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Abstract: Considering the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and the Ein-
stein scalar field system as an underlying gravitational model to construct fractional cosmological
models has interesting implications in both classical and quantum regimes. Regarding the former,
we just review the most fundamental approach to establishing an extended cosmological model.
We demonstrate that employing new methodologies allows us to obtain exact solutions. Despite
the corresponding standard models, we cannot use any arbitrary scalar potentials; instead, it is
determined from solving three independent fractional field equations. This article concludes with an
overview of a fractional quantum/semi-classical model that provides an inflationary scenario.
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1. Introduction

Many efforts have been undertaken to propose gravitational models so as to overcome
the shortcomings of standard cosmology, which was established using general relativity
(GR) and the standard model of particle physics. Among these are the monopoles, flatness,
horizon, and Big Bang singularity problems. To address these problems, models including
inflationary scenarios and modified gravity frameworks have been proposed [1–4].

In addition to the previously listed issues, it is worth noting that GR has encoun-
tered other shortcomings from both observational and theoretical perspectives that have
motivated the application of alternative theories to GR [5–8].

More precisely, this means that such generalized gravitational frameworks are crucial
not only for predicting the observational data and the achievements of GR but also for
overcoming the shortcomings of existing models [9,10]. Let us be more specific with
an example. The cosmological constant has been added to the Einstein–Hilbert (EH)
action to address some of the aforementioned cosmological issues. Nonetheless, this
ΛCDM model has its own challenges, the most significant of which are the cosmological
constant problem [11–15], Hubble tension problem [7,16,17], and fine-tuning and coincident
problem [18,19].

Therefore, to address the problems with the observed discrepancies and limitations
of the ΛCDM model, various generalized models have been proposed, including mod-
ified gravity models, such as MOND (Modified Newtonian Dynamics) [20,21], f (R)
gravity [22–25], entropic gravity [26,27], bimetric gravity [28–32] minimally coupled Ein-
stein scalar field system [33–35]; scalar-tensor theories [36–39], specifically, the Brans–Dicke
theory [40–42], and their corresponding noncommutative extensions [43–46]; generalized
Chaplygin gas models [47,48]; and establishing modified fundamental models from their
corresponding standard ones in higher dimensions [49–54].

The aforementioned generalized models have various drawbacks despite their many
advantages. In an ongoing effort to address unsolved issues in gravity and cosmology,
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more potent new models have been proposed in addition to addressing the challenges by
modifying the aforementioned models as far as is practical, see, for instance, [36,40,41,55,56].
Among the extended cosmological frameworks, fractional cosmology is perhaps one of
the most promising for revisiting open problems [57–60], as demonstrated, for instance,
by attempts to address problems like the Hubble tension problem [61], synchronization
problem [62], and cosmological constant problem. Still, we think these models need
additional presentation, which is why we decided to present this review article.

As we review a fractional cosmological model in both classical and quantum regimes,
it is appropriate to provide an overview of how/why we should apply fractional calculus
in both regimes. However, more explanations are presented in the pertinent references.

Fractional calculus is an area of mathematical analysis that extends the differentiation
and integration to any real or complex orders. It can be applied to the study of complex
dynamical systems and many other intricate physical phenomena. Regarding its application
to cosmology and gravity, it can be considered as extending any gravitational/cosmological
framework to non-integer orders in either the classical or quantum regime. This offers
an effective means of investigating gravitational/cosmological phenomena such as the
evolution of the universe, the dynamics of black holes, and gravitational waves.

The majority of classical cosmological models based on fractional derivatives have
taken two major approaches [57,63,64]: (i) Last-step modification: In this approach, after
obtaining the field equations of the model under consideration, ordinary derivatives
are replaced by fractional ones. (ii) First-step modification: In this approach, a fractional
derivative geometry is established first, followed by the proposal of a fractional-order
action [65]. It is believed that this method, which can be considered as one of the possible
versions of intermediate modification [57], is more fundamental than the previous one.

Regarding fractional quantum physical frameworks, let us provide the following
paragraph. It is believed that Brownian motion can be considered as the first example of a
fractional physical object, where the trajectories (paths) are self-similar, non-differentiable
curves whose fractal dimension differs from their topological dimension [66,67]. Indeed,
for the first time, by employing the fractality concept, non-fractional quantum mechanics
as a path integral over the Brownian paths was re-established by Feynman and Hibbs [68].
In developing such a formalism, a fractional path integral was then constructed to establish
space-fractional quantum mechanics (FQM) as a path integral over the paths of the Lévy
flights, characterized by the Lévy index α, where 0 < α ≤ 2, see, for instance, [67]. In
the particular case where α = 2, the Gaussian process or the process of the Brownian
motion is recovered [67]. An important manifestation of the space FQM is the space-
fractional Schrödinger equation (SE) in which the second-order spatial derivative of the
ordinary SE is replaced properly by a fractional-order derivative (concretely, the quantum
Riesz fractional derivative) [67,69]. Moreover, Naber established the time-fractional SE,
in which the first-order time derivative of the ordinary SE was replaced appropriately
by a fractional-order derivative (concretely, the Caputo fractional derivative [70]), while
the spatial derivative of the ordinary SE remained unchanged [71]. Subsequently, the
spacetime-fractional SE [72–74] was established, in which both the second-order spatial
derivative and the first-order time derivative were replaced by the corresponding fractional
derivatives as explained above. In the fractional quantum cosmological framework, we
explained how we could retrieve the fractional Wheeler–DeWitt (WDW) equation inspired
by the space-fractional SE, using the quantum Riesz fractional derivative for a quantum
gravity model [75,76].

