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Abstract: This research article introduces the four-dimensional natural transform Adomian decompo-
sition method (FNADM) for solving the (3+1)-dimensional time-singular fractional coupled Burgers’
equation, along with its associated initial conditions. The FNADM approach represents a fusion of
four-dimensional natural transform techniques and Adomian decomposition methodologies. In order
to observe the influence of time-Caputo fractional derivatives on the outcomes of the aforementioned
models, two examples are illustrated along with their three-dimensional figures. The effectiveness
and reliability of this approach are validated through the analysis of these examples related to the
(3+1)-dimensional time-singular fractional coupled Burgers’ equations. This study underscores the
method’s applicability and effectiveness in addressing the complex mathematical models encountered
in various scientific and engineering domains.
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1. Introduction

The significance of fractional calculus in the realm of applied mathematics has become
increasingly apparent, with fractional differential equations serving as indispensable tools
in the modeling of real-world phenomena. These equations find application across diverse
disciplines, including mathematical biology, various engineering fields, chemical processes,
and applied sciences models. Furthermore, they have been extensively employed in various
branches of physical science, notably in the realms of viscoelasticity control, diffusion, heat
conduction, dynamical systems, and related areas [1-7].

Given its importance across multiple domains, a plethora of techniques have been
devised to investigate both the computational and exact solutions associated with fractional
differential equations. Over the past centuries, a multitude of definitions for fractional
derivatives have been introduced. The following represents a select few of these defini-
tions: Riemann-Liouville definition [8,9], Caputo [10], Caputo-Fabrizio [11], Riesz [12],
Hilfer [13], Erdélyi-Kober [14], Atangana—Baleanu [15], and Grunwald-Letnikov [16]. Ac-
cordingly, to address these issues, numerous effective numerical and analytical approaches
have been proposed, such as the homotopy analysis [17], residual power series [18], Lie
symmetry groups [19], iterative reproducing kernels [20], approximate analytics [21], differ-
ential transform [22,23], variational iteration [24], homotopy perturbation transform [25],
g-homotopy [26], operational matrices [27], meshless RBF [28], natural decomposition
transform [29], and Adam-Bashforth—-Moulton [30].

The construction of the natural transform decomposition method involved integrating
two potent techniques: the natural transform and the Adomian decomposition methods.
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The natural transform decomposition method represents a novel and efficient approach to
solving differential equations, which has been extensively studied in various papers [31-34].
This method is utilized to address the various physical phenomena modeled by fractional
PDEs, as demonstrated in several research works. For instance, it has been applied to
solve a coupled system of nonlinear PDEs [35], analyze the fractional unsteady flow of a
polytropic gas model [36], investigate the solution of fractional telegraph equations [37],
solve the fractional coupled KdV equation [38], find the solution of fractional-order heat
and wave equations [39], and solve the fractional Klein-Gordon equation [40], and the
double natural transform method with the Adomian decomposition method was used to
solve a singular one-dimensional Boussinesq equation in [41].

The Burgers’ equation, introduced by Harry Bateman in 1915 [42], serves as a funda-
mental partial differential equation that is widely employed across various domains of
applied mathematics to describe numerous physical phenomena. Initially proposed as the
one-dimensional nonlinear Burgers’ equation of integral order, it was further investigated
by Burger ].M., who explored its application as a coupled system of equations to model
turbulent flow [43]. Subsequently, mathematicians and researchers have conducted numer-
ous, significant, and intriguing studies on the Burgers’ equation. Over time, it has been
recognized that this equation can effectively model phenomena, including shock waves,
turbulence, aerodynamics, heat conduction, acoustic waves, and more [44—46].

In the literature, numerous techniques have been employed to study various forms of
the Burgers’ equation for both integer order and time-fractional approaches. Additionally,
various methods have been developed to derive both exact and approximate solutions
for these equations. For example, numerical solutions for the one-dimensional Burgers’
equation have been investigated by Benton and Platzman [47]. In [48], the authors proposed
a modified and expanded tanh-function method to obtain its exact solution. The homotopy
perturbation method was suggested by researchers in [49] to achieve the exact solution of
the nonlinear Burgers’ equation. Majeed et al. [50] numerically addressed the solution of
one-dimensional time-fractional Burgers and Fishers equations using the cubic B-spline ap-
proximation method. In [51], Singh et al. analyzed a one-dimensional time-fractional model
for the damped Burgers’ equation involving the Caputo-Fabrizio fractional derivative. Two
different difference schemes were applied by Peng X. and Qiu W. et al. [52,53] to solve
the mixed-type time-fractional Burger’s equation and the one-dimensional time-fractional
Burger’s equation. The Laplace homotopy perturbation method was employed by the
authors of [54] to solve the time-fractional Burgers’ equation. In [55], an explicit solution
for the coupled viscous Burgers’ equation was provided using the Adomian decomposition
method, while in [56], a combination of Laplace transform and new homotopy perturbation
methods was utilized to derive closed-form solutions for the coupled Burgers’ equation.
The solution of the time-fractional two-mode coupled Burgers’ equation was discussed
in [57], and in [58], a multiple fractional power series approach was employed to analyze
the solution of a system of nonlinear fractional Burgers’ equations.

