-tuning and train the model from scratch with Dataset A using the augmented data,
and we perform the semantic segmentation of weeds and crops utilizing the testing data
from Dataset B.
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3.2. Preprocessing
3.2.1. RH Transformation

Many factors such as variations in intensity, illumination, and contrast cause per-
formance degradation, particularly in heterogeneous environments. Transferring colors
from one image (reference) to another (target) is a significant problem, particularly when
the color information in the reference image does not match the newly generated image,
causing quality and performance degradation. To address performance degradation using
heterogeneous data, we adopted the RH transformation [49] with average mean and std
adjustments to enhance the visual attributes of the images. Many prior transformation
methods and color spaces enhance the visual characteristics of an image. In the
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” indicates a brightness channel that captures the brightness indepen-
dently of color attributes, the “α” channel encapsulates yellow and blue hues, and the “β”
channel encloses the interplay between red and green shades. In the RH transformation,
the LCS is used. The LCS minimizes the relative significance of each weight, with a matrix
proposed for converting vectors from RGB to LCS. The RH transformation changes the
mean and std values of the color channels based on the LCS that consistently represents
the pixel colors in an image. As shown in Equation (1), it uses the ƒ mapping function with
δ parameters to transform the dataB into preprocessed dataB′.

dataB′ = ƒ(dataB, δ) (1)
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For the transformation, the RGB images are manipulated in the LCS and then trans-
formed into the long, medium, short (LMS) cone space, and the logarithmic of the LMS
space is obtained to reduce skewness [49]. The mean and std for all the axes in the LCS
are separately calculated to make images more synthetic. Moreover, the color space is
normalized by subtracting the mean of the data points from the original data point value,
as follows:
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The pseudo-code of the RH transformation is provided in Algorithm 1.

Algorithm 1: RH transformation with pseudo-code

Input: {dataB} t
n; The total of t data samples, dataB: input dataset B images

dataAm: training data from dataset A.
Output: (dataB’) the preprocessed sample
1: Compute the std of the dataset B (input images) by

dataB _std = std (dataB (:, :))
2: Compute the mean of the dataB

dataB _mean = mean (dataB (:, :))
3: Compute the average std of the training data from dataset A using

dataA_std = avg (std (dataAm (:, :))
4: Compute the average mean of the training data from dataset A using

dataA_mean = avg (mean (dataAm (:, :))
5: Apply the RH transformation

for m = 1: x
for n = 1: y

dataB’ (m, n) = [(dataB (m, n) − dataB_mean) ×
(dataA_std/dataB_std)] + dataA_mean

end
end
return dataB’

Histograms of the RGB color channel distribution for the reference, target, and newly
transformed images are shown in Figure 3a–c, respectively. The reference image is from
Dataset A, the target image is from Dataset B, and the RH-transformed image is a new image
generated by RH transformation. In Figure 3b, the histograms show only two channels;
apparently, the red and blue channels overlap because they are replicas of each other [25].
The histogram shows the pixel values on the x-axis and the probability distribution of the
pixels on the y-axis. As shown in Figure 3c, the histogram of the target image is more akin
to that of the reference image in Figure 3a by RH transformation than to that of the target
image in Figure 3b before RH transformation.
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3.2.2. RH Transformation with Additional Adjustments

However, despite the RH transformation, there is still a difference in the relative
probability distribution of each channel in Figure 3a,c. Therefore, we introduce an ad-
ditional adjustment to obtain the relative probability distribution of each channel of the
RH-transformed image that is more similar to that of the reference image as follows:

minselectpiopt
(Rt − (Rr − pi))

2, (8)

minselectqiopt
(Gt − (Gr − qi))

2, (9)

minselectriopt (Bt − (Br − ri))
2 (10)

where Rt, Gt, and Bt represent the pixels in the target image, and Rr, Gr, and Br represent
the pixels in the reference image. Moreover, piopt, qiopt, and riopt are the optimal values
generated by varying the pi, qi, andri values, respectively, to minimize the distance between
the corresponding red, green, and blue channel distributions. To obtain this channel
distribution, the following additional adjustments were made:
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αadj = αm − qiopt, (12)
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βadj = βm − riopt (13)

where
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with additional adjustments is as follows:

Fractal Fract. 2024, 8, x FOR PEER REVIEW 6 of 30 
 

 

3. Proposed Method 

3.1. Overview of Proposed Method 

Figure 2 depicts an overview of the flow of our framework. During training, we train 

the conventional semantic segmentation model with Dataset A. Next, we preprocess the 

images of Dataset B using the RH transformation, which is based on the mean and std of 

Datasets A and B. This transformation adjusts the visual properties of the images, such as 

intensity, illumination, and contrast, to make them similar to the reference image in a heter-

ogeneous environment. Then, we select one training data from the preprocessed Dataset B 

and perform DA on it to augment the training data. Afterward, we perform fine-tuning and 

train the model from scratch with Dataset A using the augmented data, and we perform the 

semantic segmentation of weeds and crops utilizing the testing data from Dataset B. 

 

Figure 2. Overview of the proposed framework flow. 

3.2. Preprocessing 

3.2.1. RH Transformation 

Many factors such as variations in intensity, illumination, and contrast cause perfor-

mance degradation, particularly in heterogeneous environments. Transferring colors 

from one image (reference) to another (target) is a significant problem, particularly when 

the color information in the reference image does not match the newly generated image, 

causing quality and performance degradation. To address performance degradation us-

ing heterogeneous data, we adopted the RH transformation [49] with average mean and 

std adjustments to enhance the visual attributes of the images. Many prior transformation 

methods and color spaces enhance the visual characteristics of an image. In the Ɩαβ color 

space (LCS) [50], “Ɩ” indicates a brightness channel that captures the brightness inde-

pendently of color attributes, the “α” channel encapsulates yellow and blue hues, and the 

“β” channel encloses the interplay between red and green shades. In the RH transfor-

mation, the LCS is used. The LCS minimizes the relative significance of each weight, with 

a matrix proposed for converting vectors from RGB to LCS. The RH transformation 

changes the mean and std values of the color channels based on the LCS that consistently 

represents the pixel colors in an image. As shown in Equation (1), it uses the ƒ mapping 

function with 𝛿 parameters to transform the 𝑑𝑎𝑡𝑎𝐵 into preprocessed 𝑑𝑎𝑡𝑎𝐵′. 