The main focus of our work is to review fractional scalar field cosmology [63,76] briefly
and investigate a few cosmological problems. Let us be more specific. We look at the most
common cosmological model, in which only a scalar field (minimally coupled to gravity) is
added to the EH action, and the universe is described by the FLRW metric. However, rather
than the well-known standard framework, we concentrate on the corresponding lesser-
known fractional framework. We discuss such a model in both the classical and quantum
regimes. For the former, we first go over a model in which the field equations are obtained
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from an appropriate fractional action, so that the field equations in a particular case are
reduced to standard correspondence. Next, we demonstrate how a heuristic approach can
be used to analytically obtain the exact solutions to these fractional equations. We also
demonstrate that, in contrast to the standard models, the scalar potential cannot be any ad
hoc function of the scalar field. For the fractional quantum model, we obtain the WDW
equation associated with our scalar field cosmology for the non-fractional scenario. Due to
the complexities of this equation, we limit our investigation to select circumstances where
the exact solution is easily obtained. Then, after a quick discussion of fractional quantum
physics, we show how the quantum Riesz fractional derivative can be used to establish
our fractional quantum cosmological model. Once again, we look at specific cases as we
analyze the fractional WDW equation and show how the results of this fractional model
can help us understand the fascinating concepts of non-locality and memory property. In
addition to our models herein, the reader may, however, consider other intriguing models
like [58,77–80] as well as [80–84].

Finally, it is worth noting that the non-locality and memory property of fractional
calculus [76,85–88] have challenged the traditional concepts of locality and Markovian
features in classical calculus, motivating scientists to employ fractional calculus broadly in
a variety of fields, including physics, and provide a new avenue for a deeper description of
various complex systems and phenomena.

Let us conclude our introduction to fractional models here since we go over them in
more detail in the following sections at appropriate points.

The structure of the paper is as follows. A fractional cosmological model corresponding
to the Einstein scalar field system in the classical regime is reviewed in the next section.
Then, we present a few novel aspects of the model. In Section 3, we provide an overview
of a fractional quantum model for the same action that is introduced in the next section.
We also explain the fractional calculus required for our quantum model. For specific cases,
the equations for the quantum cosmology model are solved in both non-fractional and
fractional cases, revealing intriguing properties and benefits above the corresponding
standard models. Section 4 include general discussions about fractional cosmology as well
as a brief report on the findings of the presented cosmological models.

2. Classical Perspectives on the Einstein Scalar Field System with the Fractional Action

As previously noted, the modified gravity models can be established using fractional
calculus. Among the various definitions of fractional integrals and derivatives, the best
known are the Riemann–Liouville (RL) and the Caputo definitions [89–91]. To review the
fundamentals of fractional calculus, which has been applied to gravity/cosmology, see, for
instance [92–97].

It has been suggested that the following strategies could be used to modify the con-
ventional cosmological frameworks when using the fractional differential method [63].

• Last-step modification: this is the simplest approach; the partial derivatives (of the
ordinary differential equations associated with the standard cosmological model) are
replaced by fractional derivatives.

• Intermediate-step modification: in this method, instead of employing the standard La-
grangian, the effective field equations are derived from the appropriate fractional
Lagrangian, whose terms consist of fractional order derivatives.

In this section, we only consider the latter approach. Now, let us re-investigate the
fractional scalar field cosmology in the classical regime. Throughout this work, we consider
the FLRW metric

ds2 = −N2(t)dt2 + a2(t)
[

dr2

1 −Kr2 + r2(dθ2 + sin2 θdφ2)

]
, (1)
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where N(t) is the lapse function, a(t) is the scale factor, and K denotes the spatial curvature
that takes the values −1, 0, 1 corresponding to the hyperbolic, flat, and spherical three-
spaces, respectively. Moreover, we would like to work with the action

S =
∫

d4x
√
−g
[

R
16πG

− 1
2

gµν∇µϕ∇νϕ − V(ϕ)

]
, (2)

where we used the units c = 1 = h̄, and ϕ is a homogeneous scalar field minimally coupled
to the Ricci scalar R.