For higher dimensions, in [59], a numerical solution for the two-dimensional Burgers’
equation is presented using the Adomian decomposition method. The Laplace decompo-
sition method is employed by the authors in [60] to solve the two-dimensional nonlinear
Burgers’ equations, while in [61], they explore the solution of the singular two-dimensional
fractional coupled Burgers’ equation using the triple Laplace Adomian decomposition
method. Additionally, in [62], the solution of the singular two-dimensional Burgers’ equa-
tion is introduced using the conformable triple Sumudu transform. On the other hand,
the exact solutions for the cases of (3+1)-dimensional, two-dimensional-coupled, (2+1)-
dimensional, and (1+1)-dimensional Burgers’ equations are presented in [63], and the
numerical solution of the three-dimensional fractional coupled Burgers’ equation is dis-
cussed using various numerical methods in [64].

The goal of this study is to employ four-dimensional natural transform Adomian
decomposition methods to solve the (3+1)-dimensional time-fractional coupled Burgers’
equation and evaluate the approximation solution. Our methodology integrates the four-
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dimensional natural transform and Adomian decomposition approaches, avoiding the
linearization or discretization of variables, thus providing both approximate and accurate
solutions. The structure of the paper is outlined as follows. Section 2 provides a concise
overview of the basic definitions of natural transforms and the Caputo fractional derivative.
In Section 3, we introduce the four-dimensional natural Adomian decomposition method
(FNADM) for solving three-dimensional fractional coupled Burgers’ equations, accompa-
nied by an illustrative example. Section 4 delves into the discussion of the four-dimensional
natural Adomian decomposition method and the singular (3+1)-dimensional fractional
coupled Burgers’ equation. Finally, Section 5 presents the succinct conclusions drawn from
this study.

2. Basic Definitions of the Natural Transform Method

In this section, we address some of the definitions of fractional calculus using the
natural transform method.

Definition 1 ([31]). The natural transform of a function, f(t), is defined by the integral

N*[f(1)] = R(s;u) = /Om ¢St F(tu)dt,s > 0,u > 0, (1)
where s and u are transform variables. Over the set of functions
f(t) : IM, 1, 2 > 0, suchthat
A:{If(t)|<Mef it € (<1 x [0,%0),j = 1, 2}
the natural transform is defined by
N*f(H)] = R(s;u) = Lll / et F(1)dt, Re(s), Re(u) > 0, %)
where Re(+) is the Reynolds number (see [65]).

Definition 2. The inverse natural transform of R(s; u) is defined by

1 petioo ‘
N7YR(s;u)] = f(t) = 50 /e_ioo R(s;u)e?tds,u >0s>0. 3)

Definition 3 ([18]). The Caputo time-fractional derivative operator of order -y > 0 is given by

Y —
Dt f(gr t) - oty angggxt) Y=nec N (4)

ATf(G,t) _ {Mfg(t—x)”71de n—1l<y<n

Definition 4 ([37]). If n € N, where n — 1 < v < n and R(s; u) is the natural transform of a
function, f(t), then the natural transform of the Caputo fractional derivative of 9 f é D i given by

+[f’”f(€f)] f;zz(sm)_nz_ls7 =y lakf@“] . 5)
t=0

- k k
ot = v ot

The four-dimensional natural transform, N, I , of a function, f(x,y,z,t), and its inverse,
N, , are defined by the following:
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Definition 5. Let f(x,y,z,t) be a continuous function of four variables, x,y,z,t. The
four-dimensional natural transform of the function f is defined by

a1 St
1

N/ [f(x,y,21)] = u1u2u3v IS e ™ RV "f(x,y,z,t)dt dxdydsz,

where Re(s), Re(p;), Re(uj), and Re(v) > 0,1, = 0,1, 2. The four-dimensional inverse natural
transform, Ny 1, is given by

B a—ico pB—ico py—ico pi—ico P1+P2 V3+t
N41(N4+ 27'(1 /tx / / /5 ' s +[ﬂdsdp1dpzdp3,

where N ' (N[ [f(x,y,2,t)]) = f(x,y,2,1).
If the four-dimensional natural transform of the function f(x,y, z, t) is given by
N, [f(x,y,2,t)] = R(p1, p2, p3, i u1, 2, U3, ),
of of 9of of 2f

then the four-dimensional natural transforms of 373y’ 327 9F and 5z are given by

d

N YL = PLR(p1, p2, pa,s; U1, Uz, Uz, 0) — u]f(O P2, p3,8; 0,1, u3,0),
)

NI % = sz(p1/P2/P3rs ui,uz,uz, v ) (per/PSIS;ul/O/u3/v)/ (6)
d

Nf g = 2 R(p1, p2, p3,s; 11, U2, U3, )—73 (P1,P2,0,8,u1,12,0,0),

and

d

N, [7{} = SR(p1, p2, p3, S 11, U, u3,0) — Lf(p1, p2, p3,0;u1, up,u3,0), (7)
2 2 of (p1,p2,p3,0;u1,1p,u3,0

Nz_ [at£:| = ZSTZR - ;Tf(Plz p2/ P3/ 0/ ui, Uz, uz, 0) - % f(Pl P2 PSat Mttt )/ (8)

3. Analysis of the Four-Dimensional Natural Adomian Decomposition Method

In this work, we consider the following system of (3+1)-dimensional time-fractional
coupled Burger’s equations to illustrate our method; we called this the four-dimensional
natural Adomian decomposition method (FNADM):