” =

Fractal Fract. 2024, 8, x FOR PEER REVIEW 6 of 30 
 

 

3. Proposed Method 

3.1. Overview of Proposed Method 

Figure 2 depicts an overview of the flow of our framework. During training, we train 

the conventional semantic segmentation model with Dataset A. Next, we preprocess the 

images of Dataset B using the RH transformation, which is based on the mean and std of 

Datasets A and B. This transformation adjusts the visual properties of the images, such as 

intensity, illumination, and contrast, to make them similar to the reference image in a heter-

ogeneous environment. Then, we select one training data from the preprocessed Dataset B 

and perform DA on it to augment the training data. Afterward, we perform fine-tuning and 

train the model from scratch with Dataset A using the augmented data, and we perform the 

semantic segmentation of weeds and crops utilizing the testing data from Dataset B. 

 

Figure 2. Overview of the proposed framework flow. 

3.2. Preprocessing 

3.2.1. RH Transformation 

Many factors such as variations in intensity, illumination, and contrast cause perfor-

mance degradation, particularly in heterogeneous environments. Transferring colors 

from one image (reference) to another (target) is a significant problem, particularly when 

the color information in the reference image does not match the newly generated image, 

causing quality and performance degradation. To address performance degradation us-

ing heterogeneous data, we adopted the RH transformation [49] with average mean and 

std adjustments to enhance the visual attributes of the images. Many prior transformation 

methods and color spaces enhance the visual characteristics of an image. In the Ɩαβ color 

space (LCS) [50], “Ɩ” indicates a brightness channel that captures the brightness inde-

pendently of color attributes, the “α” channel encapsulates yellow and blue hues, and the 

“β” channel encloses the interplay between red and green shades. In the RH transfor-

mation, the LCS is used. The LCS minimizes the relative significance of each weight, with 

a matrix proposed for converting vectors from RGB to LCS. The RH transformation 

changes the mean and std values of the color channels based on the LCS that consistently 

represents the pixel colors in an image. As shown in Equation (1), it uses the ƒ mapping 

function with 𝛿 parameters to transform the 𝑑𝑎𝑡𝑎𝐵 into preprocessed 𝑑𝑎𝑡𝑎𝐵′. 

−

Fractal Fract. 2024, 8, x FOR PEER REVIEW 6 of 30 
 

 

3. Proposed Method 

3.1. Overview of Proposed Method 

Figure 2 depicts an overview of the flow of our framework. During training, we train 

the conventional semantic segmentation model with Dataset A. Next, we preprocess the 

images of Dataset B using the RH transformation, which is based on the mean and std of 

Datasets A and B. This transformation adjusts the visual properties of the images, such as 

intensity, illumination, and contrast, to make them similar to the reference image in a heter-

ogeneous environment. Then, we select one training data from the preprocessed Dataset B 

and perform DA on it to augment the training data. Afterward, we perform fine-tuning and 

train the model from scratch with Dataset A using the augmented data, and we perform the 

semantic segmentation of weeds and crops utilizing the testing data from Dataset B. 

 

Figure 2. Overview of the proposed framework flow. 

3.2. Preprocessing 

3.2.1. RH Transformation 

Many factors such as variations in intensity, illumination, and contrast cause perfor-

mance degradation, particularly in heterogeneous environments. Transferring colors 

from one image (reference) to another (target) is a significant problem, particularly when 

the color information in the reference image does not match the newly generated image, 

causing quality and performance degradation. To address performance degradation us-

ing heterogeneous data, we adopted the RH transformation [49] with average mean and 

std adjustments to enhance the visual attributes of the images. Many prior transformation 

methods and color spaces enhance the visual characteristics of an image. In the Ɩαβ color 

space (LCS) [50], “Ɩ” indicates a brightness channel that captures the brightness inde-

pendently of color attributes, the “α” channel encapsulates yellow and blue hues, and the 

“β” channel encloses the interplay between red and green shades. In the RH transfor-

mation, the LCS is used. The LCS minimizes the relative significance of each weight, with 

a matrix proposed for converting vectors from RGB to LCS. The RH transformation 

changes the mean and std values of the color channels based on the LCS that consistently 

represents the pixel colors in an image. As shown in Equation (1), it uses the ƒ mapping 

function with 𝛿 parameters to transform the 𝑑𝑎𝑡𝑎𝐵 into preprocessed 𝑑𝑎𝑡𝑎𝐵′. 

adj, (14)

α” = α − αadj, (15)

β” = β − βadj (16)
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adj, αadj, and βadj are the different data point values for additional adjustments,
which are experimentally chosen to make the channel distribution similar to the refer-
ence image. These values are subtracted from the

Fractal Fract. 2024, 8, x FOR PEER REVIEW 6 of 30 
 

 

3. Proposed Method 

3.1. Overview of Proposed Method 

Figure 2 depicts an overview of the flow of our framework. During training, we train 

the conventional semantic segmentation model with Dataset A. Next, we preprocess the 

images of Dataset B using the RH transformation, which is based on the mean and std of 

Datasets A and B. This transformation adjusts the visual properties of the images, such as 

intensity, illumination, and contrast, to make them similar to the reference image in a heter-

ogeneous environment. Then, we select one training data from the preprocessed Dataset B 

and perform DA on it to augment the training data. Afterward, we perform fine-tuning and 

train the model from scratch with Dataset A using the augmented data, and we perform the 

semantic segmentation of weeds and crops utilizing the testing data from Dataset B. 

 

Figure 2. Overview of the proposed framework flow. 