In the next section, by considering the action (2) as an underlying gravitational model,
we establish a fractional quantum model. However, in this section, we focus on the
classical model, for which, instead of the standard action (2), we apply the fractional
integral definition with fractional order µ. More precisely, the fractional form of (2) can be
considered as [94]

Sµ
fr =

∫ t

0
Lµ

frdτ

=
1

Γ(µ)

∫ t

0
Na3

{
3

8πG

[
ä

aN2 +
K
a2 − 1

N2

(
ȧ
a

)2
− ȧṄ

aN3

]
+

[
1

2N2 ϕ̇2 − V(ϕ)

]}
(3)

× (t − τ)µ−1dτ,

where all the functions depend on the intrinsic time τ; an overdot denotes derivative with
respect to τ and we used

R =
6

N2

[
ä
a
+

(
ȧ
a

)2
−
(

Ṅ
N

)(
ȧ
a

)
+K

(
N
a

)2
]

. (4)

Employing the Euler–Poisson equation

∂Lµ
fr

∂qi
− d

dτ

(
∂Lµ

fr
∂q̇i

)
+

d2

dτ2

(
∂Lµ

fr
∂q̈i

)
= 0, (5)

and varying the action (4) with respect to qi = {N, a, ϕ}, we obtain the equations of
motion as

H2 + (1 − µ)
(

H
t

)
= 8πG

3 ρ, (6)

2Ḣ + 3H2 + 2(1 − µ)
(

H
t

)
+ (1−µ)(2−µ)

t2 = −8πGp, (7)

ϕ̈ + 3
(

H + 1−µ
3t

)
ϕ̇ + dV(ϕ)

dϕ = 0, (8)

where we used the transformation τ − t = T → t; H ≡ ȧ/a is the Hubble parameter; and ρ
and p stand for the matter associated with the scalar field [98]:

ρ ≡ ϕ̇2

2
+ V(ϕ), (9)

p ≡ ϕ̇2

2
− V(ϕ). (10)

Moreover, we considered only the spatially flat FLRW metric, K = 0, and the gauge
N = 1.

Let us discuss a few aspects of the aforementioned equations.
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• For µ ̸= 1, contrary to the standard models, from using the definitions (9), (10), and
the fractional Klein–Gordon Equation (8), we obtain

ρ̇ + 3H(ρ + p) = (µ − 1)
(

ρ + p
t

)
̸= 0. (11)

• It is worth noting that in the standard model (where µ = 1), there are only two
independent equations. However, in this fractional model, we have three independent
equations. Namely, we cannot derive the fractional Klein–Gordon (KG) Equation (8)
from the two others, i.e., Equations (6) and (7).

Assuming V = 0 and µ ̸= 1, we can easily show that Equations (6)–(8) are inconsistent.
As a result, for this particular case, our fractional model differs greatly from the correspond-
ing standard case and the other modified cosmological models that yield interesting results
for the vanishing potential, see for instance [46].

Let us use a suitable idea for solving the three independent equations of motion (6)–(8):
instead of a, ϕ, V(ϕ), we choose H, ρ, p as the unknown variables of the model. In this
respect, we substitute ρ and p from (6) and (7) into Equation (11), which yields a differential
equation for H(t) as

Ḣ = −3H2 −
[

2(µ − 4)
t

]
H +

(µ − 2)(µ − 1)
t2 . (12)

An exact solution for (12) is

H(t) =
−2µ + 9 − Aµ f (t)

6t
, (13)

where

Aµ ≡
√

16µ2 − 72µ + 105, f (t) ≡ 1 − ctAµ

1 + ctAµ
. (14)

Substituting H from (13) into Equations (6) and (7), we obtain

ρ =

[
Aµ f (t) + 8µ − 15

][
Aµ f (t) + 2µ − 9

]
12t2 , (15)

p =

[
Aµ f (t)

]2 − 2(4µ − 9)Aµ f (t)−
(
56µ2 − 252µ + 315

)
12t2 . (16)

Moreover, relations (15) and (16) yield

ϕ̇2 =
[Aµ f (t)]2 + (µ − 3)Aµ f (t)− 5µ(4µ − 15)− 90

6t2 , (17)

V(t) =
(3µ − 7)Aµ f (t) + 12µ2 − 59µ + 75

4t2 . (18)

Now, from using relations (13), (15) and (16), we can easily obtain the main unknown
variables a, ϕ, V(ϕ).

Let us now persuade ourselves of these exact solutions and postpone a discussion
of their relevance to the evolution of the universe. In future research, the predictions of
this model will be compared more closely to those of the relevant standard models or the
corresponding more extended cosmological models, as well as to observational data.
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3. ADM Formalism and the Fractional Quantum Cosmology

To complete our analysis of the fractional scalar field cosmology, let us study a frac-
tional quantum model in this section. (It is important to note that the fractional quantum
model described here is not the quantized model of the fractional scenario studied in the
preceding section. Concretely, a different mechanism is utilized to establish it.) Due to
the complexities of the WDW equation, we confine our investigation to the semi-classical
case described in Ref. [76]. Therefore, we consider the metric (1) and the action (2) as the
background geometry and the underlying gravitational model, respectively.

