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Abstract: This work investigates novel fractional Hadamard integral inequalities by utilizing extended
convex functions and generalized Riemann-Liouville operators. By carefully using extended integral
formulations, we not only find novel inequalities but also improve the accuracy of error bounds
related to fractional Hadamard integrals. Our study broadens the applicability of these inequalities
and shows that they are useful for a variety of convexity cases. Our results contribute to the
advancement of mathematical analysis and provide useful information for theoretical comprehension
as well as practical applications across several scientific directions.
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1. Introduction

Fractional calculus is a fascinating and burgeoning branch of mathematics that ex-
tends the concept of differentiation and integration to non-integer orders. Unlike classical
calculus, which deals exclusively with integer-order differentials and integrals, fractional
calculus introduces the notion of fractional derivatives and integrals, enabling a more
nuanced and versatile approach to understanding complex phenomena in various fields of
science and engineering [1,2]. Over the years, fractional calculus has gained prominence in
diverse applications, ranging from physics and engineering to biology, finance, and control
theory. Researchers have recognized its utility in modeling and analyzing complex systems
characterized by memory, non-locality, and anomalous behavior. For instance, fractional
calculus has been instrumental in describing the behavior of viscoelastic materials, the
diffusion of contaminants in porous media, and the dynamics of financial markets [3-5].

A specialised area of mathematical analysis known as fractional integral inequalities
provides a distinctive viewpoint on how convex functions and fractional calculus interact.
These inequalities are crucial to many disciplines, including physics, control theory, and
fractional differential equations. Caputo fractional derivative, which extends the concept
of differentiation to non-integer orders, has been a focal point in the study of fractional
integral inequalities involving convex functions. Research by Baleanu et al. [5] established
conditions under which convexity is preserved under Caputo fractional differentiation,
providing a fundamental link between fractional calculus and convex analysis. Scholars like
Agarwal and Ahmad [6] have investigated fractional integral inequalities connected with
convex functions. These inequalities are instrumental in establishing bounds and estimates
for solutions of fractional differential equations, with implications in the analysis of complex
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systems. Fractional Hardy-type inequalities involving convex functions have been explored
in the context of fractional Sobolev spaces. These inequalities, as demonstrated by Wang
and Lou [7], provide essential tools for understanding the behavior of functions in these
spaces and have applications in the study of fractional partial differential equations.

For the purpose of creating a variety of integral inequalities that primarily rely on
the Hermite-Hadamard inequality, Sarikaya et al. [8] used concepts from fractional calcu-
lus. This method has given research a new direction. After that, many researchers have
extensively applied the concepts of fractional calculus and obtained various fresh and
inventive modifications of inequalities via convex functions and their generalisations, as
seen in [9-12].

Our principal objective is to combining the generalized Riemann-Liouville operators
with the extended convex functions, aiming to establish novel fractional Hadamard integral
inequalities. In addition, we endeavor to furnish enhanced understanding through the
provision of error bounds for a diverse range of fractional Hadamard integral inequalities,
facilitated by the application of specific integral fractional formulas. Through meticulous
analysis, our findings reveal numerous distinct scenarios that contains various forms of
convexity. These derived insights illuminate the intricate interplay between fractional
calculus and convex functions, offering valuable tools for mathematical analysis and
applications across a multitude of disciplines.

This paper is organized as follows: Section 2 offers key terms and findings necessary
for understanding the study’s main outcomes. Section 3 contains new fractional Hadamard
integral inequalities that will be investigated by combining the generalized Riemann-Liouville
operators with convex functions. Section 4 gives the error bounds for the investigated
fractional Hadamard integral inequalities. Section 5 includes some conclusions.

2. Pertinent Terminology and Discoveries

Convex functions are fundamental in optimization, economics, and machine learning,
offering a unique global minimum and smooth behavior [12-15]. Recently, many authors
formulated Hermite-Hadamard inequalities by employing the theory of convex functions
in conjunction with Riemann-Liouville fractional integrals [16-19].

Before moving on to the study’s main findings, it would be appropriate to explain
some of the pertinent terminology and discoveries.