3.2. Preprocessing 

3.2.1. RH Transformation 

Many factors such as variations in intensity, illumination, and contrast cause perfor-

mance degradation, particularly in heterogeneous environments. Transferring colors 

from one image (reference) to another (target) is a significant problem, particularly when 

the color information in the reference image does not match the newly generated image, 

causing quality and performance degradation. To address performance degradation us-

ing heterogeneous data, we adopted the RH transformation [49] with average mean and 

std adjustments to enhance the visual attributes of the images. Many prior transformation 

methods and color spaces enhance the visual characteristics of an image. In the Ɩαβ color 

space (LCS) [50], “Ɩ” indicates a brightness channel that captures the brightness inde-

pendently of color attributes, the “α” channel encapsulates yellow and blue hues, and the 

“β” channel encloses the interplay between red and green shades. In the RH transfor-

mation, the LCS is used. The LCS minimizes the relative significance of each weight, with 

a matrix proposed for converting vectors from RGB to LCS. The RH transformation 

changes the mean and std values of the color channels based on the LCS that consistently 

represents the pixel colors in an image. As shown in Equation (1), it uses the ƒ mapping 

function with 𝛿 parameters to transform the 𝑑𝑎𝑡𝑎𝐵 into preprocessed 𝑑𝑎𝑡𝑎𝐵′. 

, α, β data points, and the result is

Fractal Fract. 2024, 8, x FOR PEER REVIEW 6 of 30 
 

 

3. Proposed Method 

3.1. Overview of Proposed Method 

Figure 2 depicts an overview of the flow of our framework. During training, we train 

the conventional semantic segmentation model with Dataset A. Next, we preprocess the 

images of Dataset B using the RH transformation, which is based on the mean and std of 

Datasets A and B. This transformation adjusts the visual properties of the images, such as 

intensity, illumination, and contrast, to make them similar to the reference image in a heter-

ogeneous environment. Then, we select one training data from the preprocessed Dataset B 

and perform DA on it to augment the training data. Afterward, we perform fine-tuning and 

train the model from scratch with Dataset A using the augmented data, and we perform the 

semantic segmentation of weeds and crops utilizing the testing data from Dataset B. 

 

Figure 2. Overview of the proposed framework flow. 

3.2. Preprocessing 

3.2.1. RH Transformation 

Many factors such as variations in intensity, illumination, and contrast cause perfor-

mance degradation, particularly in heterogeneous environments. Transferring colors 

from one image (reference) to another (target) is a significant problem, particularly when 

the color information in the reference image does not match the newly generated image, 

causing quality and performance degradation. To address performance degradation us-

ing heterogeneous data, we adopted the RH transformation [49] with average mean and 

std adjustments to enhance the visual attributes of the images. Many prior transformation 

methods and color spaces enhance the visual characteristics of an image. In the Ɩαβ color 

space (LCS) [50], “Ɩ” indicates a brightness channel that captures the brightness inde-

pendently of color attributes, the “α” channel encapsulates yellow and blue hues, and the 

“β” channel encloses the interplay between red and green shades. In the RH transfor-

mation, the LCS is used. The LCS minimizes the relative significance of each weight, with 

a matrix proposed for converting vectors from RGB to LCS. The RH transformation 

changes the mean and std values of the color channels based on the LCS that consistently 

represents the pixel colors in an image. As shown in Equation (1), it uses the ƒ mapping 

function with 𝛿 parameters to transform the 𝑑𝑎𝑡𝑎𝐵 into preprocessed 𝑑𝑎𝑡𝑎𝐵′. 

” , α” , and β” , which shows the normalized space data points. The newly generated his-
tograms are visually presented in Figure 3d. As demonstrated in Figure 3d, the channel
distributions resulting from the RH transformation with additional adjustments closely
resemble those of the reference image in Figure 3a, in contrast to the RH without additional
adjustment in Figure 3c.

Figure 4 illustrates the sample images of the referenced image, targeted image, RH-
transformed image, and RH-transformed image with additional adjustments from the
BoniRob dataset and CWFID.
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additional adjustments.

3.3. Data Augmentation of One Training Data

Data augmentation (DA) involves employing various transformations on existing data
to expand and diversify a training dataset artificially. In image datasets, DA can involve
procedures such as in-plane rotation, flipping, zooming, and modifying the contrast and
brightness levels of the images within the training dataset [51]. The purpose behind DA
is to enhance the capacity of a model to generalize and perform effectively on novel and
unseen data by exposing it to a broader spectrum of variations that may be encountered
in real-world contexts. We randomly selected a single image from the training data and
augmented it for training. By adding augmentation to this small training dataset, we
improved the segmentation performance while reducing the training time. A simple
180-degree in-plane rotation was used for DA, as depicted in Figure 5.
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3.4. Semantic Segmentation Networks

For the semantic segmentation of weeds and crops, the following conventional seman-
tic segmentation models were adopted:

3.4.1. U-Net

U-Net [35] features a fully CNN with a U-shaped encoder–decoder framework. The
input image of the encoder and the output image of the decoder have the same image
size. The decoder is more or less symmetric than the encoder, and the encoder has a large
feature channel for propagating contextual information to the high-resolution layer. The
architecture includes two 3 × 3 Conv layers, each accompanied by a max-pooling (MP)
layer of 2 × 2 kernel size, with stride 2, and a ReLU [52]. In the decoder, the tensor map
was upsampled using a 2 × 2 up-convolution and concatenated with the encoder features.
A final layer of 1 × 1 convolution was incorporated into the U-Net network. Figure 6
illustrates its architecture. Furthermore, the first stages of the encoder (including and before
the first max-pooling layer as Encoder1) and decoder (first up Conv layer with subsequent
layers having the same spatial dimensions as Decoder1) of the U-Net shown in Figure 6 are
mathematically represented as follows:

Encoder1 = P1(C1) where
{

C1 = Conv(Conv(X, W1)),
P1 = Maxpool(C1)

(17)

Decoder1 = CR1
(
Cconcat1

(
Ccrop1(U1)

))
, (18)

where


U1 = Upconv

(
B, Wup1

)
,

Ccrop1 = Crop(R, size(U1)),
Cconcat1 = Concatenation

(
U1, Ccrop1

)
,

CR1 = Conv(Conv(Cconcat1, Wconv))

In Encoder1, X represents the input feature, and W1 indicates the weight tensor for con-
volution operations. In every convolution operation for both the encoder and decoder,
ReLU activation functions and batch normalization are applied. In Decoder1, B represents
the tensor of the previous layer, and Wup1 in Upconv

(
B, Wup1

)
shows the weight tensor

with an up-convolution operation. R in Crop(R, size(U 1)) indicates the input image size
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after convolutions from the encoder side with the same size as U1, which is a result of
the previous up-convolution. Cconcat1 represents the concatenation of U1 and Ccrop1 which
are the final calculations for the previous layers. WConv represents weight tensors with
convolution operations. Finally, after the convolution in the decoder, it is fed to CR1, and
the subsequent levels of decoder operations continue in a similar manner.
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3.4.2. Modified U-Net