To obtain the Hamiltonian, we begin with the ADM formalism. The corresponding
Wheeler–Dewitt (WDW) equation associated with the Friedmann–Lemaitre–Robertson–
Walker (FLRW) metric (1) is then constructed. Therefore, we should determine a privileged
coordinate to define the velocities. It is almost obvious that slicing the spacetime manifold
M into three-dimensional non-intersecting hypersurfaces with a positive definite metric
on it, (Σ, γ), is a method for separating the coordinates. The metric on M induces a metric
on Σ that is denoted by γij. As a result, under this formalism, let us rewrite the FLRW
metric as

ds2 = gµνdxµdxν = −N2(t)dt2 + γij(t)dxidxj. (19)

In Equation (19), γij = a2(t)hij, where hij is independent of t. Let us assume that
the manifold M is a spatially compact and globally hyperbolic Lorentzian manifold. The
volume element in terms of the induced metric on the hypersurface Σ is given by√

−g d4x = Na3
√

h d3x dt. (20)

Moreover, the volume of the spacelike hypersurfaces is

VK ≡
∫

d3x
√

h. (21)

Furthermore, the scalar curvature and the extrinsic curvature of the hypersurface (Σ, γ) are

Kij = − 1
N

γ̇ij = − aȧ
N

hij, 3R = −6K
a2 , (22)

where a dot denotes the derivative with respect to t. Using the above quantities, the scalar
curvature of the manifold M has the following form

R = 3R + KijKij − K2 + 2(ηλην
;ν − ηnηλ

;ν);λ, (23)

where “;” denotes the covariant derivative on the manifold M and ηλ is the component of
the normal vector of the hypersurface Σ satisfying the following relations:

gµνXµην = 0, gµνηµην = −1, (24)

in which X is an arbitrary vector on the hypersurface Σ. Now, considering the aforemen-
tioned relations between the geometrical objects on the manifold M and the hyperspace
Σ, we can express the action of our model in the ADM formalism. In this section, we
reconsider the action (2), in which the scalar field is assumed to be a homogeneous field,
i.e., it depends solely on t. Using (2), (4) and (21), the ADM action is given by

SADM =
∫

dt(La + Lϕ) =
∫

dtVKNa3

[
3

8πG

(
K
a2 − 1

N2

(
ȧ
a

)2
)
+

(
1

2N2 ϕ̇2 − V(ϕ)

)]
, (25)

where we eliminated the total derivative term.
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The Lagrangian has no Ṅ dependence, as observed. Therefore, we consider it a
non-dynamical field. Concretely, we have

δSADM

δṄ
= 0. (26)

The canonical conjugate momenta associated with the dynamical fields a and ϕ are

Πa ≡
∂La

∂ȧ
= − 3VK

4πG
aȧ
N

, Πϕ ≡
∂Lϕ

∂ϕ̇
=

a3VK
N

ϕ̇. (27)

Using the Legendre transform, we can easily obtain the Hamiltonian:

HADM = Πa ȧ + Πϕϕ̇ − L. (28)

Subsequently, substituting the conjugate momenta into the above Hamiltonian, we finally
obtain the canonical ADM Hamiltonian:

HADM = N
[
− 2πG

3VKa
Π2

a +
1
VK

Π2
ϕ

2a3 − 3KVK
8πG

a + VKa3V(ϕ)

]
. (29)

Using (26), we obtain the super-Hamiltonian constrain as

H = − 2πG
3VKa

Π2
a +

1
VK

Π2
ϕ

2a3 − 3KVK
8πG

a + VKa3V(ϕ) = 0. (30)

In the following subsections, we analyze the implications of our model for both the standard
and the fractional quantum cosmological model.

3.1. Wheeler–DeWitt Equation in Slow-Roll Regime

There are two geometrical structures that can be used to quantize gravity: the diffeo-
morphism invariant four-geometry of spacetime and the infinite-dimensional symplectic
geometry structure (non-degenerate, closed smooth structure) of the space of metrics and
momentum on a time-constant slice [99]. One challenge in the quantization of gravity is
the method of applying the constraint equations in gravity theory. In general, there are two
approaches: the first is to quantize the system and then apply constraints on the wave func-
tions, which is known as the Dirac quantization, and the second is the reduced phase-space
quantization, in which the phase space is obtained by eliminating the constraint equations
from the classical equations and then quantizing that space. Before we quantize our model,
let us first describe briefly the concept of the minisuperspace. The purpose of defining
minisuperspace is to use geometrodynamic symmetries to reduce the dynamical system to
a finite dimensional system. Given our model’s cosmological symmetry, we can introduce
the coordinates of the minisuperspace as qA = (a(t), ϕ(t, x)), A = 1, 2, such that the metric
of this space is defined as

fAB =

[
−a 0
0 4πG

3 a3

]
, (31)

where the signature of the metric is (−,+) (for an N-dimensional minisuperspace metric,
the signature is (−,+,+, . . .)). The action (25) in this space is written as

S =
∫

dtVKN
[

3
8πG

fAB q̇A q̇B − U(qA)

]
, (32)

where
U(qA) = − 3K

8πG
q1 − (q1)3V(q2), (33)
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which is employed to indicate the constraint Equation (30) in terms of the minisuper-
space coordinate:

2πG
3VK

f ABΠAΠB + VKU(qA) = 0. (34)

Now, let us quantize our model by defining the corresponding conjugate momenta as

Π2
a → −a−p ∂

∂a
(ap ∂

∂a
), Π2

ϕ → − ∂2

∂ϕ2 , (35)

where p is the ordering parameter [100] obeying the canonical commutator relations:

[a(t), Πa] = i, [ϕ(x, t), Πϕ(y, t)] = iδ3(x − y). (36)

Consequently, the Wheeler–DeWitt (WDW) equation associated with our cosmological
model is given by