Definition 1 ([20]). A function Z : [g,h] — R is regarded to be convex if it meets the
afterwards inequality.

Z(poy + (1 —p)or) < pZ(o1) + (1 —p)Z(02), p € [0,1], and 1,05 € (g, h]. (1)
If Z’s additive inverse is convex, then Z is deemed to have a concave form.

The following Hermite-Hadamard inequality shows a tangible geometric illustration
of a convex function.

Theorem 1 ([21]). We obtain the succeeding inequality if Z : [g, h] — R is a convex function.

z(g;h) < hig/:Z(u)du < 220 o)

if Z is concave, the inequality (2) can be satisfied and oriented in the opposite direction.

Many researchers have looked into the characteristics and applications of the following
types of convex functions.

Definition 2 ([20]). A function Z : [g,h] — R is called x-convex if it meets the afterwards inequality.

Z(poy + x(1 = p)on) < pZ(o1) + x(1 —p)Z(02), p,x €[0,1], and oy, 07 € [g,h].  (3)
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Definition 3 ([20]). A function Z : [g,h] — R is said to be (v, x)-convex if it meets the
following inequality.

Z(poy + x(1 —p)oz) < p"Z(o1) + x(1 —p")Z(02), p,x,v € [0,1], and 1,02 € [g,h]. (4)

Below represent a few core concepts and rules for fractional calculus which will be
utilised in the present study.

Definition 4 ([22]). Let Z € L'[g, h] with ¢ < h. The Riemann-Liouville sc-order integrals
AZ Z and N Z are postulated as

A%, Z(0) = r(lz) / oWz dn, o> g, )
h
N 200) = g [ ey 2 d, o< ©)

respectively. Here, T'(3¢) = [5° ' exp(p)dy, and Ag+ Z(o)=A)_Z(0) =Z(0).

The comprehensive fractional integrals below were offered by Jarad et al. [23]. Addition-
ally, they established some characteristics and correlations to a variety of fractional integrals.

Definition 5 ([23]). Let ¢ > 0and § € (0,1]. For Z € L'[g, h], the generalized fractional
Riemann-Liouville integrals ”Ag,Z and * NS _Z are defined by

o -1
A, 7(0) = - /g((cfu)‘s(ﬂg)&) (Z(u) i oc>9 )

I'(5) 6 p—gNn-
" s 1 (=0 — (h— )P\ Z(p)
%AhZ(J):r(%)/U< _ ) G e o<l ®
respectively.

Sarikaya et al. [8] start with the next fascinating Hermite-Hadamard inequality, which
is addressed using Riemann-Liouville integrals (5) and (6).

Theorem 2. Assume Z : [g,h] — R is convex with Z € Lyi[g,h| and Z > 0. Then for » > 0,
we have

2(55) < DU anzin + a7 2(s)] ©)

2 2(h —
< Zorzm

&)

Furthermore, Sarikaya and Yldrm [18] present the afterwards Hermite-Hadamard sort
inequality for the operators (5) and (6).

Theorem 3. Assume Z : [g,h] — R is convex with Z € Ly[g,h], Z > 0and § € (0,1]. Then the
next fractional inequalities are correct:

g+h 27T (6 +1) | 5
(7)< S )
Z(h) +2(5)

- 2

LZ(h)+ A n-2(8)
()

2
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Set et al. [19] put forward a noteworthy Hermite-Hadamard inequality utilizing the
fractional integrals in (7) and (8). This inequality is as follows:

Theorem 4. Consider Z to be a convex positive function from (g, h] to R with Z € Lq[g, h] and
0 < p < 0. Then the fractional integrals ”Ag L and A0 satisfy the following inequality.

E52) Bt e )

Z(8) +Z(h)
I

IN

(10)

where Re() > 0and 6 € [0,1].

The Hermite-Hadamard inequality of a convex and positive function containing the
fractional operators (7) and (8) was also expressed by Gozpinar [24] as follows:

Theorem 5. Assume Z is a convex and positive function from (g, h] to R with Z € Ly[g, h]. Then
the fractional integrals ”Ag 4 and %Ai, fulfill the next inequality.