Modified U-Net [37] is an updated variant of the U-Net, featuring an encoder–decoder
framework. Like U-Net, the modified version includes two 3 × 3 Conv layers, each
accompanied by an MP layer of 2 × 2 kernel size of stride 2, and an activation function
named the exponential linear unit [53]. In the decoder, the tensor map is upsampled
using a 2 × 2 up-convolution and concatenated with the encoder features. To overcome
the overfitting issue, a dropout layer was placed between the Conv layers. A last layer
with 1 × 1 Conv is used in the modified U-Net architecture. Moreover, the stochastic
gradient descent optimization is replaced with the Adadelta algorithm. Figure 7 shows
the structure of the modified U-Net. Furthermore, the first stages of the encoder (before
and including the first pooling layer as Encoder1) and decoder (first up Conv layer with
the subsequent layer including convolutions as Decoder1) of Figure 7 are mathematically
expressed as follows:

Encoder1 = P1(C1(D1(B1))) where


B1 = Conv(X, Wb1),

D1 = Dropout(B1, dropoutvalue),
C1 = Conv(D1, Wc1),
P1 = Maxpool(C1)

(19)

Decoder1 = CR1(R1(CB1(U1(CC1)))), (20)

where


CC1 = Concatenate(B, Dn),
U1 = Upconv(CC1, Wu1),

CB1 = Conv(U1, Wcb1),
R1 = Dropout(CB1, dropoutvalue),

CR1 = Conv(R1, Wcr1)

In Encoder1, X represents the input image, and Wb1 represents the weight tensor for convo-
lution operations. Following every Conv operation in both the encoder and decoder batch
normalization, ELU is applied. In ELU(Conv(D1, Wc1) , D1 represents the dropout layer,
which is further processed by convolution and ELU resulting in C1. C1 is downsampled
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using the MP layer. In Decoder1, B represents the tensor map of the prior layer, and Dn rep-
resents the dropout feature map from the same level connection. Wu1 in Upconv(CC1, Wu1)
represents the weight tensor with an upconvolution operation. Subsequently, a convolution
is applied to the Wcb1 weight tensor. R1 has a dropout value on which convolution is
applied with the Wcr1 weight tensor. After the activation function, the final results are
concluded in CR1 with the completion of the first decoder-level operations.
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3.4.3. CED-Net

Although many other architectures for segmentation networks are deep, with a large
number of parameters, CED-Net [48] is a simple cascading semantic segmentation model
with a smaller number of parameters. The complete network comprises two training levels.
Model 1 is trained at level 1 using the following steps. Model 1 is trained for predicting
weeds, while Model 3 is trained for the prediction of crops. The results of Models 1 and 3
are upsampled and stitched to scale for each input image and then utilized as inputs for
Models 2 and 4, respectively. The models are trained separately at each level. At Level 1,
the images with their segmentation ground truths are reduced in size to spatial dimensions
of 448 × 448. To train the Level 2 models, the 448 × 448 spatial dimension is upsampled to
896 × 896 using bilinear interpolation. The only difference from the U-Net structure is the
highest feature map of 256 sizes in the bottleneck layer. All models and levels use the same
encoder–decoder network architecture for CED-Net, as shown in Figure 8. Moreover, the
first stages of CED-Net at each level in the model are akin to those of the U-Net encoder–
decoder, other than the network depth and the number of convolutions. The encoder
(including and before the first MP layer as Encoder1) and decoder (first up Conv layer
with more layers having convolutions as Decoder1) of CED-Net, shown in Figure 8, are
mathematically represented as follows:

Encoder1 = P1(D1) where
{

D1 = Conv(Conv(Y, W1)),
P1 = Maxpool(C1)

(21)

Decoder1 = FR1
(
Cconcat1

(
Ccrop1(U1)

))
, (22)

where


U1 = Upconv

(
B, Wup1

)
,

Ccrop1 = Crop(R, size(U1)),
Cconcat1 = Concatenation

(
U1, Ccrop1

)
,

FR1 = Conv(Conv(Conv(Cconcat1, Wconv)))
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In Encoder1, Y represents the input feature, and W1 represents the weight tensor for the
convolution operations. ReLU and batch normalization are employed in each Conv op-
eration for both the encoder and decoder. In Decoder1, B depicts the feature map of the
prior layer, and Wup1 in Upconv

(
B, Wup1

)
shows the weight tensor with an upconvolution

operation. In Crop(R, size(U 1)), R represents the input image size after convolutions
on the encoder side, converted to the same size as U1, which is the result of a previous
upconvolution. Cconcat1 represents the concatenation of U1 and Ccrop1 which are the final
calculations for the previous layers. WConv represents weight tensors with convolution
operations. Finally, after convolutions in the decoder, it is fed to FR1, and the next stages
of the decoder computations continue in a similar manner. At each level of CED-Net, a
similar encoder–decoder architecture is used for network operations.
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4. Experimental Results
4.1. Experimental Dataset and Setup

We used two open datasets: the BoniRob dataset [24] as Dataset A and the CWFID [25]
as Dataset B. The BoniRob dataset contains 496 images with pixel-level annotated masks,
while the CWFID contains 60 images with the same pixel-level annotated masks. Both
dataset images were captured by an autonomous robot in the field at a resolution of
1296 × 966 pixels. For small training datasets, we use only a single image, and augmentation
produces an additional image. We utilized two images (one augmented and one small
training data) for training. During training, we reduced the image size to 512 × 512 pixels.
We experimented on a Windows-based desktop system with an Intel Core i5-2320 CPU
@ 3.00 GHz processor [54], a GPU of NVIDIA GeForce GTX 1070 [55] with 8 gigabytes of
memory, and 16 gigabytes of RAM. For development, we utilized the PyTorch [56] platform
in Python version 3.8 [57].

