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Abstract: The focus of the present work is on the establishment and investigation of the coefficient
estimates of two new subclasses of bi-close-to-convex functions and bi-concave functions; these are of
an Ozaki type and involve a modified Caputo’s fractional operator that is associated with three-leaf
functions in the open unit disc. The classes are defined using the notion of subordination based on
the previously established fractional integral operators and classes of starlike functions associated
with a three-leaf function. For functions in these classes, the Fekete-Szegö inequalities and the initial
coefficients, |a2| and |a3|, are discussed. Several new implications of the findings are also highlighted
as corollaries.
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1. Introduction and Preliminaries

The investigation presented in this article deals with new classes of bi-univalent
functions defined by applying the means of the geometric function theory combined with
fractional calculus aspects. In order to get acquainted with the context of the research, let’s
begin by stating the basic notions.

In the open unit disc ∆ = {ξ : |ξ| < 1}, let A symbolize the class of analytic functions
of the following form:

G(ξ) = ξ + ∑
n≥2

anξn, ξ ∈ ∆ (1)

normalized by the conditions G(0) = 0 and G ′(0) = 1. Additionally, let S ⊆ A be the class
of all functions in ∆ that are univalent.

Several subclasses of S , such as the starlike function, convex function, and close-to-
convex functions have the geometrical conditions(

ℜ ξG ′(ξ)

G(ξ)

)
> 0; ℜ

(
(ξG ′(ξ))′

G ′(ξ)

)
> 0; ℜ

(
G(ξ)
G(ξ) > 0

)
and many others have been worked on certain geometric properties discussed in the
literature. Among the prominent and extensively studied subclasses of S are the class
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CV(α) of convex functions of the order of α (0 ≤ α < 1), and ST (α), the class of starlike
functions of the order of α (for details, see [1]). The research into geometric function theory
has been very active in recent years, and the typical problem in this field is studying a
function made up of the combinations of the initial coefficients of the functions f ∈ A. For a
function in the class S , it is well-known that |an| is bounded by n. Moreover, the coefficient
bounds give information about the geometric properties of those functions. For instance,
the bound for the second coefficients of the class S gives the growth and distortion bounds
for the class.

Let G1,G2 ∈ A. The notation G1(ξ) ≺ G2(ξ) indicates that function G1 is subordinate to
G2, provided that there exists ϖ ∈ A, with ϖ(0) = 0 and |ϖ(ξ)| < 1, so that G1(ξ) = G2(ϖ(ξ)).

The Koebe one-quarter theorem confirms that the image of ∆ under every univalent
function G ∈ A comprises a disk of radius 1

4 . Thus, for each function G ∈ S , there is an
inverse G−1 defined by

G−1(G(ξ)) = ξ (ξ ∈ ∆)

and G(G−1(w)) = w (|w| < r0(G); r0(G) ≥ 1/4)

with

G−1(w) = H(w) = w − a2w2 + (−a3 + 2a2
2)w

3 − (a4 − 5a2a3 + 5a3
2)w

4 + · · · . (2)

The family of all bi-univalent functions in ∆ denoted by Σ is defined as

Σ =
{
G ∈ A : G,G−1 ∈ S

}
.

We review a number of functions in the Σ family shown in Srivastava et al. [2],

ξ

1 − ξ
, − log(1 − ξ) and

1
2

log
(

1 + ξ

1 − ξ

)
,

with the inverses that relate to them:

w
1 + w

,
ew − 1

ew and
e2w − 1
e2w + 1

.

We can note that the family Σ is not empty, though the Koebe function is not a member of

Σ. Additionally, the functions ξ − ξ2

2 and ξ
1−ξ2 are not bi-univalent.

Bi-starlike functions of the order α(0 < α ≤ 1) denoted by S∗
Σ(α) and bi-convex

functions of the order α denoted by CVΣ(α) were presented by Brannan and Taha [3].
The first two Taylor-Maclaurin coefficients, |a2| and |a3|, were shown to have non-sharp
estimates for each of the function classes S∗

Σ(α) and CVΣ(α) [3,4]. Unfortunately, there is
still an unresolved problem for each of the Taylor-Maclaurin coefficients |an|(n ∈ N \ {1, 2}).
After studying many interesting subclasses of Σ, a number of authors (see [2,5–12] and
references cited therein) came to the conclusion that the estimations of the first two Taylor-
Maclaurin coefficients, |a2| and |a3|, are not sharp.