∂2Ψ
∂a2 +

p
a

∂Ψ
∂a

−
3m2

P
4πa2

∂2Ψ
∂ϕ2 −

9V2
Km4

P
16π2 a2

[
K− 8π

3m2
P

a2V(ϕ)

]
Ψ = 0, (37)

where mP = 1/
√

G is the Planck mass. One can easily show that this equation for p = 1 in
terms of the minisuperspace coordinate can be written as{

1
2
□+

3V2
Km2

p

2π
U(qA)

}
Ψ(qA) = 0. (38)

In Equation (38), □ = 1√
− f

∂A(
√
− f f AB∂B) is the d’Alembertian operator. The remainder

of this subsection is devoted to solving the WDW Equation (38) in a specific but crucial
case. Our goal in obtaining such a solution is to generate results that may be compared
to the impacts of the corresponding fractional case, which are discussed in the following
subsection. Let us be more precise. In what follows, we investigate a slow-roll inflationary
scenario associated with the early stages of the universe, which is established based on
(38). Moreover, we restrict ourselves to the following specific conditions. (i) It should be
emphasized that during the slow-roll regime, the inflation potential is a slowly varying
function such that we can consider it as a constant. Such a constant potential can be assigned
to the cosmological constant as Λ ≡ (8πV0)/m2

P [101]. (ii) During the slow-roll regime, we
can ignore the wave function’s ϕ-dependence. (iii) We consider only the compact, spatially
flat universe, i.e., we set K = 0. (iv) We analyze the simplified semi-classical model, i.e.,
we set p = 0. The main reason for the aforementioned simplifications is that, as we see
in the following subsection, analyzing the corresponding fractional WDW equation is
extremely complicated.

Considering conditions (i)–(iv), the WDW Equation (37) reduces to

d2

da2 Ψ(a) +
9V2

0 m4
P

16π2L2
0

a4Ψ(a) = 0, (39)

where L0 ≡
√

3/Λ. A solution for Equation (39) is

Ψ(a) =
√

a

[
C1 J 1

6

(
V0m2

P
4πL0

a3

)
+ C2Y1

6

(
V0m2

P
4πL0

a3

)]
, (40)

where C1 and C2 are constants. Moreover, J 1
6

and Y1
6

denote the Bessel functions (of order
one-sixth) of the first and second kind, respectively.

Considering the sufficiently large value of the scale factor at the present time, the
asymptotic behavior of the wave function can help us to retrieve a suitable solution without
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assigning any specific initial conditions for the universe. The asymptotic forms of Bessel
functions for a large argument can be written as [102]

Jν(z) ≈
√

2
πz

cos
(

z − νπ

2
− π

4

)
, Yν(z) ≈

√
2

πz
sin
(

z − νπ

2
− π

4

)
. (41)

In order to determine C1 and C1, it is necessary to specify the initial conditions. However,
choosing valid initial conditions is a complicated procedure, and we do not have enough
information about them. Therefore, let us assume C1 = C and C2 = −iC (where C is a
positive real number), which may make a wave function compatible with physical results.

Therefore, assuming z ≡ V0m2
P

4πL0
a3 ≫ 1, ν ≡ 1/6 and employing relation (41), the wave

function can be written as

Ψ(a) = C
√

8L0

V0m2
P

exp

[
−i

(
V0m2

P
4πL0

a3 − π

3

)]
. (42)

The de Broglie–Bohm interpretation of a quantum mechanical system in quantum cos-
mology, which is based on the Hamilton–Jacobi formalism, can be considered by assuming
the ansatz

Ψ(a) = exp(−iS), (43)

for the wave function, where S is a function of the scale factor. Substituting Ψ(a) from (43)
into the WDW Equation (39) yields

−
∣∣∣dS

da

∣∣∣2 + 9V2
0 m4

P
16π2L2

0
a4 − i

d2S
da2 = 0. (44)

Assuming V0a3

4πl2
P L0

| ≫ 1, which is equivalent to the WKB condition, d2S/da2 ≪ (dS/da)2,

we obtain the Hamilton–Jacobi equation in classical cosmology:

−
∣∣∣dS

da

∣∣∣2 + 9V2
0 m4

P
16π2L2

0
a4 = 0. (45)

The WKB approximation in quantum cosmology is a semi-classical alternative to consider-
ing the wave function. This approach can give a technique to avoid ambiguities caused by
operator-ordering concerns in the Wheeler–DeWitt equation and the problems with the
path integral formulation of the wave function. Solving the Equation (45) gives

S =
V0m2

P
4πL0

a3 + C3, (46)

where C3 is an integration constant. Regarding the classical Hamilton–Jacobi theory, the
conjugate momentum of the scale factor is given by

Πa = −dS/da = −
3V0m2

P
4πL0

a2. (47)

Considering relations (27) and (47), we can easily obtain ȧ/a = 1/L or a(t) = a(t0) exp((t−
t0)/L0). During the inflationary era, where ti ≤ t ≤ t f , we conclude

a(t f )

a(ti)
= exp

( t f − ti

L0

)
. (48)

This equation shows the expansion rate during the de Sitter expansion. One can easily
see from the above relation that the number of e-folds is Ne = ln[a(t f )/a(ti)] =

t f −ti
L0

.
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The minimum number of e-folds to solve the Big Bang problems is Ne ≃ 60. Moreover,
assuming a small time interval for the inflation period such as 108tP, we obtain L0 ≃ 107lp.