4.2. Training Setup

For Experiment 1, Dataset A was first used for training with 70% of the data. Dataset
B, transformed using the proposed method, was subsequently divided into two equal
portions: one serving as testing data and the other as small training data. A single image of
the small training data was then augmented and used for training, whereas the testing data
remained unchanged. In Experiment 2, 70% of the data in Dataset B were used for training.
Next, the data were preprocessed, and Dataset A was subsequently divided into two equal
portions: one serving as testing data and the other as small training data. We augmented a
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single image of the small training data and further utilized it for training, while the test data
remained unchanged. During training, the images underwent resizing to a resolution of
512 × 512 pixels, and the network was trained using a batch size of two for 150 epochs. We
employed an Adam optimizer [58] with an initial learning rate (LR) of 1 × 10−5 and utilized
a cosine annealing strategy [59] to steadily reduce the LR during training. The training loss
was calculated using dice loss [60]. We trained the proposed framework using the U-Net,
modified U-Net, and CED-Net architectures. Figure 9 depicts the loss and training graphs
for the BoniRob dataset and the CWFID using U-Net. Furthermore, the convergence of the
loss and accuracy curves of the validation and training data demonstrates that the network
is adequately trained and avoids overfitting.
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4.3. Evaluation Metrics

The experiment aimed to assess the semantic segmentation performance across three
classes (background, crop, and weed) using evaluation metrics including precision, the
mean intersection of union (mIoU), recall, and weighted harmonic mean of precision and
recall (F1-score), as outlined in Equations (23)–(27). These values were used to calculate
the overall segmentation performance of the proposed framework. The number of classes
was set to three. The evaluation metrics used to determine the accuracy of segmentation
included true negative (TN), true positive (TP), false negative (FN), and false positive (FP)
values. When the true and false labels match the prediction, the scenario is usually referred
to as a TN or TP. FP and FN are terms used to describe scenarios in which an incorrect label
is mistakenly anticipated as true and a valid label is mistakenly anticipated as a false label.

IoU =
TP

TP + FN + FP
, (23)

mIoU =
∑Cls

j=1 IOUj

Cls
, (24)

Recall =
TP

TP + FN
, (25)

Precision =
TP

TP + FP
, (26)

F1 − score =
2 × Precision × Recall

Precision + Recall
(27)
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4.4. Testing for the Proposed Framework

Below is the explanation of the experimental results of the proposed framework for
semantic segmentation in Experiments 1 and 2.

4.4.1. Testing with CWFID after Training with BoniRob Dataset
Ablation Study

In the ablation studies, we conducted several experiments across various scenarios,
encompassing six different cases outlined in Table 2.

Table 2. Representation of various cases.

Cases RH Transformation Using One Training Data Data Augmentation

Case I

Case II ✔

Case III ✔

Case IV ✔ ✔

Case V ✔ ✔

Case VI ✔ ✔ ✔

We repeated these six cases in Experiments 1 and 2. Tables 3–5 present the results
of Experiment 1 for semantic segmentation using segmentation networks including U-
Net, modified U-Net, and CED-Net. Across all experiments, Case I showed the lowest
performance, and Case VI (the proposed method) showed the highest performance. This
confirms that the proposed schemes of using RH transformation, one training dataset, and
DA can enhance segmentation accuracy in all the segmentation models. In addition, the
semantic segmentation performance of Case VI and U-Net is the best.

Table 3. Comparisons of different cases using U-Net (Experiment 1) (Cr means crop, Wd means weed,
Bg means background, Re means recall, and Pre means precision).

Model Cases mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

U-Net

Case I 0.384 0.001 0.195 0.384 0.643 0.403 0.495

Case II 0.423 0.098 0.206 0.965 0.638 0.567 0.594

Case III 0.493 0.322 0.175 0.982 0.621 0.605 0.611

Case IV 0.589 0.472 0.309 0.985 0.732 0.721 0.724

Case V 0.499 0.294 0.221 0.982 0.652 0.627 0.639

Case VI
(proposed) 0.620 0.524 0.349 0.986 0.762 0.749 0.752

An ablation study is presented in Table 6 to show the significance of the selection of the
mean and std values for the RH transformation in the proposed framework. In this ablation
study, we used the same training data as in the ablation study experiments with U-Net of
Case VI (Table 3) and performed testing to validate the performance difference between the
RH transformation and RH transformation with additional adjustment values that deviate
from the selected values. We set the RH transformation with additional adjustment values
to make the distribution of channels akin to that of the reference image in the histograms,
as shown in Figure 3 and explained in Section 3.2.2. The performance results (F1-score)
with additional adjustment values are 13.1% lower than those with the RH transformation
without additional adjustments, as listed in Table 6. Although the RH transformation with
additional adjustments makes the relative channel distributions similar between the target
and reference images, as shown in Figure 3, it results in a greater decrease in the absolute
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numbers of red and green channels. Additionally, the mean of all channels decreases
and moves toward zero, which reduces contrast and illumination, as shown in Figure 3.
Moreover, the variance also increases, and all factors collectively cause the performance
degradation of the RH transformation with additional adjustments.

Table 4. Comparisons of different cases using modified U-Net (Experiment 1) (Cr means crop, Wd
means weed, Bg means background, Re means recall, and Pre means precision).

Model Cases mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

Modified
U-Net

Case I 0.380 0.006 0.195 0.941 0.645 0.406 0.497

Case II 0.427 0.104 0.209 0.968 0.657 0.563 0.601

Case III 0.483 0.244 0.221 0.983 0.646 0.608 0.625

Case IV 0.523 0.368 0.217 0.984 0.664 0.635 0.648

Case V 0.471 0.195 0.234 0.983 0.656 0.615 0.634

Case VI
(proposed) 0.539 0.382 0.251 0.984 0.686 0.665 0.674

Table 5. Comparisons of different cases using CED-Net (Experiment 1) (Cr means crop, Wd means
weed, Bg means background, Re means recall, and Pre means precision).

Model Cases mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

CED-Net

Case I 0.387 0.009 0.196 0.956 0.634 0.441 0.518

Case II 0.396 0.018 0.209 0.962 0.616 0.465 0.528

Case III 0.461 0.234 0.175 0.974 0.603 0.559 0.579

Case IV 0.516 0.409 0.168 0.971 0.640 0.592 0.614

Case V 0.466 0.235 0.188 0.974 0.617 0.564 0.589

Case VI
(proposed) 0.521 0.472 0.120 0.972 0.637 0.613 0.624

Table 6. Comparison of results between RH transformation and RH transformation with additional
adjustments (Cr means crop, Wd means weed, Bg means background, Re means recall, and Pre
means precision).