Z(g) +Z(h)

. (11)

2

2

g+h 27071 (e 4+ 1)6% |, .
Z< 2 ) S (h _g)%‘g A(g+h>+z(h) + A(gHt)iZ(g) S

3. Main Outcomes

This section contains main results of our study which are implemented by using the
generalized Riemann-Liouville operators and the (v, x)-convex functions.

By using the (v, x)-convex functions and generalised types of Riemann-Liouville
operators, the following result provides a novel interpretation of fractional Hadamard
integral inequalities.

Theorem 6. Let Z be a positive mapping from [g, h] into R with0 < ¢ < hand Z € Ly[g, h). If
Z is (v, x)-convex mapping on (g, xh] with v, x € (0,1], then the following integral inequality is
valid for the fractional operators ”Ag oy and %Ai,-

g+Xh 5%r(%+1) P »#6+1 v PN 8
z( 5 ) < W{Aﬁz(xh)—l—x 2r-1) Ahz(Xﬂ (12)

6% [z(g) — X220 - 1)2(%)}](1;,5, %)

<
< =
N x| Z) (1 + 26720 =2)] (0,6, 2)) + x(2° = 2)Z (% )|
2v '
where, 1
—(1—y)o\ "~
o= [ (U s )

Proof. From the (v, x)-convexity of Z, we have:
¢+ Xy . 1 1
2(£E2) = z(g0+20-3v)
1 1
< o Z(9) + (1~ 25)Z(9)

Z(¢) +x<§’; —DZW) e (g ] (14)

IN
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If¢p=gu+x(1—pu)hand p = hu+ (1 — y)%, then inequality (14) takes the form:
2vz(g+2)(h> < Z(gu+x(1— p)h) + x(2° 1)Z(hy +(1- y)i). (15)

x—1
After multiplying the two sides of (15) with (M) (1 — u)°~! and integrating
across the interval [0,1], we obtain:

< [zt x - (P20 g

+ x(2"-1) /O1 Z(W +(1- u)i) (1_(15_}1)5)%_1(1 — )’ tdp.

By transforming the integration variables by parts, we get:

1

20 (g++xh 1 W (xh—8)° —(9p—8)°1" " Z(¢)
() = (xhg)”‘sl/g [ 5 | gt 47
ot [P [ =9z
+ PR 1)/”[ _ =il

Based on Equations (7) and (8), inequality (17) is written as:

g+xh\ _ FT(x+1)
Z< 2 )_2”()ch—g)’“S

Once again, the next inequality holds for any (v, x)-convex function.

{%A§+Z(Xh) + x0T 2v —1)7A 7 <i>} . (18)

Z(gp+ x(1— i) + x(2° —1)Z (Iw - mi) 19)

< 1Z(g) 2@ - DZ( L) |1t + a1+ @ - 2pt)z(h) + 220 - )Z( ).
X X

s\ #—1
Multiplying each side of (19) by (17(1{;” i ) (1 — 1)’ and integrating throughout
from y = 0 to u = 1yields:

/01 Z(gu+x(1—p)h) (1_(15_]4)0) s (20)
v [ 20— ) (U g
26620002 £) o) 020 [ (200 1 g

+ XZ()(2° = 2)](0,6,3) + x*(2° ~1)Z (;) /o1 (M)HU =Wty

IN
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where, [ (v, J, ) is defined by (13). Through a change in variables, we get
h oV —(p— o)1t

L[ s ez, o

(xh —g)* | Js 0 (¢—3)

B [(h—28) — (h—y)° ]

+ X%JJrl (zv _ 1) / ( X> ( lp) Z(l/))1,5 dl[J
g/x 0 (h =)

IN

26 -2 - 02( 5 ) 10,60 + Az

2(nv _
b Az -2+ EE (L),

Inequality (21) may be expressed as follows when Equations (7) and (8) are used.

Z‘ig}(f_ ;)13{5 [%Ag LZ(xh) + T2 = 1)7 Ay _Z (i)] (22)
#0%(2(8) = 2220 = 1)Z (%) |1 (0,8, %)
< 5
L HZ) 4220 20,0, 2)]) + 22 1z (%)
2v ’

According to (18) and (22), inequality (12) can be obtained. O

Corollary 1. If we set v = 1 in (12), we are able to derive the following inequality for functions
that are x-convex.