3.2. Fractional Quantum Cosmology

In this subsection, we use the generalized ADM Hamiltonian and the fractional
calculus to establish the corresponding fractional quantum cosmology. Therefore, in what
follows, let us present a concise description of the fundamental core of fractional quantum
mechanics as well as fractional quantum cosmology.

Laskin was the first to apply fractional derivatives and integrals in quantum mechanics.
In the space-fractional quantum mechanics he proposed, it was demonstrated that the
fractional Hamiltonian was Hermitian and parity-invariant, and he introduced a novel
fractional path integral based on the Lévy flight. Using the space-fractional SE, Laskin
calculated the energy levels of the harmonic oscillator and the hydrogen atom [69,103].
Furthermore, Naber developed the time-fractional Schrödinger equation (SE) in another
paper [71]; also see [104]. This included substituting the Caputo fractional derivative for
the first-order time derivative in the standard SE. Dong and Xu [73] and Wang and Xu [72]
also formulated the spacetime-fractional SE in two distinct works. In what follows, we limit
our discussion to the space-fractional SE.

The ordinary one-dimensional SE associated with the standard non-relativistic quan-
tum physics is given by

ih̄
∂Ψ(x, t)

∂t
= Hψ(x, t), (49)

where (in this section, the hat on the quantum mechanical operators is dropped)

H ≡ p2

2m
+ V(x), (50)

is the Hamilton operator in quantum mechanics. In Equations (49) and (50), m is the mass
of the particle; x and p = −iℏ∇ ≡ −iℏ ∂

∂x are the quantum mechanical operators; and V(x)
and Ψ(x, t) stand for the potential function and the wave function, respectively.

Applying the same method established by Feynman and Hibbs, but from generalizing
the Feynman path integral to the Lévy one (characterized by the Lévy index α, where
0 < α ≤ 2; letting α = 2, the Gaussian process is recovered, namely, the Lévy motion is
replaced by the Brownian motion), the space-fractional SE was obtained [67,69,103,105]:

ih̄
∂Ψ(x, t)

∂t
= Dα(−h̄2∆)α/2Ψ(x, t) + V(x)ψ(x, t) ≡ HαΨ(x, t), (51)

where Hα is the fractional Hamiltonian operator, ∆ ≡ ∇.∇ denotes the Laplacian, Dα is a
coefficient with dimension [Dα] = erg1−αcmαsec−α, and (−h̄2∆)α/2 stands for the fractional
(quantum) Riesz derivative [90] in one dimension:

(−h̄2∆)α/2ψ(x, t) =
1

(2πh̄)

∫ ∞

−∞
dpei px

h̄ |p|α
∫ ∞

−∞
dxe−i px

h̄ Ψ(x, t). (52)

Another equivalent expression for the fractional Laplacian is:

−
(
− d2

da2

) α
2

Ψ(a) = c1,α

∫ ∞

0

Ψ(a − v)− 2Ψ(a) + Ψ(a + v)
vα+1 dv, (53)

where c1,α = α2α−1
√

π

Γ((1+α)/2)
Γ((2−α)/2) [106].

It is worth noting that the fractional Laplacian reveals the effects of a non-local process
on the conservation law, which is impacted by both local conditions and the general state
of the considered field of the model at a certain point in time; for a thorough analysis, see
Ref. [106].
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In the particular case where α = 2 and Dα = 1/(2m), Equation (51) reduces to the
standard SE.

From the standpoint of the phase-space path integral, it is important to present an
outline of fractional quantum mechanics. The fractional SE for the wave function may be
obtained from the path integral in the Gaussian case. This formalism, which represents the
development of the fractional quantum mechanical system, modifies the standard SE. The
fractional functional measure in the phase-space representation is [107]:∫ xb

xa
Dx(τ)

∫
Dp(τ) = (54)

limN→∞
∫ +∞
−∞ dx1 . . . dxN−1

1
(2πh̄)N

∫ +∞
−∞ dp1 . . . dpN exp

(
i p1(x1−xa)

h̄ − i Dα |p1|αϵ
h̄

)
. . . ×

exp
(

i p1(xb−xN−1)
h̄ − i Dα |pN |αϵ

h̄

)
.

The fractional path integral in the continuum limit N → ∞ and ϵ → 0 has the follow-
ing form

KL(xb, tb|xa, ta) =
∫ xb

xa
Dx(τ)

∫
Dp(τ) exp

(
i
h̄

∫ tb

ta
dτ[p(τ)ẋ(τ)− Hα]

)
, (55)

where Hα is the fractional Hamiltonian given by Equation (51). Using the above relations,
we can find the evolution of the fractional quantum mechanical system as follows:

Ψ f (xb, tb) =
∫ +∞

−∞
dxaKL(xb, tb|xa, ta)Ψi(xa, ta), (56)

where Ψi and Ψ f are the wave functions at two initial (ta) and late times (tb), respectively.
In order to retrieve the fractional SE, the following processes should be conducted: (i) letting
tb = ta + ϵ, and expanding the above integral in terms of ϵ, up to the linear order; (ii) using
the standard canonical quantization procedure, i.e., (r, p) → (r,−ih̄∇), H → ih̄ ∂

∂t , and
then generalizing it to the Riesz fractional derivative.