Experiment mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

RH transformation 0.620 0.524 0.349 0.986 0.762 0.749 0.752

RH transformation with
additional adjustments 0.468 0.199 0.229 0.975 0.631 0.615 0.621

Visual examples of the semantic segmentation results using U-Net, modified U-Net,
and CED-Net are illustrated in Figure 10. In this illustration, red pixels represent the TP
of crops, black pixels represent the TP of the background, and blue pixels signify the TP
of the weed. Yellow pixels represent errors where crops were mistakenly identified as
background or weeds, while orange pixels represent errors where weeds were mistakenly
identified as background or crops. Gray pixels indicate errors where the background was
mistakenly identified as weeds or crops. As depicted in the figure, the utilization of U-Net
in the proposed framework demonstrates superior semantic segmentation accuracy.
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Performance Comparisons of the Proposed Framework with SOTA Transformations

We analyzed the SOTA transformations with those of the proposed method employing
U-Net, modified U-Net, and CED-Net, as outlined in Table 7. Our findings confirm that
the proposed framework yields the highest outcomes across all segmentation networks.
Additionally, Table 7 reveals that U-Net within the proposed framework attains the highest
segmentation performance for both crops and weeds.

Visual examples of SOTA transformations and the proposed method using U-Net are
shown in Figure 11. In this illustration, red pixels represent the TP of crops, black pixels
represent the TP of the background, and blue pixels signify the TP of the weed. Yellow
pixels represent errors where crops were mistakenly identified as background or weeds,
while orange pixels represent errors where weeds were mistakenly identified as background
or crops. Gray pixels indicate errors where the background was mistakenly identified as
weeds or crops. As depicted in the figure, the proposed framework demonstrates the
highest semantic segmentation accuracy.

Table 7. Performance comparisons of proposed method and SOTA transformations (Cr means crop,
Wd means weed, Bg means background, Re means recall, and Pre means precision).

Segmentation Model Transformation mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

U-Net

Xiao et al. [61] 0.496 0.257 0.274 0.958 0.717 0.583 0.640

Pitie et al. [62] 0.548 0.378 0.312 0.953 0.776 0.601 0.675

Gatys et al. [63] 0.457 0.313 0.101 0.958 0.558 0.575 0.563

Nguyen et al. [64] 0.487 0.486 0.010 0.964 0.563 0.580 0.569

Proposed 0.620 0.524 0.349 0.986 0.762 0.749 0.752

Modified U-Net

Xiao et al. [61] 0.387 0.066 0.161 0.934 0.651 0.494 0.558

Pitie et al. [62] 0.462 0.200 0.221 0.966 0.716 0.569 0.630

Gatys et al. [63] 0.396 0.157 0.083 0.948 0.452 0.544 0.490

Nguyen et al. [64] 0.427 0.136 0.185 0.959 0.518 0.580 0.545

Proposed 0.539 0.382 0.251 0.984 0.686 0.665 0.674
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Table 7. Cont.

Segmentation Model Transformation mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

CED-Net

Xiao et al. [61] 0.390 0.036 0.204 0.928 0.618 0.447 0.518

Pitie et al. [62] 0.394 0.109 0.180 0.894 0.673 0.472 0.553

Gatys et al. [63] 0.360 0.000 0.143 0.938 0.605 0.378 0.465

Nguyen et al. [64] 0.310 0.000 0.065 0.865 0.479 0.349 0.402

Proposed 0.521 0.472 0.120 0.972 0.637 0.613 0.624
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Figure 11. Visual comparisons of various SOTA transformations with the proposed framework using
U-Net (Experiment 1): (a) original image; (b) ground-truth mask; semantic segmentation results with
(c) Xiao et al.; (d) Pitie et al.; (e) Gatys et al.; (f) Nguyen et al.; and (g) proposed method.

4.4.2. Testing with BoniRob Dataset after Training with CWFID
Ablation Study

For the ablation studies, six cases were considered in Experiment 2, as described in the
Ablation Study of Section 4.4.1. Tables 8–10 present the results of Experiment 2 for semantic
segmentation using segmentation networks. From these tables, we can observe that the
accuracy is lower for Cases I, III, and IV without RH transformation for the test data, but
the performance improved when we used RH transformation in Cases II, IV, and VI. In
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Case VI, the proposed framework shows the highest accuracy among all segmentation
networks and the best accuracy with U-Net.

Table 8. Comparison of different cases using U-Net (Experiment 2) (Cr means crop, Wd means weed,
Bg means background, Re means recall, and Pre means precision).

Model Cases mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

U-Net

Case I 0.316 0.000 0.000 0.948 0.333 0.329 0.330

Case II 0.570 0.230 0.508 0.971 0.704 0.679 0.688

Case III 0.494 0.227 0.286 0.969 0.630 0.673 0.649

Case IV 0.621 0.272 0.621 0.969 0.779 0.689 0.730

Case V 0.507 0.232 0.322 0.968 0.645 0.679 0.659

Case VI
(proposed) 0.637 0.292 0.647 0.971 0.787 0.708 0.743

Table 9. Comparison of different cases using modified U-Net (Experiment 2) (Cr means crop, Wd
means weed, Bg means background, Re means recall, and Pre means precision).

Model Cases mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

Modified
U-Net

Case I 0.316 0.000 0.000 0.948 0.333 0.316 0.324

Case II 0.529 0.235 0.383 0.970 0.682 0.665 0.668

Case III 0.448 0.212 0.163 0.968 0.588 0.596 0.589

Case IV 0.605 0.266 0.593 0.955 0.833 0.651 0.728

Case V 0.477 0.232 0.232 0.966 0.633 0.611 0.619

Case VI
(proposed) 0.622 0.294 0.610 0.962 0.837 0.667 0.739

We can see the visual examples of semantic segmentation outputs using U-Net, mod-
ified U-Net, and CED-Net in Figure 12. In this illustration, red pixels represent the TP
of crops, black pixels represent the TP of the background, and blue pixels signify the TP
of the weed. Yellow pixels represent errors where crops were mistakenly identified as
background or weeds, while orange pixels represent errors where weeds were mistakenly
identified as background or crops. Gray pixels indicate errors where the background was
mistakenly identified as weeds or crops. As depicted in the figure, the proposed framework
with U-Net demonstrates the highest semantic segmentation accuracy.