Modified Caputo’s Fractional Operator

Certain aspects of fractional calculus have been included in the studies pertaining to
geometric function theory. Fractional calculus is an area of mathematics that is derived
from the traditional definition of calculus, which includes integral and derivative operators.
In the same way, the exponents that are integer numbers are the source of fractional
exponents. The development of fractional calculus began with a hypothetical question
posed in a 1695 letter from G F A de L’Hospital to G W Leibniz: “What if the order of
the derivative dn

dtn such that n = 1
2 .′′ He replied, “It will lead to a paradox, from which

useful consequences will be drawn one day.” (See [13,14] for additional details). Several
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mathematicians, including Riemann, Liouville, L Euler, Letnikov, Grunwald, Marchuad,
Weyl, Riesz, Caputo, Abel, and others, were inspired by the discussion between the two
well-known mathematicians and worked to expand upon, generalize, and formulate the
theory of non-integer orders [15–17]. Numerous domains, including physics, mechanics,
engineering, and biology [18], use fractional derivatives and fractional integrals. In the
field of geometric function theory, the definitions provided by Owa (1978) [19] are relevant,
and we refer to them in this investigation.

Definition 1 ([19]). Assume that the function G is analytic in a simply connected region of the
ξ− plane that contains the origin.

The fractional integral of G of the order τ is defined by

D−τ
ξ G(ξ) = 1

Γ(τ)

ξ∫
0

G(t)
(ξ − t)1−τ

dt, τ > 0, (3)

and the fractional derivatives of G of the order τ, is defined by

Dτ
ζ G(ξ) =

1
Γ(1 − τ)

d
dξ

ξ∫
0

G(t)
(ξ − t)τ

dt, 0 ≤ τ < 1, (4)

where the multiplicity of (ξ − t)1−τ and (ξ − t)−τ is removed by requiring log(ξ − t) to be real
when ξ − t > 0.

Definition 2 ([19]). The fractional derivative of G of the order n + τ is defined by

Dn+τ
ξ G(ξ) = dn

dξn D
τ
ξ G(ξ), 0 ≤ τ < 1 ; n ∈ N0. (5)

Using the aforementioned definitions and their established expansions concerning frac-
tional derivatives and fractional integrals, Srivastava and Owa [20] constructed the following
operator:

Ωϱ : A → A,

ΩϱG(ξ) = Γ(2 − ϱ)ξϱDϱ
ξG(ξ) = ξ + ∑

n≥2
Φ(n, ϱ)anξn,

where

Φ(n, ϱ) =
Γ(n + 1)Γ(2 − ϱ)

Γ(n + 1 − ϱ),

and ϱ ∈ R; ϱ ̸= 2, 3, 4, · · · .
For G ∈ A and various choices of ϱ, we obtain a different operator. We mention the

following:

Ω0G(ξ) = G(ξ) = z +
∞

∑
n=2

anzn (6)

Ω1G(ξ) = ξG ′
(ξ) = ξ + ∑

n≥2
nanξn (7)

ΩjG(ξ) = Ω(Ωj−1G(ξ)) = ξ + ∑
n≥2

njanξn, j = 1, 2, 3, . . . (8)

which is known as a Sălăgean operator (Sălăgean, 1983) [21]. Additionally,

Ω−1G(ξ) = 2
ξ

∫ ξ

0
G(t)dt = ξ + ∑

n≥2

(
2

n + 1

)
anξn
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and

Ω−jG(ξ) = Ω−1(Ω−j+1G(ξ)) = ξ + ∑
n≥2

(
2

n + 1

)j
anξn, (j = 1, 2, 3, ...) (9)

This is called a Libera integral operator and was generalized by Bernardi (1969) [22],
given by

1 + ν

ξν

∫ ξ

0
tν−1G(t)dt = ξ + ∑

n≥2

(
1 + ν

n + 1

)
anξn, ν = 1, 2, 3, . . .

commonly known as Bernardi integral operator.
We examine Caputo’s definition (Caplinger and Causey, 1973) [23] of the fractional-

order derivative throughout this paper, assuming that

DαG(t) = 1
Γ(n − α)

t∫
a

G(n)(τ)

(t − τ)α+1−n dτ (10)

where n − 1 < ℜ(α) ≤ n, n ∈ N. Additionally, as α is the starting value of the function G, it
can be real or even complex.