(52) = SR o
R

Corollary 2. If we select x = 1, we get the subsequent inequality for v-convex functions.

z(g;h) < W [”A@Z(h) + (20— 1)”A5_Z(g)} (24)
o Z(g)(2—2°)](v,6,%)
< 5
N Z(h) (14 672" —2)J(v,6, %)) + (2 —2)Z(g)
20 ‘

Remark 1. The following is what we get if we choose certain specific values for the factors.

o Ifweseté =v =11in (12), then we get the result [25] (Theorem 2.1) for x-convex functions.
o Ifwesetd =v = x = 1in (12), then we have the outcome [8] (Theorem 2) for convex functions.
o Ifé=v=)x=x=1,then we get inequality (2).

Remark 2. The integral (13) can be computed numerically for some values of the exiting parameters.
See Table 1 below.
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Table 1. Some values of the integral (13) computed by Mathematica at some selected values of v, J,
and .

v 5 x J(v, 6, ») v §  x J(v, 9, ) v §  x J(v, 9, )

02 02 05 3.81577 02 02 02 4.30767 02 02 07 4.00688
02 05 05 2.20942 02 05 02 3.19027 02 05 07 1.95826
02 07 05 1.79228 02 07 02 2.83905 02 07 07 1.49141
05 02 05 3.28397 05 02 02 3.13166 05 02 07 3.62537
05 05 05 1.72386 05 05 02 2.05838 05 05 07 1.62517
05 07 05 1.33194 05 07 02 1.73306 05 07 07 1.18335
07 02 05 3.06008 07 02 02 2.75863 07 02 07 3.44755
07 05 05 1.52603 07 05 02 1.70917 07 05 07 1.47524
07 07 05 1.14804 07 07 02 1.39758 07 07 07 1.04756

The next result is an alternative formulation of the Hadamard inequality for extended
Riemann-Liouville fractional integrals of strongly (v, x)-convex functions.

Theorem 7. Suppose Z be a positive mapping from g, h] intoR, 0 < ¢ < h,and Z € Ly[g, h]. If
Z is (v, x)-convex mapping on [g, xh] with v, x € (0,1], then the following integral inequality is
satisfied for the fractional operators (7) and (8).

g+Xh 2%5_U5%r(%+1) xAD #0641 (v _ 1\ g
2(2 ) S g A(#)JFZ(XhH—x (2 —1) A(W)Z<X)] (25)
#0%(2(8) = 2220 = 1)Z (%) |1 (0,8, %)
— 22v
N X[Z () (14 36%(1 = 217) (0,6, 20))] + 322" = 1)Z ()
20 '

where, (v, 6, ») is defined by (13).

Proof. According to the (v, x) convexity of Z, and assuming ¢ = g5 + x(1—5)h,
Y= (1-15)% +hbin(14), we get

2vz(g+27‘h> < Z(g% +x(1- %)h) +x(2° —1)2((1 - Pz‘)iwﬂz‘). (26)

s\ #—1
After performing the operations of multiplying both sides of (26) by (%) (1-

1#)°~1 and integrating during [0,1], the following is what we get:

v (8t X
zz( . )

s\ x—1

/‘1 <1 - (15* Pl)‘)) (1— u)ldu 27)

0

< [l o= (S0 et
+ ox(2°-1) /01 Z(( = g)% +hZ> (1(15”)5)%1(1 — )’y

When we integrate by parts and then change the variables, we obtain
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»—1

_ g\ (g’
P CEET) R R (o= 55%) — (0 -557) ZO R
#0% 2 T (xh—g)? | S 0 ( g+xh>1_‘5
¢—75-
s [ (52— 8)' (g2 ) “!
2641 (o0 e [\ T x n ¥ Z(y)
+ Pt v—1) 2y
8/x 0 g+xh -
( 2x _1/’)
Using Equations (7) and (8), we can rewrite inequality (28) as:
g+xh> 290706 T (3 +1) |, 641 0 _ 1y (g)
Z < A Z(xh) + 2" —1)"A N Z1 = 29
( 2 (xh — ) C R C AT )
In addition, any (v, x)-convex function fulfills the next inequality.
| _HK v _ _M\E 4
Z(g2+x(l z)h)ﬂdz 1)Z<(1 2>X+h2) (30)
_42(pv _ S\ (HY v_o(H)’ 2(v _ 8
< |z(9) -2 1)Z<X2>}<2) +x[1+ -2 (5) |z +xe 1)Z<X2>.