Table 10. Comparison of different cases using CED-Net (Experiment 2) (Cr means crop, Wd means
weed, Bg means background, Re means recall, and Pre means precision).

Model Cases mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

CED-Net

Case I 0.315 0.000 0.000 0.946 0.332 0.318 0.322

Case II 0.487 0.176 0.336 0.951 0.699 0.564 0.621

Case III 0.488 0.013 0.572 0.879 0.624 0.537 0.575

Case IV 0.552 0.218 0.504 0.935 0.838 0.592 0.691

Case V 0.485 0.0143 0.581 0.860 0.623 0.539 0.576

Case VI
(proposed) 0.570 0.244 0.519 0.946 0.836 0.611 0.703
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Figure 12. Visual comparisons of various semantic segmentation outputs with proposed framework
(Experiment 1): (a) original image; (b) RH-transformed image; (c) ground-truth mask; semantic
segmentation results with (d) CED-Net; (e) modified U-Net, and (f) U-Net.

Performance Comparisons of the Proposed Framework with SOTA Transformations

In this subsection, we compared the SOTA transformations with those of the proposed
framework using U-Net, modified U-Net, and CED-Net, as listed in Table 11. We verify
that the proposed framework shows superior performance over all segmentation networks.
Moreover, Table 11 highlights that U-Net, when utilized within the proposed framework,
obtained the highest semantic segmentation accuracy for crops and weeds.

Visual examples of SOTA transformations and the proposed method using U-Net are
illustrated in Figure 13. In this illustration, red pixels represent the TP of crops, black pixels
represent the TP of the background, and blue pixels signify the TP of the weed. Yellow
pixels represent errors where crops were mistakenly identified as background or weeds,
while orange pixels represent errors where weeds were mistakenly identified as background
or crops. Gray pixels indicate errors where the background was mistakenly identified as
weeds or crops. As illustrated in the figure, the proposed framework demonstrates the
highest semantic segmentation accuracy.

Table 11. Comparisons of the performance of the proposed method and SOTA transformations (Cr
means crop, Wd means weed, Bg means background, Re means recall, and Pre means precision).

Model Transformation mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

U-Net

Xiao et al. [61] 0.530 0.505 0.124 0.962 0.696 0.589 0.635

Pitie et al. [62] 0.543 0.475 0.193 0.959 0.729 0.605 0.657

Gatys et al. [63] 0.316 0.000 0.000 0.948 0.333 0.381 0.352

Nguyen et al. [64] 0.332 0.049 0.000 0.946 0.352 0.417 0.379

Proposed 0.637 0.647 0.292 0.971 0.787 0.708 0.743

Modified U-Net

Xiao et al. [61] 0.526 0.521 0.145 0.911 0.787 0.573 0.661

Pitie et al. [62] 0.516 0.522 0.141 0.886 0.817 0.567 0.667

Gatys et al. [63] 0.316 0.000 0.000 0.948 0.333 0.320 0.326

Nguyen et al. [64] 0.187 0.014 0.031 0.516 0.387 0.368 0.375

Proposed 0.622 0.610 0.294 0.962 0.837 0.667 0.739
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Table 11. Cont.

Model Transformation mIoU IoU (Cr) IoU (Wd) IoU (Bg) Re Pre F1-Score

CED-Net

Xiao et al. [61] 0.423 0.339 0.067 0.862 0.709 0.475 0.566

Pitie et al. [62] 0.466 0.442 0.107 0.850 0.807 0.524 0.632

Gatys et al. [63] 0.318 0.005 0.018 0.932 0.338 0.340 0.339

Nguyen et al. [64] 0.316 0.000 0.001 0.948 0.333 0.375 0.349

Proposed 0.570 0.519 0.244 0.946 0.836 0.611 0.703
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Figure 13. Visual comparisons of various SOTA transformations with proposed framework using
U-Net (Experiment 1): (a) original image; (b) ground-truth mask; semantic segmentation results with
(c) Xiao et al.; (d) Pitie et al.; (e) Gatys et al.; (f) Nguyen et al.; and (g) proposed method.

4.5. Fractal Dimension Estimation

The FD is used as a mathematical metric to characterize the complexity of geometric
structures, particularly fractal shapes, which exhibit self-similarity across different scales.
Fractal shapes possess similar patterns or structures across different scales, and the com-
plexity of these shapes can be quantified using a numerical value of FD that generally
ranges between one and two [65]. A higher FD value indicates greater complexity. A
common method for computing the FD is the box-counting algorithm [66]. We refer to
the box-counting algorithm [12] to compute the FD, which was implemented by the Py-
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Torch [56] platform in Python version 3.8 [57]. Algorithm 2 provides the pseudo-code to
measure the FD.

Algorithm 2: Pseudo-code for measuring FD

Input: image (path to the input image)
Output: Fractal dimension (FD) value
1: Read the input image and further convert it into grayscale
2: Set the maximum box-size with the power of 2 and ensure the dimensions

s = 2ˆ(log(max(size(image))/log2)]
Add the padding if required to match the dimensions

3: Compute the number of boxes N(s) till minimum pixels
4: Reduce box size by 2 and recalculate N(s) iteratively

while s > 1
5: Compute log(N(s)) and log(1/s) for each s
6: Draw a fitted line to the points (log(N(s)) and log(1/s))
7: FD value is the slope of the fitted line

Return Fractal Dimension Value

The algorithm enables the calculation of the FD for both precise and approximate
self-affine patterns and has wide applications across various natural and manmade sys-
tems [13,67]. The formula employed to estimate the FD utilizing the box-counting algo-
rithm [12] is as follows:

FD = lims→0
log(N(s))
log(1/s)

(28)

where N(s) represents the sum of boxes of size s, and FD signifies the fractal dimension
defining the curve being analyzed. We employed a box-counting technique to calculate
the approximate FD of various shapes. The method was evaluated using two datasets,
BoniRob and CWFID. The experimental results are presented in Table 12, demonstrating
the FD values and distribution of crops and weeds across different sections of the field.
The 1st–3rd row FD values in Table 12 were computed from the 1st~3rd row images in
Figure 14. In addition, the 4th~6th row FD values in Table 12 were computed from the
4th~6th row images in Figure 15. Higher FD values for crops and weeds represent the
high complexities of crops and weeds, suggesting that farming experts or robots should
pay more attention to discriminating between crops and weeds. This estimation technique
can also automate farming systems by targeting and eliminating weeds through precise
spraying in areas with high weed complexity, ultimately increasing the crop yield.