Salah and Darusin (2004) [24]defined the following operator

Cϑ
τ f (z) =

Γ(2 + ϑ − τ)

Γ(ϑ − τ)
zτ−ϑ

∫ z

0

Ωϑ f (t)
(z − t)τ+1−ϑ

dt (11)

where ϑ (real number) and (ϑ − 1 < τ < ϑ < 2). Simple, straightforward computations for
G ∈ A give

Cϑ
τG(ξ) = ξ + ∑

n≥2

Γ(2 + ϑ − τ)Γ(2 − ϑ)(Γ(n + 1))2

Γ(n − ϑ + 1)Γ(n + ϑ − τ + 1)
anξn ξ ∈ ∆ (12)

= ξ + ∑
n≥2

Ξn(ϑ, τ)anξn ξ ∈ ∆

where

Ξn(ϑ, τ) =
Γ(2 + ϑ − τ)Γ(2 − ϑ)(Γ(n + 1))2

Γ(n − ϑ + 1)Γ(n + ϑ − τ + 1)
. (13)

Furthermore, note that C0
0G(ξ) = G(ξ) and C1

1G(ξ) = ξG ′
(ξ).

Several scholars have recently examined the subclass of starlike functions S∗(Λ) using the
following criteria:

S∗(Λ) =

{
G ∈ A :

ξG ′
(ξ)

G(ξ) ≺ Λ(ξ)

}
, (14)

where Λ(ζ) = (1 + ξ)/(1 − ξ). Recently, the notion of subordination has been used to
develop several analytic function classes based on the geometrical interpretation of their
image domains, such as the right half plane, circular disc, oval, and petal, conic domain,
generalized conic and leaf-like domains, by varying Λ in (14). Here are just a few of them:

1. Cho et al. [25] fixed Λ(ξ) = 1 + sin ξ, and Mendiratta et al. [26] considered Λ(ξ) = eξ

and discussed the class S for certain geometric properties and radii problems.
2. Sharma et al. [27] considered Λ(ξ) = 1 + 4

3 ξ + 2
3 ξ2, which is a petal-shaped domain,

and Wani and Swaminathan [28] fixed Λ(ξ) = 1 + ξ − 1
3 ξ3, which maps ∆ onto the

interior of the two-cusped-kidney-shaped region and discussed applications of the
general coefficient problem for some subclasses of S .

3. Assuming Λ(ξ) =
√

1 + ξ, Sokól [29] developed a new class that is bounded by the
lemniscate of Bernoulli in the right half plane.
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4. By fixing Λ(ξ) = ξ +
√

1 + ξ2, which maps ∆ to a crescent-shaped region, the initial
Taylor coefficients for subclasses S were introduced and discussed by Raina and
Sokól [30].

All these above subclasses of starlike functions have been extensively studied for initial
coefficient bounds, Fekete-Szegö inequalities, and Hankel inequalities. Lately, Gandhi [31]
defined the class of starlike functions connected with three-leaf functions as

S∗
3L =

{
G ∈ A :

ξG ′
(ξ)

G(ξ) ≺ Λ(ξ) = 1 +
4
5

ξ +
1
5

ξ4, ξ ∈ ∆

}

and studied certain subclasses of analytic functions defined by the subordination to the
three-leaf function. Motivated by the study on bi-univalent functions (see [2,8–12] and
references cited therein), in Sections 2 and 3 of this article, using the modified Caputo’s frac-
tional operator, we introduced two new subclasses, namely Ozaki-type bi-close-to-convex
functions and bi-concave functions, in the open unit disc, as given in Definitions 4 and 5
by subordinating this to the three-leaf function, respectively. For functions in these classes,
the initial coefficients |a2| and |a3| are established, and we discuss the bounds on Fekete-
Szegö results, which have not been studied so far for the function classes related to the
three-leaf function.