DI +¥Y¥+¢¥y +x¥: = (P t+¥y+¥:)+Y¥, xyzt>0,
Dip+¥px + ppy + X = 75 (Pax + Py +Pzz) + ¢, x,y,2,t >0, ©)
Dix+¥xx+oxy+xx: = 7 Xax+ Xy +2xzz) +Xx %y,2t>0,

m—1 < a<m

with the initial conditions

Y%y z0)=flxyz2), ¢xyz20) =gMyz2), x(xy:z0)=hxy,:z)

where Df = % is the fractional Caputo derivative, ¥ (x,y,z,t), ¢(x,y,z,t) and x(x,y,z,t)
are the velocity components to be specified; f, g, and h are known functions, and Re is
the Reynolds number. It can be shown that the four-dimensional natural transform of the

fractional Caputo derivative D} = % is given by

N{ [Dfw(x,y,2,t)] = 5 (N] [w(x,y,2,)] = Nf [w(x,y,2,0)))) (10)

In order to achieve the goal of determining the solution to Equation (9), we apply the
four-dimensional natural Adomian decomposition methods as follows:

Step 1: By implementing the four-dimensional natural transform to Equation (9), we obtain
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SN/ [¥(xy,zt)] = SN [¥(x,y,20)] - N (¥ + ¥ +x¥—¥)
I(% Fox + Fyy + YZZ))
SNSIp(oyz ] = SENCIP0o w2, 0)] = N (Yo + ¢y + x¢= = 9) a
Zr Re (Pxx + by + ‘PZZ))
SNSx(yz )] = SN [x(xy,2,0)] = N (¥ +9xy + xxz — x)
+N: (ﬁe (Xxx + Xyy + Xzz)) .
Step 2: Now, by using the differentiation property of the natural transform, we have
NS[¥(x,y,2zt)] = N[¥(xy20)]— %N (Y¥+¢¥ +x¥. - ¥)
+LNT (s (o + Py + ¥a2) ),
Nflp(oyz 0] = Nf[e(xy,2,0)] = SN (¥ + 9y + 192 — ¢)
FEN (9o + 9+ 922)), W
NS x(oyzt)] = NfS[x(oy,2z0)] = &N (Fxx +oxy + xxz — x)

5 NG (e Gt + 2+ x2))-

Step 3: By employing the inverse four-dimensional natural transform for Equation (12),
we obtain

¥zt = fryz) - Ny NS (Y o+ ¢¥, + ) — ¥
N7 5N (s (% +YW+1PZZ))}

p(xyzt) = glry,z) = Ny [SNT (Y9u+ 9y +x¢:) 9| )
+N, ! ?NI(E(4’xx+4’yy+¢ZZ)>}

Xz = h(xy,z) = Ny SN (Fo o+ oy + 00 — 1)
+N41_SaN+(Rg(Xxx+ny+Xzz)>}

Step 4: The four-dimensional natural Adomian decomposition method assumes series
solutions of the functions ¥ (x,y,z,t), ¢(x,y,z,t), and x(x,y,z, t), which are determined by

o]

IF(X,y,Z,t) = Z ‘Pn(x,y,z,t),(p(x,y,z,t) = Z (Pn(x,ylzlt),

no:oO n=0 (14)
x(xyzt) = Zoxn(x,y,z,t).

n=

Moreover, we supposed that the nonlinear terms ¥'¥y,¢%¥y, X '¥z:¥ ¢x,¢Py, x Pz, ¥ X2, P Xy,
and x ) are defined by

YY, = Y An/(pllyy =) By, x¥: = ) Cn/ngbx =Y Dy,
Vlo:oo Véo:() W;O ;go:O

PPy = Y Eux¢:= Y Fu,¥xx= ¥ Gn;¢Xy = ). Hy, (15)
n0=00 n=0 n=0 n=0

xx: = L Ky
n=0

by substituting Equations (14) and (15) into Equation (13), we have
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¥(xyzt) = floyz) - Nt [;’ZNI( Y (Ag+By+Ci)— ¥ %)]
n=0 n=0
+ Ngfl (‘:ZNI % ( 20<anxx + anyy + Ylnzz>> )) = ZO lPI’l (x,y, Z, t>’ (16)
n= =
CP(x,]/,Z, t) = g(x,y,Z) - N471 [ZS;ZNI( EO(Dn +E, + Fn) - ZO¢”>}
n= o
+N4;1 (ZS)aNI (le ( ;O(qbnxx + $nyy + (Pnzz>>>) = §O¢"<x1ylzl t), (17)
and
X(x,y,Z’ t) - h(X,y,Z) - N4_1 |:ZZN1_< EO(GVI + H, + Kn) - ZOX”>:|
N 3 y 18
+N4 1 (;NI <I%e< ZO(anx +Xnyy + anz)))) = ZOXn(x,]/,Z, i‘). ( )
n= =

Step 5: After applying the four-dimensional natural Adomian decomposition method, we
introduce the recursive relations as follows:

Yoloyzt) = floyz), polnyt) =g8xy,2), (19)
xo(x,y,t) = h(x,yz),
and the remaining components ¥;,11,¢,4+1, and X, 41,7 > 0 are given by
Fon(my,zt) = NSNS (At Byt Co— )] (20)
+N, ! (;’—ZNI (% (Pxx + Fuyy + ‘f’nzz))),
prir(xy,zt) = —N7[ENF(Dy+Eut F—g0)] o
+N471 (E—ZNZ (Rie ((anx + (Pn]/]/ + (Pnzz))>/
and _
XnJrl(xry'Zrt) - _I\]4_1 ZTNI(GH + Hp + Ky — Xﬂ) 22)

N (07 (s o+ + ) )

where the first few terms of the Adomian polynomials Ay, By, Cy, Dy, En, Fu, Gu, Hy, and
K, are given by

Ay = YoYox, A1 = Yo't1x + ¥1'¥0x,

Ay = Yo + V1Y + 2 %ox, (23)
Az = Y¥sx + 1% + ¥ + 3 %0n,

By $0¥oy, B1 = ¢otry + ¢1F0y,

B, = ¢o'toy + P11y + P2%0y, (24)
By = ¢otay + ¢1%2 + P2¥1y + P30y,

Co = x0%0: Ci = xo%z + x1¥oz

G = xoY: +x1Y:z + x2%oz, (25)
G = xoY¥3: + x1%2: + x2%1: + x3%0:

Dy = Yodox, D1 = FoP1x + F1¢ox,

Dy = Yopox + Y1¢1x + F2dox, (26)
D3 = Yopzx + F1¢or + Podrx + Fadox-
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Ey = ¢odoy, E1 = poP1y + P10y,

Ey = ¢opay + P11y + P26b0y, (27)
Es = ¢opsy + P12y + 291y + P3cpoy-

F = xo¢z F1 = xo$1z + X102,

E = xo¢2+ x1¢1z + X290z, (28)
B = Xxo¢s: + x1¢2: + X291z + Xx3¢0z-
Go = Yoxox,G1 = Yoxix + Y1 Xo0x,
Gy = Yoxor + Yixix + 2Xox (29)
Gz = Yoxsx + Yixox + Yax1x + ¥3X0x-

Ho = ¢oxoy, H1 = ¢ox1y + P1x0y,

Hy = ¢oxay + P1X1y + P2X0y, (30)
Hs = ¢oxsy + P1X2y + P2X1y + P3X0y,

and

Ko = XoxzKi = Xox1z + X1X0z,

Ko = XoXxzz+ X1X1z + X2Xo0zs (31)
K3z = Xoxsz + X1X2z + X2X1z + X3X0z-

We show that the inverse four-dimensional natural transform with respect to p;, u;, s,
and v,i,j = 0,1, 2,3 exists for Equations (20)-(22).

For the purpose of explaining the four-dimensional natural Adomian decomposition
method for solving the (3+1)-dimensional time-fractional coupled Burgers’ equation, we
will consider the following example at Re = 1:

Example 1. Consider the (3+1)-dimensional time-fractional coupled Burgers’ equation

DY +¥¥ + ¥y +x¥: = Y+ ¥y +¥=+Y, xyzt>0,
Dip+¥ox + Py + X = Pxx+yy+Pz+¢, x,y,z,t>0, 32)
DiX+¥Xxx+oxy + XXz = Xex T Xy + Xz X %Y,2t>0,

n—1< a <n
with the initial conditions
¥Y(x,y,20)=2x—y—2z ¢(x,y,2,0) =2x—y—2z, x(x,y,2,0)=2x —y —z.
As mentioned in the above steps, we obtain

¥(xyzt) = 2x-y—z— Ny [SNf (¥¥+¢¥ + % — ¥)]
AN NG (P + Fyy + lez)}r

o(x,y,z,t) = 2x—y - z— N4*l _?SLZN: (‘f’4>x + ¢py + xPpz — 47)} 33)
N [ENG (o + by + 92)]

x(xyzt) = 2x—y—z—N;' _%NI (Fxx +Pxy + xxz — x)]

+N471 _%:NI (Xxx + Xyy + Xzz)} .

The zeroth components ¥y, ¢po, and xo are determined by the method to be the same as the

initial conditions, so we have

Yo=2x—y—2z, pp=2x—Yy—2z, Xo=2x—Y — Z.
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The remaining components ¥, 11, $n+1, Xn+1,1 > 0 are given by
Fua(xyzt) = —N7' % *(An + Byt Co— -
+N, ( Ianx + IFnyy =+ 1Ijnzz
Puir(xy,2t) = —Nj! [%Nj (Du + En + Fu — -
+N4 ! (:T;:NI Pnxx + anyy + (Pnzz
Xni1(x,y,z,t) = =N, [%N+ (Gu+Hy + Ky — xn } 36)
+N; (sa N (anx + Xnyy + Xnzz )/
by substituting n = 0 into Equations (34)—(36), we obtain
¥ (x,y,zt) = —N;! [g%N; (Ag + By + Co — %)
+N; ! (%ZNI (Forx + Foyy + Fozz) (37)
= N, ! {Z—ZNI(ZJC —y— z)} =Q2x—y— Z)il‘(ofil)’
¢(vyzt) = Ny SN (Do+ o+ Fo = go)
+N;l (UT 4+ CPOxx + QbOyy + 47022) (38)
= [ T2x—y —z)} = (Zx—y—z)r(;:l),
and
xixyzt) = =Ny [SNJ (Go+ Ho+ Ko~ xo)
+N4;1 (Z%NZ (XOxx + XOyy + XOzz) (39)