»x—1
After multiplying the two sides of (30) with (1_(1&7_”)5) (1 —u)°~! and integrating
across the interval [0,1], we obtain:

[ 785 +x( ‘Z)h)<1(1(sws>%_l<1—ﬂ>‘s‘ldﬂ (31)
o [ (-5 e) () o
< Z_U{Z(g)—X2(20—1)2<)§2)]](v,5,%)+XZ(h) Al(w)%_l(l_y)a-ldy
£ xz-270]0,09 + 2 -0z( ) [ <1—<15—ﬂ>‘5>“<1 .

XZ

When integrating by parts and changing the variables, the result is:

5 x—1
e U D N
(xh— )" l/ — 2 (o gth)l,sw (32)
5 x—1
+ %(5+1(21; o 1) g;}((h (% B }%)o a (% - IP)(S Z(IP) dw
X 8/x 6 gtxh 1-0
( 2x 4’)
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Using Equations (7) and (8), we can rewrite (32) as follows.

20055 T (50 4+ 1)

2 AD 2641 HAD 5
(Xh_g)ms A(g+;(h> Z(Xh)+)( (2 1) A<g¥((h) Z(X)] (33)
56% [z(g) — X220 — 1)2(%)]]@,5,;{)
— 22v
N X[Z () (14 366%(1 = 2170) (0,6, 20))] + 22" = 1)Z (%)

21)

From inequalities (29) and (33), we deduce the required result. O

Corollary 3. If we choose v = 1 in (25), we are able to deduce the upcoming inequality
X-convex functions.

Z<g+2)(h> = 2%5E;2}?;§f%;_1) ){A?gﬂch) Z(Xh)‘f'?(ms—i_l%/\&(g;y)_Z(i)] (34)
6% 2(8) = °2(%)] 11,6, )

= 1
+ ?2‘<Z(h) +Xz(§2>).

Corollary 4. If we put x = 1in (25), we acquire the next inequality for v-convex functions.

g+h 270VE#T (504 1)
Z(e——) <
( 2 ) - (h—g)*

gy 200+ 201D Ny z<g>] 35)

< Z(g)(%(S%(Z—zv)](v,zi;%)+2v(zv_1))
+ Z(h)<1+m5%(1_221)1—1;)](0,5,%))

Corollary 5. If we set v = x = 1 in (25), we acquire the next inequality for convex functions.

@ < 2%571/5%1—'(%4_ 1) s s
Z( 2 ) (h—g)* A(gjh)+z(h)+ A(#),Z(é’) (36)
< (ZQ?)*'Z(M)
o 2
Remark 3. If § = 1in (13), then | (v, 6, ) = f ptv=ldy = - Under this assumption, the

upcoming connections can be observed.

o Ifweputé =1in (34), we get the result [25] (Theorem 2.6).
o Ifweseté =1in (36), we get the finding [18] (Theorem 4).
* Ifweputd = s =1in (36), we get Theorem 1.

4. Error Limitations for (v, x)-Convex Functions

In this part, we refine the precision of error bounds associated with the derived
fractional Hadamard inequalities by carefully applying extended integral formulations.
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Lemma 1. Let Z be a positive differentiable mapping from [g, h] into R with 0 < ¢ < h and
Z € Ly[g, h].Consequently, the subsequent integral equality is true.