Table 12. FD values of images from CWFID and BoniRob dataset. The 1st~3rd row FD values are
computed from the 1st~3rd row images of Figure 14. The 4th~6th row FD values are computed from
the 4th~6th row images of Figure 15.

Dataset Weed FD Crop FD

CWFID

1.61 1.26

0.76 1.43

1.53 1.21

BoniRob dataset

1.27 0.91

1.32 1.31

0.97 1.54
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Figure 14. Visual representation of crops and weeds with samples from the CWFID for estimating FD
values: (a) whole segmentation results; (b) weed segmentation result; and (c) crop segmentation result.
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estimating FD values: (a) whole segmentation results; (b) weed segmentation result; and (c) crop
segmentation result.
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4.6. Comparisons of Processing Time

In this section, we compare the average processing times per image obtained using
the proposed method with those obtained using the SOTA method. The unit ms denotes
milliseconds. Table 13 illustrates that the method by Xiao et al. [61] exhibits the highest
processing time, whereas the method by Nguyen et al. [64] demonstrates the lowest pro-
cessing time. Interestingly, our proposed framework falls at the second lowest in processing
time (as indicated in Table 13). Although the proposed framework has a higher processing
time than Nguyen et al. [64], our goal is to achieve high accuracies of crop and weed
segmentation. The proposed framework with U-Net yields better results than the SOTA
methods, as evidenced in Tables 7 and 11 and Figures 11 and 13.

Table 13. Comparisons of average processing time by proposed and SOTA methods (unit: ms).

Methods Processing Time

Xiao et al. [61] 1270

Pitie et al. [62] 2920

Gatys et al. [63] 2210

Nguyen et al. [64] 1030

Proposed 1080

5. Discussion

We performed statistical analysis using the Student’s t-test [68] and calculated the
Cohen’s d-value [69]. For this purpose, we calculated the mean and std of the mIoU
using our method with U-Net, as shown in Tables 7 and 11, respectively. Additionally, we
calculated the mean and std of the mIoU using the second-best method (Pitie et al. [62])
with U-Net, as presented in Tables 7 and 11. The measured p-value is 0.041, showing a
confidence level of 95% with a significant difference, as depicted in Figure 16, and Cohen’s
d-value is 0.936, representing a large effect size. This confirms that the proposed framework
statistically surpasses the second-best method and achieves higher segmentation accuracy.
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We also analyzed the semantic segmentation performance using the proposed method
with U-Net based on gradient-weighted class activation mapping (Grad-CAM) [70], as
depicted in Figure 17. Grad-CAM typically depicts important features as reddish and
yellowish colors, whereas unimportant features are shown in bluish colors as explainable
artificial intelligence. Figure 17 shows the Grad-CAM image, obtained after the fourth
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convolution layer of U-Net, illustrating the accurate extraction of crucial features for
crop and weed segmentation, confirming that our method can generate correct images in
heterogeneous datasets for the accurate segmentation of crops and weeds.
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Figure 17. Sample images of the CWFID with Grad-CAM visualization after the 4th convolution
layer. (a) Input image, (b) ground-truth mask (gray, white, and black pixels mean weeds, crops, and
background, respectively), (c) Grad-CAM of class 1 (weed), (d) Grad-CAM of class 2 (crop), and
(e) segmented results.

Figure 18 shows examples of incorrect segmentation using the proposed method with
U-Net. In this illustration, red pixels represent the TP of crops, black pixels represent the
TP of the background, and blue pixels signify the TP of the weed. Yellow pixels represent
errors where crops were mistakenly identified as background or weeds, while orange pixels
represent errors where weeds were mistakenly identified as background or crops. Gray
pixels indicate errors where the background was mistakenly identified as weeds or crops.
The reason for the incorrect segmentation is that crops and weeds have similar shapes
and colors, making them hard to distinguish, especially in cases where objects possess
thin regions.
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As automation in agriculture is a subject of intensive research, it has led to many
reformations in agriculture, such as saving time, reducing manpower, increasing yields
through proper monitoring systems, and precise crop and weed detection. In agricultural
precision for heterogeneous data, our proposed framework exhibits great performance,
segregating crops and weeds accurately, which can increase yield and drive the transition
to modern agriculture.
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6. Conclusions

In this study, we introduce an approach for segmenting crops and weeds and esti-
mating the FD using small amounts of training data in a heterogeneous data environment.
This is the first study on the segmentation of crops and weeds within a heterogeneous
environmental setup utilizing one training data sample. We rigorously investigated the
factors that cause performance degradation in heterogeneous datasets, including varia-
tions in illumination and contrast. To solve this challenge, we proposed a framework
that leverages mean and standard deviation adjustments using the RH transformation.
Furthermore, we improved the performance using a small amount of training data. This
additional small amount of training data significantly improves the segmentation perfor-
mance with reduced computational power and training time. In addition, we introduced
an FD estimation approach in our system, which was smoothly combined as an end-to-end
task to furnish crucial insights into the distributional characteristics of crops and weeds.
Through experiments using two open databases, we proved that our approach outperforms
the SOTA method. Additionally, we confirmed that our approach showed statistically
superior results than the second-best method in terms of the t-test and Cohen’s d-value.
Furthermore, using Grad-CAM images, we validated the capability of the proposed method
to extract essential features necessary for the accurate segmentation of crops and weeds.
Nonetheless, instances of inaccurate segmentation were observed in scenarios where crops
and weeds exhibit comparable colors, shapes, and thin regions, as depicted in Figure 18.

To address this issue, we would research the generative adversarial network-based
transformation method for the correct segmentation of small-sized and thin crops and
weeds having similar colors and shapes in heterogeneous data environments. Moreover,
we applied our method to other tasks, such as box-based detection or classification in
heterogeneous data environments. In addition, we would check the possibility of applying
our method to other application areas including crack detection for building monitoring,
medical image detection, and underwater computer vision.
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