= Ny [BNf@x-y-2)] = vy -2l

Similarly, when n = 1, we have

—N;!
+N; 1(
= N[EN

= (2x—y— )F(Zachl)

LS NS (Foiy + ¥1%or + gy + <P1‘P0y)}
NS (0¥ + x1 Yo — Yl)]
UTNI (Ilex + 11Ulyy + 1"Flzz))

F(szrl) ) }

Ya(x,y,z,t)

920528 = =N SNS (Yopix + Fidoc + godry + 9190,) |
=N &N (xodrz + xado: — <P1)}
+N; ! (%:NI (Prex + Pryy + ¢1ZZ))
= NNy (2 —y -2y )]

20
= (@ -y -y

x2(xy,z,t) = =Ny %NS (Foxix + Fixox + Poxiy +¢1X0y)}
—N SN (roxas + xac: — x1)|
+ Nt (%ZNZF (X1xx + Xayy + X1zz)>
= NOUENS (@ -y -2)rhy )]

2u
- (2x7y72)m
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At n = 2, we obtain
t30{

IBa+1)’

t30¢
¢p3 = (Zx—y—z)m,

F3=(2x—y—2)

t3zx
YA TG 1)
Therefore, the solution to Equation (32) is defined as

X3 = (2x —

Y(xyzt) = LW=fH+h+H+HB+.....
o (2 (2 (2 )3 (40)
T('x’ y’ Z’ t) = (zx - ]/ - Z) + Jf"(&ﬁ»f) + ;(2]{)6+Zl) + 312(3]/0(+Zl) + ceey
¢(x,y,z,t) = ZO(Pn =¢o+Pr1+Pr+P3+......
n=
_ (2x—y—z)t* (2x—y—2z)t>* (2x—y—2z)t3*
¢(X, Y,z t) - (2x -y Z) + r(ay+1) + T(2a+1) + TGat1) “+...,
and
X(x/ylet) = ZOXn:XO‘f'X] +XxX2+x3+......
n—=
2x—1y—z) % 2__sz 2__341
Xoyzt) = (x-y—2)+ Syt + O + S
at o =1, the solution of the above equation becomes
¥Y(x,y,zt) = (2x—y—z)+ (2x—1y!_z)t + (2x—g!—2)t2 + (2X—g!—2)t3 Yo
= (2x—y—2z)e
—y— _y—\f2 1 ~\$3
p(xyzt) = (x—y—z)+ Bty Bopalt | Bey ot
= (2x—y—z)e
and
)((x,y,z,t) = (2x —y— z) + (2x—1y!—z)t + (2x—g!—z)t2 I (2x—g!—z)t3 4o
= (2x-y-2)e.

For 0 < a < 1, by using the ratio test and Gautschi’s inequality, it can be proven that the
series is absolutely convergent. In order to illustrate the convergence, let us consider, for example,
z =y = 0and « = 0.5. Figure 1a,b depict the convergence of the series representing the function
¥ (x,y,z,t) with respect to x at t = 3 and with respect to t at x = 1, respectively, showing rapid
convergence to the exact solution after a few terms. In order to display the three-dimensional
demonstration for the results of Example 1, we take different values of the variables to show the
exact solution of ¥ (x,y, z, t). Figure 2a,b show ¥ (x,y,z,t) ata = 1withy = 0and x = 0,z = 0,
respectively. The illustrations were generated using the Maple software 2023.0.
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Figure 1. (a) The convergence of the series representing ¥ with respect to x at « = 0.5. (b) The
convergence of the series representing ¥ with respect to t at « = 0.5.
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Figure 2. (a) The function ¥ (x,y,z,t) atx = 0,y = 0. (b) The function ¥(x,y,z,t) atz =0,y = 0.

4. Four-Dimensional Natural Adomian Decomposition Method and Singular
(3+1)-Dimensional Fractional Coupled Burgers’ Equation

In order to explain the basic idea of the four-dimensional natural Adomian decompo-
sition method, we consider a general singular (3+1)-dimensional time-fractional coupled
Burgers’ equation of the form

DY = (x¥),+ (), + 1), — ¥ — 9y — Ix¥a + ¥

D = x(pu)ety(ydy), + 2(202). = 3¥x = yogy —x0=t0
Dix Fx)y + 5 (xy), + 2 (2x2), — 3 ¥Xx = by — 2XX= + X

xyt > 0,

with the initial conditions
¥(x,v,2,0) = f(x,y,2), ¢(x,v,20) =g(xyz), x(x,v,20) =h(xyz),

where D} = % is the fractional Caputo derivative. 1 (x¥;),, %(y'f’y)y, and 1(zy.), are
called Bessel operators, and ¥(x,y,z,t), $(x,y,2,t), and x(x,y,z,t) are the velocity com-
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ponents. f(x,y,z),8(x,y,z), and h(x,y,z) are known functions. Let N, [¥(x,y,z,t)] =
¥ (p1, p2, p3,5; U1, 4o, U3,v) and Nj [¥(x,v,2,0)] = ¥(p1,p2, p3;u1, iz, u3), and similarly
for the functions ¢ and . In order to obtain the solution of Equation (41), we will employ
the following steps.