2(8)+Z(h)  T(+1)
o7 (h-g)*

=<h—8>/(JlK1_(l(s_t)5> _<1;t5> ]Z'(fhﬂl—f)g)dt. (37)

Proof. We now start with the following integral:

(Agzxm+wA$zx@]

/01 {15t5]%z/(th+ (1—t)g)dt

_ —Z(g = 11— o dt
= 5%(2(_)(07) (h—g)/o [h ((Sh ] )(SZ(t(h-i-(l)& t)g)t1,5 d -
_ _—£& » —9)° —(u—9)°,,_ u
B R e A S A e
—Z T(x+1)
E (g)g) T (_g)%ts)HAg—Z(h)-

Similar to the previous equation, the following equation can be produced through
integration by parts:

R
/01[1(#}%2 (th + (1 - t)g)dt

_Z(g)  T(x+1)
Fh-g) (- gan

(39)

A7)

We can obtain the required Equation (37) by employing Equations (38) and (39). O

Lemma 2. Let Z be a positive differentiable mapping from (g, h] into R with Z' € L[g, h]. Conse-
quently, the subsequent integral equality is true.

0x=1T( 4,
Zﬁﬂigdgﬂ (1) (a2 000+ 20 (A 2 () | = 35 2000 +2Z()
:Xh;g[_/ol [1;” @2y [1;” z’(g(i;*)+;h>dt]. 0)

Proof. Let’s start with

x—1
xh— g/ 1-#]", gt LRt Z0d) e 1=
[ Z( 2 yat = 267 2 5 tH -t
Z(xh)  (—1)%20%1x / FEFE ) ) zZw)
207 xh 8)%%  Jxh 6 (u— xh)1=2

Z(xh) (-1 1T(e+ 1),
- 5% - (Xh_g)[;% (AQZXh )(Xh) (41)
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Similarly,
” S §3—1 ., 526+1
4 Jo 5 Z 2x At = -5 (xh — g)o# (AQ+Xh+Z)(X)' (42)

One obtains (40), by subtracting Equation (41) from (42). O
Theorem 8. Suppose Z be a positive mapping from [g, h] into R, 0 < ¢ < h,and Z' € Ly[g, h]. If

Z'" is (v, x)-convex mapping on (g, xh] with v, x € (0,1, then the following integral inequality is
satisfied for the fractional operators (7) and (8).

x+1)

Z(g)+2Z(h) T(x+1)
% (h—g)*

8
_ In—gl1Z'0) —xZ () l
— o+l

(AS-Z)(h) + (AL Z)(3)

2x|1Z' (D)1 1

1/+1

81 5,) + B

Proof. According to the (v, x) convexity of Z’, and utilizing Lemma 2 , and Equation (13),
we have

|Z/(th+ (1 —t)g)| dt

Z(g) +2Z(h) T(x+1)
% (h—g)=

() (7
oo () ()
() (oo
Sh—guz’(mq/o ( ) vas [ (1—”’) m]

L oo (oo

(AS-Z)(h) + (A} Z)(8)

tVdt

+x|2'(8
Xl (X)|
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L §J|4|+Zl()|[5v'/(;ly},<1(15ﬂ)5> ( dp . /Ol(l—y)”uﬁl‘ldu]

_ _ 5 r _ 5 r
/01 (1 (E t>> (1—t")dt + 01<1 5t> (1—t”)dt]

 lh=gl1Z'(h) [m(

o+l

X
4 4 ”
Li1—(1-1t) 11— ¢0 11—
(2R gy dt—/ Pt
/0 < 1) > + 0 ( 1) 0 0
1

 ln=gl1Z/(n) [&vm ,

+xlz'(8
Xl (X)I

- o+l

7/(8
+X|(5%£7f)| lZﬁ((ls,wrl)—é”I(%,;,u) B k)
h—gl(1Z' (] —x1Z' (5 2017/ (£
5‘ < ES%)L . (")Dl&"l(%’}y )+/5(V+1 x+1) +XL%+({‘)5((15,%+1). (44)

O

Corollary 6. The subsequent integral inequality resulting from fractional operators (7) and (8) in
sense of x—convex mapping on [g, xh| can be derived by setting v =1 in (43).

Corollary 7. The subsequent integral inequality resulting from fractional operators (7) and (8) in
sense of convex mapping on [g, h| can be derived by setting v = x = 1 in (43).