In what follows, let us present some features of fractional quantum mechanics [107].

• It has been shown that the fractional Hamiltonian Hα is the Hermitian or self-adjoint
operator (similar to that of standard quantum mechanics).

• For a state of a closed fractional ordinary quantum mechanical system that has a parity,
it is straightforward to show that the associated parity is conserved.

• It is feasible to generalize the fundamental equations of the probability, current density
vector, and the velocity vector associated with standard quantum mechanics to retrieve
the corresponding ones for fractional ordinary quantum mechanics.

To study the applications of the space-fractional SE, see [26,27]. It is worth mentioning
that both the standard and the space-fractional SE equations obey the Markovian evolution
law. To describe the non-Markovian evolution in quantum physics, the time-fractional SE
was formulated [20].

Using the framework described in this subsection as well as the Hamiltonian formalism
derived in the previous subsection, we obtain the fractional WDW equation associated
with our cosmological model and attempt to solve it at the semi-classical level. From the
WDW equation, one can find the corresponding wave function and consider the asymptotic
behavior of this function.

Let us now present an overview of our fractional quantum cosmological model. The
fractional ADM Hamiltonian is obtained by employing the transformation

2πG
3VK

f ABΠAΠB → 2π

3VKmα
p

(
f ABΠAΠB

) α
2 (57)
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into Equation (34), which provides

Hα
ADM =

2π

3VKmα
p

(
f ABΠAΠB

) α
2
+ VKU(qA) = 0. (58)

Quantizing the fields and using the constraint equation lead to the fractional WDW equa-
tion [99]: {

m2−α
P
2

(−□)
α
2 −

3V2
Km2

p

2π
U(qA)

}
Ψ(qA) = 0, (59)

where we have used
(−□)α/2Ψ(qA) = F−1(|p|α(FΨ(p)). (60)

In Equation (60), |p| =
√

ΠAΠA and F denotes a Fourier transformation. We discussed a
slow-roll inflationary scenario in the preceding subsection. Applying the same assumption
to the fractional model in (59), we obtain the simplified WDW equation as

−
(
− d2

da2

) α
2

Ψ(a) +
9V2

0 mα+2
P

16π2L2 a4Ψ(a) = 0. (61)

It should be noted that in the case where α = 2, Equation (61) reduces to its standard
counterpart (39). To solve the fractional WDW equation in the semi-classical limit, we
employ the exponential form of the wave function, i.e., (43), in Equation (61), then compare
the equation with (53), expand Ψ(a ± v) in a Taylor series about a, and finally derive the
fractional WDW equation using the WKB approximation:

−
(
− d2

da2

) α
2

Ψ(a) = c1,αe−iS(a)
∫ ∞

0

sin2( vS′
2 )

vα+1 dv = |S′|αΨ(a), (62)

where S′ ≡ dS/da. The semi-classical solution of this equation up to a pre-exponential
factor is:

Ψ(a) ∝ exp

i

3V0m
α
2 +1
P

4πL

 2
α

a
4+α

α

. (63)

Employing the fractional Hamiltonian constraint (58) and the assumptions of our model gives

− 2π

3V0mα
Pa

|Πa|α +
3V0m2

P
8πL2 a3 = 0, (64)

H(α)
ADM = N

[
− 2π

3V0mα
Pa

|Πa|α +
3V0m2

P
8πL2 a3

]
. (65)

From the above relations, one can easily retrieve Hamilton’s equations:

ȧ =
∂H(α)

ADM
∂Πa

, Π̇a = −
∂H(α)

ADM
∂a

. (66)

Finally, using the Hamiltonian constraint (64) and letting N = 1, we find the scale factor:

a(t) =
[

2(D − 2)
(D − 1)

] 1
2(D−2)

(
4πL

3V0mP

) 1
2
(

t
L

) 1
2(D−2)

, 2 < D < 3, (67)

where D ≡ 2/α + 1 [76].
Let us now describe the evolution of the universe according to relation (67), which is

obtained by employing a simple fractional quantum cosmological scenario.
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A scalar field with an appropriate potential and dominating the early energy density
of the universe is typically employed to achieve inflation, causing the scale factor of the
universe to expand rapidly. In the original inflation theories, this expansion is exponential
and resembles the de Sitter space as the scalar field progressively rolls down to its global
minimum. However, in our fractional modification of the same model, we obtain the
deceleration parameter as

q = − ä/a
H2 = 2D − 5, (68)

where we used (67). The early universe accelerates if 2 < D < 2.5, as predicted by
Equation (68), and for these values of D, we have a power-law inflationary model. As seen,
the Lévy’s fractional parameter α plays a crucial role in this model.

Assuming that the inflationary epoch occurred during a time interval t f − ti =

10−37 s = 108tP after Planck’s time, we obtain the number of e-folds as

Ne = ln

(
a(t f )

a(ti)

)
=

1
2(D − 2)

ln
( t f

ti

)
=

ln(10)
2(D − 2)

≃ 1
D − 2

, (69)

where we used the fractional form of the scale factor, i.e., Equation (67). As an example, if
D = 2.019, we obtain Ne ≃ 60, which is the smallest number of e-folds required to solve
the standard problems of the Big Bang cosmology.