Step 1: Multiply both sides of Equation (41) by xyz to obtain

xyzD{Y = yz(x¥y), + xz(y¥y) yt xy(z¥z), — yz¥¥y — xz¢¥y — xyx¥: + xyz¥
xyzDi¢ = yz(x¢y), +xz (ycpy)y +xy(2¢z), — yz¥Px — x29Py — xyxXP- + XYZP (42)
xyzDix = yz(xxx), +x2(yxy), + xy(2xz). — y2¥ X — x20xy — XYXX= + XYZX-

Step 2: Operating the four-dimensional natural transform for both sides of Equation (42)
yields

-1)° 2 (st «
(E);F% (ZTT(PL P2,P3,5, U1, Uz, U3, U) - -(S}TXIP(P‘I/ P2, p3; U1, Uz, M3)) = N: (A) (43)

—1)3 B3 [ «
(a;]a% (ZS;TXCD(pll P2, P3,S5, Uy, Uz, us, U) - %CD(PL P2, p3; U1, Uy, u3)) = NI (A) (44)

(71)3u1uzu383

ETIEIIEI (%H(m, P2, P35 11, 2, 43, 0) — SST1(p1, pa, pa; un, iz, us)) =N,/ (Y), (45)
where
A = yz(x¥y), +xz (y‘f’y)y +xy(z¥s), — yz¥¥x — x29¥y — xyx ¥z + xyz¥
A= yz(xpe), +xz(ydy), + xy(2¢:), — yz¥ ¢x — x2y — xyxpz + xy2

and
Y = yz(xxa), +x2(yxy), + Xy (2xz); — y2¥ X — x2¢xy — xyxx= + xyzx.

Hence, we have

23 _ Posd . o +
aPlaaPSzaPS vo= 9?1971329173 Y (pr pa, pas i, uz, u3) S"‘uﬂ;zus Ny (8)
— . v +
apl%gzamq) o 3P13P23P3 P (p1 p2, p3;n, iz, U3) — STty Ny (A) (46)
_ . o % +
3p19p20p3 Im = amapzaps (Plz P2, p3, U1, Uz, US) TS N4 (Y)

Step 3: By integrating both sides of Equation (46) from 0 to p;,0 to p, and 0 to p3 with
respect to p1, p2, and p3, respectively, we have

¥ (p1, p2, P3,5; U1, Uz, U3,0) = (PlzPZzPBr”L”Z:”B)

P1p2P3 47
S"‘Ll1uzu3 fffN+ dpldedP?) ( )

D (p1, p2, pa, s; up, U, U3, V) = <1>(P1,pz,p3,u1,uz,u3)

P1P2P3 48
s“u1u2u3 fffN+ dPldPZdP3 (48)

and
I(p1, p2, p3,S; 1, Up, U3,0) = H(pl,pz,ps,ul,uz,ug)

P1P2P3 49
s“u1u2u3 fffN+ dpldP2dP3 “49)

Step 4: By applying the inverse four-dimensional natural transform to Equations (47)—(49),
we obtain

=

1P2

!

¥(x,y,zt) = f(xyz)— N4_1 (sﬂu1ﬁ2u3 N, dpldpzdm) (50)

O
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14

p(xyzt) = gxyz)— szl (s“ufuzus

o=

Ny (A)dpldpzdpe,) (51)

and

14

x(x,y,zt) = h(xyz) - Néfl (s"‘u;}uzug

o

N/ (Y)dpldpzdpe,)- (52)

Step 5: By substituting Equations (14) and (15) into Equations (50) and (52), we obtain

o0 " P1 P2 P3 o
¥(x,y,zt) = Z Ya(x,y,z,t) = f(x,y,2) — N[l (ﬂ///Mf( An>dp1dP2dP3) (53)
=0 S*UqUxU3 =0
000
00 o P1 P2 P3 .
Py zt) =Y pu(x,y,zt) =g(x,y,z) — N, ! a///Mj( An) dp1dpadps (54)
n=0 STulzU3 n=0
000
and
o - P1 P2 P3 o
x(xy,z,t) = Z xn(x,y,2,t) =h(x,y,z) — N;l ai///Nj Z Y, |dpidpadps |- (55)
n=0 57U Uz U3 50 =0

Step 6: After applying the four-dimensional natural Adomian decomposition method, we
introduce the recursive relations as follows:

Yo(vyzt) = floyz), golxyt) =g(xy.2) (56)
xo(x,y,t) = hxyz),

The remaining components, ¥, 1, ¢,+1, and x,+1, 1 > 0, are given by

" P1pP2P3
Yo (xy,zt) = —N;! e Of of of N/ (yz(x‘f’nx)x + xz(y‘f’ny)y + xy(z?nz)z>dp1dp2dp3>
1 o P1P2P3 N (57)
Ny | s bf of 0f(N4 (yzAn + xzBy + xyCy — xyz¥y,) )dp1dp2dps |,
1 . P1P2P3 N
¢”+1(x’yfz’t) = 7N4 S“Mfllzug f fszL (yz(aapnx)x+xz(y4>ny)y+xy(z<pnz)z>dp1dp2dp3
000
1 o P1P2P3 N (58)
+Ny | s of Lof Of(N4 (yzDy + xzE;, + xyFy — xyz¢y) )dp1dpadps |,
and
1 " P1P2P3
X (yzt) = =Nyt Of Of Of Ni (y2(exun)s + %2 (yty),, + xy(2302).. ) dprdpadps
1 " P1P2P3 N (59)
N s [ [ (NT (9260 + x2H o+ xyKa = xyzn) ) dpidpadps ).