Theorem 9. Suppose Z be a positive mapping from [g, h] into R, 0 < ¢ < h,and Z' € Ly[g, h]. If
|Z' |7 is (v, x)-convex mapping on (g, xh] with v, x € (0,1], then the following integral inequality
is satisfied for the fractional operators (7) and (8).

Z(g) +Z(h) T(x+1)
6% (h—g)*
Ih—gIIZ’<h>—xZ’<§>[ 1

(Ag-Z)(h) + (A} Z)(2)

'8
ZX\Z(X)\ﬁ@
ox+1 0’

_|_

- 5 (e, 5 1) + B e +1) w+1)  (45)

Z(g) +Z(h) T(x+1)
% (h—g)~

_ h=gl1Z/(n) — Z'(g)] [
5%+1

(AS-Z)(h) + (A Z)(3)

+ 2‘5Z%£§)‘ﬁ(%,%+1) (46)

8'1(% 5 ) + B+ 1)

207717 (50 4-1)
(xh —g)°~

<|Xh—g|<ﬁ(z9%+1r})>”< 1 )
- 4 opt1 20(v+1)

+<X(2“(v+1)1)>q (IZ’(h)HIZ’(fz)I)]- (47)

Z(xh) +xZ(<)

(DAL - 2)0ch) + ”“%A;szi)] oz

2x

g
X

1
q

12 (9)1+ 12 ()]

where (3 refers to beta function and % + % =1
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Proof. Using (v, x)-convexity of |Z'|1 and Lemma 2, we obtain by applying Holder inequality

20%71T (50 4-1)

g | TV (AL 20 +x ”‘5+1<A;Xh+z><§>] 2(;[ (xh)+xZ(i)H

2x

2N NG
(it [ e
N
+</01 z’(g(i; ) +£h) dt) ]

L))

Z'(h)

Z'(g)

q/(f ()]

Z'(h)

1
< lxh—gl (ﬁ(f?%ﬂf}s))p[(
- 4 opr+l

7 4 v
dt
o £) o
<Ixhg|< P%+115> l
- 4 or+1

(]

7' (h) <%>

+X

q 1 q
(1 - ZU(U—‘rl))>

20(v+1) v+1

/ g 1 %
Z'(h) z(%) o —w>> ]

1
2(v +1)

K]
| g )
q q
+<Z’(h) +x(2°(v+1)-1) % ]

INE;
(e

+ ( <IZ’(h)| + (X2 (v +1) ~1))7(Z (g2)|> )

L1l 7 7
< |Xh4_g| (ﬁ(pé,:ll”» <zu(vl+1)> [|Z/(8)|+|Z/(h)|

+<x(2”(v+1)—1)> <|z'<h>|+z'<g2>|> .
O

Y

(48)

X

Corollary 8. The subsequent integral inequality resulting from fractional operators (7) and (8) in
sense of x—convex mapping on [g, xh| can be derived by setting v =1 in (47).

26%*11"(%—#1) /{ e 2 g g
2 (g 20+ 5 g 20 - s [t + 12 |

_ et L\ 7 (1)7 .
< M g'<ﬁ(p5ﬂf ‘”) (i) z’<g>|+z’<h>|+3ﬂ<|z’<h>|+|z’<)f2>|)]. )
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Corollary 9. The subsequent integral inequality resulting from fractional operators (7) and (8) in
sense of convex mapping on g, h| can be derived by setting v = x = 1in (47).

1Z/(g)| + 12/ ()] +31 (IZ’(h)I +|Z’()f2)|>]- (50)

20%71T (52 +1)

267

(—1)°(A%,,-Z)(h) + (Aﬁ%wz)(g)

2
1
P

_Ih—gl <ﬁ<p%+1,35>> (1)
- 4 op+l1 4

5. Conclusions

The fusion of extended convex functions, namely (v, x)-convex functions, with gen-
eralized Riemann-Liouville operators was done in order to reveal several new fractional
Hadamard integral inequalities. Beyond this, the error bounds for the investigated frac-
tional Hadamard integral inequalities have been presented. Additionally, there is consider-
able connection between the results provided and those that have already been published.
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