4. Conclusions and Discussion

In this short review article, we studied the application of fractional calculus in classical
and quantum cosmology. More concretely, considering the Einstein scalar field system
and the FLRW metric, we established fractional frameworks to study the corresponding
cosmological problems in classical and quantum regimes.

We presented the necessary foundations of fractional calculus for both regimes and
discussed potential fractional quantum physics and fractional cosmological frameworks.
As was noted in the preceding sections, the classical cosmological models can be gener-
alized to two different methods when employing fractional calculus. In addition, three
approaches to extend standard quantum physics were presented. We additionally provided
a brief explanation of the derivation of the fractional SE, and how an intriguing fractional
quantum cosmology could be established inspired by fractional quantum mechanics. In
summary, this review article aimed to draw attention to the fascinating fractional ap-
proaches found in quantum physics, gravity, and cosmology. To achieve this, it basically
outlined relevant interesting models and introduced books, articles, and their authors in
order to maximize attention.

Let us provide a bit more details now. In the classical regime, we reviewed a cos-
mological model that considered the spatially flat FLRW metric and merely a scalar field
minimally coupled to the Ricci scalar, with no ordinary matter included. We then concen-
trated on a fractional modification approach to obtain the fractional field equations. It is
critical to note that, unlike the corresponding conventional model, this model had three
independent equations for three unknowns a, ϕ, and V(ϕ). It should be noted that in the
standard model, there are only two independent equations to which the scalar potential is
considered through ad hoc assumptions or the consideration of specific conditions. How-
ever, in our fractional model, the potential was also an independent variable that could
not be assumed to be any arbitrary function but was obtained exclusively by solving the
field equations, requiring that all three equations be consistent. Assuming, for instance,
that the potential was zero, we demonstrated that the fractional equations became inconsis-
tent, whilst intriguing solutions were obtained in the corresponding standard model or its
generalized versions (see, for instance, [46]). Subsequently, we solved the field equations
in the general case without taking into account any limiting conditions, which was made
feasible by a novel approach: we assumed that {H, ρ, p} were new unknowns in place of
the previously specified unknowns, which allowed us to find exact analytical solutions.
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To wrap up our study of the fractional scalar field cosmology, we attempted to present
a coherent description of it in the quantum regime. Let us be more precise. Considering
the FLRW metric together with the Einstein scalar field system and using the Hamiltonian
approach, we obtained the WDW equation in a completely general form. However, because
obtaining exact solutions analytically was unfeasible, we limited our analysis to a specific
but most significant case. First, we obtained the solutions for the standard WDW equation
by considering the WKB condition, slow-roll regime, and p = 0, where p was the ordering
parameter. Our findings showed that the scale factor evolved exponentially in early periods,
coinciding with the de Sitter expansion. Then, we showed that under certain conditions,
the problems with the standard cosmology could be solved in that model.

After that, we gave a summary of a fractional quantum cosmological model. More pre-
cisely, we demonstrated how to apply the same procedure that yielded the space-fractional
SE to construct the fractional WDW equation. To solve this fractional WDW equation, we
had to apply the aforementioned assumptions to the corresponding differential equation
once more. We found that the scale factor behaved significantly differently than in the
standard case. Concretely, we showed that the scale factor was a power-law function of time
that depended on the volume of the compact three-space and the Lévy fractional parameter.
In [76], it was stressed that such interesting results, along with the distinctive features of
fractional calculus in cosmology, their interpretation, and the reasons behind their basic
distinctions from classical models, were all highly debatable. The models reviewed in this
article can considerably increase our motivation to propose new fractional models, which
may hold the key to re-examining outstanding problems in cosmology.

Finally, it is worth noting a few important points:

• As has been highlighted in the preceding sections, this study is merely a brief review
article on the topic, and our goal in writing this article was to provide a review of the
few prior studies in a coherent and abstract manner as well as to add a few comments
to emphasize the importance of fractional cosmology established by considering the
most commonly used Einstein scalar field system.

• It should be noted that the scenario reviewed in Section 3.2 is not the corresponding
quantized scenario of the classical one reviewed in Section 2 (that is why two distinct
fractional parameters were utilized).

• We should point out that, in this article, we only looked at the specific fractional
cosmological models in the particular cases especially for the quantum regime. More
precisely, the latter can be investigated for more extended cosmological models such
as those with either general scalar potentials, non-vanishing spatial curvature, or non-
vanishing factor-ordering parameter, see, for instance [108,109] and references therein.

• Our models can be extended to more generalized models by replacing either the FLRW
metric or the Einstein scalar field setting by other metrics or more extended underlying
gravitational models. Concretely, by considering each of the standard cosmological
models, it is possible to establish the corresponding fractional model and compare
the obtained results not only to those of the standard models but also to determine
whether such results can accurately predict the reported recent observational data. In
any case, fractional cosmology is a relatively new and powerful paradigm that has yet
to be applied to outstanding problems in cosmology. Our future efforts will include
producing other interesting models within this scope.
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