We show that four inverse natural transforms with respect to p1, p2, p3, s; u1, Uz, u3, v
exist for Equations (57)—(59). In the following example, we apply the four-dimensional
natural Adomian decomposition method to solve the singular (3+1)-dimensional time-
fractional coupled Burgers’ equation.
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Example 2. We consider the singular (3+1)-dimensional time-fractional coupled Burgers’ equations,

given by
D&Y T+ 5 (W), + 1), — ¥ - 74>1Py IX¥+VY
Dip = sty (1), +2(30) =¥ — gy —2xta b0
Dix = () + 3 (xy), +2(2xe), — ¥ — y4>xy o+ x
xyt > 0,
subject to the initial conditions
¥(x,y,2,0) = 2x*—y*—22, ¢(x,y,2,0) = 2x> —y* — 22,
x(x,y,2,0) = 2x2—y?—22

By following the steps outlined above, we have

P1P2P3
Y(x/]//t) = 227 _yZ_ZZ_N4 l(s"‘uluzus ({‘bf‘ofN (yz x‘f[x) +xz(]/lf,]/) +x}/(Z1FZ) )dpldPZdP3>

1 P1P2P3 N (61)
+ N4_ s“uluzug f f f(N4 (yZIFIFX + xZ(Ple + xyXIFZ - xyZY))dpldPZdPS
000

=

2 P3

JNg (v2 () + 22 (v, +Xy(2¢z)z)dmdpzdpa>

O

P1
4’(9‘,%%’5) = 22 _y -2 _N 1<s“u1u2u3bf
p

=

1P2P3 (62)
Of EJ/" (N (yz¥¢x — x2¢p¢p, — xyx . — xyZ<P))dp1dP2dP3>

+N4 (s“u1u2u3

O

P1P2P3
x(xyt) = 22 —y2—22—N;! (s"‘uluzu3 [ J NS (yz XXx)y +xz(y;(y) + xy(zxz), )dpldpzdm)
000
B P1P2P3 n (63)
+N4 s“u1u2u3 ‘Of bf L.[(NAL (]/ZIPXX - xz4’Xy — XYXXz — xyZX))dpldp2dp3 .
By applying Equations (56)—(59), we obtain
Yo(x,y,z,t) = 2x2 —y —22, ¢o(x,y,2,t) = 2x%2 — > — 22, 64)
xo(x,y,z,t) = 2x2—y —22
and the remaining components, ¥y, 11, ¢p41, and xX,41,1n > 0, are given by
1 " P1 P2 P3 N
Fur1(xy,t) = =Ny smigm J S/ N (yz(x‘f’nx)x—i—xz(y‘f’ny)y+xy(z‘f’nz)z>dp1dp2dp3

000 (65)

1 " P1 P2 P3 N

+N4 sfuqupus f f f(NzL <yZA'Vl + xzB, + xycn - xyzqfn))dpldfhdp?» ’
000
1 " P1pP2P3 n
Pnir(xy,2t) = =Ny | swbig J | T NS (yZ(x%)x+x2(y¢ny)y+xy(2¢nz)z)dmdpzdps
000
1 " P1P2P3 N (66)
+N4 s“ufu2u3 f f f(N4 (yZD” + xzEn + xyFy — xyz¢”)>dp1dp2dp3 ’
000

and
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" P1P2P3
Ko (2 ) = =N i [T NG (v + 22 (), + xy(zm>z)df’1d”2d”3>
000
1 o P1P2P3 n (67)
+N4 s uq U3 Of ‘Of {(NAL (]/ZGn + xzHy + xyK,; — X]/Z)(n))dpldpzdpg, .

where the first few terms of the Adomian polynomials, Ay, By, Cy, Dy, Ey, Fu, Gn, Hy, and K,
are given by Equations (23)—(31), respectively. By substituting n = 0 into Equations (65)—(67),

we obtain
1 N P1P2P3 n
Ny zt) = =Ny | smn Of Ofbe4 (J/Z(x‘f’Ox)x +xz(y‘f’0y)y+xy(z‘f’0z)z)dP1dP2dP3
. " P1P2P3 N (68)
Ny s bf of Of(N4 (yzAo + xzBy + xyCo — xyz'¥y) ) dp1dpadps
el = (F-y -2ty
1 P1P2P3
¢1(x,y,z,t) = —Nj s“ulum {OfOfN ( z(x¢ox ), + xz(y%y)y + xy(ng()z)z)dpldpzdpg
1 P1pP2P3 + (69)
+N, S"‘u1uzu3 of Of Of(N (yzDg + xzEg + xyFy — xyz¢0))dp1dp2dp3
pilxyt) = (22 -y = 2) il
and
1 " P1P2P3 N
x(xyzt) = N wlem Of befN4 (]/Z(XXOx)x+xZ(yXOy)y+x]/(ZXOz)Z)dP1dP2dP3
1 P1P2P3 (70)
+ N, s“u1u2u3 ‘of b[ Of(N (yzGo + xzHp + xyKo — xyzx0) )dp1dp2dps
xi(xyt) = (ZX _y _Z) uc+1
Similarly, at n = 1, we obtain
1 " P1P2P3 N
HB(xyzt) = Ny | simn of OfOfN4 (yz(x‘fﬁx)x—|—xz(y‘f’1y)y+xy(z‘f’1z)z)dp1dp2dp3
P1p2p3 (71)
+ N o [ (NS (yzA1 + x2By + xyCy — xyz'H) ) dprdpadps
000
20
Yo(x,y,2,t) = (2x -y _Zz)rztaﬂ
1 " P1P2P3 N
$2(,y,2t) = =Ny | s of ofofN4 (yz(x¢1x)x+x2(]/4’1y)y+x1/(z¢1z)z)dP1dP2dP3
1 o P1pP2P3 " (72)
N wmn of g’ Of(N4 (yzDq + xzEq + xyFy — xyz¢y ) )dp1dpadps
20
pa(xyt) = (222 = 2)

and
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NS (yZ(xxlx)x +xz(yxiy), + xy(lez>z)dp1dpzdps>

1 " P1pP2P3
XZ(xfyf z, t) = 7N4 s“ufuzug f f f
000
1 o P1 P2 P3 n (73)
+N4 s“u1u2u3 f f f (N4 (]/ZGl + xZH1 + xyKl - xszl))dpldPde3
000
20
x(xoyt) = (22%-y* -2 1"(2tzx+l)'
Atn =2 s
t o
Byt = (28 v -2 gy
t3tX
oy t) = (27 = =2 pa
and 3
114
oy t) = (20 =7 =) pa gy
At n = 3, we have
t4t¥
oyt = (27 -7 )y
t4lX
pilyt) = (27 =9 =2 ) g
and .
t {4
Xa(x,y,t) = (2x2 —y - Zz) T+ 1)
The solution to Equation (60) is given by
¥Y(x,yzt) = Yo+H+H+...+¥%+
p(x,y,z,t) = Po+Ppr+po+...+¢n+
x(xy,zt) = xo+xi+xe+.---+xant......
Hence, the solution is given by
— 2_ 2 2 12 3
Y(xyzt) = (2% -y’ —2)(1+ F(a—i—l) Troon tean )
— 2_ .2 .2 12 13«
¢y, zt) = (2x Yz ) 1+ r(a+1) + T(2a+1) + T(Ba+1) o) (74)
2 3a
x(xyzt) = (- —2%)(1+ r(a+1) + (2ta+1) + e

When « = 1 is substituted into Equation (60), we obtain the solution to the singular (3+1)-
dimensional time-fractional coupled Burgers’ equation

¥ T+ 5 (W), + 1), — ¥ - 74>5Vy ¥, +¥

¢ = ()t (), + 1(zg:), — Ly, - TPy — x</>z +¢

o= (), +y (), + 2 (2xe). — 3 ¥ - y4>xy Lxe+x
x,y,t > 0,

with the initial conditions

¥(x,y,2,0) = 2x*—y*—22, ¢(x,y,2,0) = 2x> —y? — 22,
x(x,y,20) = 2x2—y?—22
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which is given by
¥(x,y,zt) = (262 —y2—22)e, ¢(x,y,2,1) = (222 — 2 — 22)¢!
x(xyzt) = (222 —y2—22)e.

For 0 < a < 1, in a similar manner, it can be proved that the series is absolutely convergent.
In order to illustrate the convergence, let us consider, for example, z = y = 0 and « = 0.25.
Figure 3a,b illustrate the convergence of the series representing the function ¢ with respect to
x at t = 2 and with respect to t at x = 1, respectively, which clearly converges rapidly to the
exact solution after a few terms. In order to display the three-dimensional demonstration for the
results of Example 2, we take different values of the variables. Figure 4a,b show the exact solution
¥(x,y,z,t)ata =1,y = Qwith x = 0,z = 0, respectively. The illustrations were generated using
Maple software.
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Figure 3. (a) The convergence of the series representing ¥ with respect to x at &« = 0.25. (b) The
convergence of the series representing ¥ with respect to t at & = 0.25.
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Figure 4. (a) The function ¥(x,y,z,t) at x = 0,y = 0. (b) The function ¥(x,y,z,t) atz =0,y = 0.

5. Conclusions

This study introduces a numerical method for solving the (3+1)-dimensional time-
fractional coupled Burgers’ equation and its associated initial conditions. The method pro-
posed herein integrates the four-dimensional natural transform techniques and Adomian
decomposition methods to formulate the FNADM technique. By effectively leveraging the
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four-dimensional natural transform, the FNADM method addresses the Caputo fractional
derivative of (3+1)-dimensional functions in coupled Burgers’ equations. Two illustrative
examples accompanied by figures demonstrate the convergence of the series generated by
the FNADM method. The computational findings and graphical representations underscore
the method’s efficacy and suitability for solving high-dimensional fractional differential
equations. This method introduces a numerical approach to handle multi-dimensional
fractional differential equations and exhibits potential applicability across diverse real-
world problems. Future research directions may involve investigating the stability and
error analysis of FNADM and extending its applicability to more complex problems.
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