2. Ozaki-Type Bi-Close-to-Convex Function

The class K, knonw as close-to-convex functions, was first formally introduced by
Kaplan [32] in 1952. Ozaki [33] had already considered these functions in 1935 for A,
satisfying the following condition

ℜ
(

1 +
ξG ′

(ξ)

G(ξ)

)
> −1

2
, ξ ∈ ∆. (15)

It follows from the original definition of Kaplan [5] that functions satisfying (15) are close-
to-convex and are, therefore, members of S . These functions are known to be univalent and
close-to-convex. Lately, Kargar and Ebadian [34] proposed the following as the generaliza-
tion of Ozaki’s condition (for more details, see [35,36]):

Definition 3 ([34]). For − 1
2 < ℘ ≤ 1

2 , and let G ∈ A be locally univalent. Then, G ∈ A is called
an Ozaki close-to-convex function in ∆ if

ℜ
(

1 +
ξG ′

(ξ)

G(ξ)

)
>

1
2
− ℘, ξ ∈ ∆.

Now, we define the Ozaki-type bi-close-to-convex function:

Definition 4. The family OCVΣ(℘; ϑ) contains all the functions G ∈ Σ if the below subordinations
are satisfied:

2℘− 1
2℘+ 1

+
2

2℘+ 1

(
((ξCϑ

τG(ξ))′)′

(Cϑ
τG(ξ))′

)
≺ Λ(ξ)

and
2℘− 1
2℘+ 1

+
2

2℘+ 1

(
((wCϑ

τH(w))′)′

(Cϑ
τH(w))′

)
≺ Λ(w),

where 1
2 ≤ ℘ ≤ 1 and H(w) = G−1(w).
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Remark 1. By fixing ℘ = 1
2 , the family OCVΣ(℘; ϑ) = CVΣ(ϑ) contains all the functions G ∈ Σ

if it satisfies the following:(
((ξCϑ

τG(ξ))′)′

(Cϑ
τG(ξ))′

)
≺ Λ(ξ) and

(
((wCϑ

τH(w))′)′

(Cϑ
τH(w))′

)
≺ Λ(w),

where H(w) = G−1(w).

In order to derive our main results, we need the following lemma:

Lemma 1 ([37]). Let P be the family of all functions, h, which are analytic in ∆ with ℜ(h(ξ)) > 0
and are given by

h(ξ) = 1 + p1ξ + p2ξ2 + · · · , (ξ ∈ ∆)

then
|pk| ≤ 2, ∀ k.

For the sake of brevity in notation, we let

Ξ2 =
4Γ(2 + ϑ − τ)Γ(2 − ϑ)

Γ(3 + ϑ − τ)Γ(1 − ϑ)
, Ξ3 =

36Γ(2 + ϑ − τ)Γ(2 − ϑ)

Γ(4 + ϑ − τ)Γ(4 − ϑ)
(16)

and
Λ(ξ) := 1 +

4
5

ξ +
1
5

ξ4 (17)

unless otherwise stated.

Theorem 1. Let G ∈ OCVΣ(℘; ϑ) ( 1
2 ≤ ℘ ≤ 1) and G have the form (1). Then,

|a2| ≦ min

{√
2(2℘+ 1)

5Ξ2
,

√
2(2℘+ 1)√

5{2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2}

}

and

|a3| ≦ min

{
2℘+ 1
15Ξ3

+
2(2℘+ 1)2

25Ξ2
2

,
(2℘+ 1)

15Ξ3
+

2(2℘+ 1)2

5{2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2}

}

where Ξ2 and Ξ3 are as assumed as per (16).

Proof. Define the functions p(ξ) and q(ξ) by

p(ξ) :=
1 + u(ξ)
1 − u(ξ)

= 1 + b1ξ + b2ξ2 + · · ·

and

q(ξ) :=
1 + v(ξ)
1 − v(ξ)

= 1 + c1ξ + c2ξ2 + · · · .

Then, p(ξ) and q(ξ) are analytic in ∆ with p(0) = 1 = q(0). It follows that

u(ξ) :=
p(ξ)− 1
p(ξ) + 1

=
1
2

[
b1ξ +

(
b2 −

b2
1

2

)
ξ2 + · · ·

]

and

v(ξ) :=
q(ξ)− 1
q(ξ) + 1

=
1
2

[
c1ξ +

(
c2 −

c2
1

2

)
ξ2 + · · ·

]
.
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Since u, v : ∆ → ∆, the functions p, q have a positive real part, and |bi| ≤ 2 and |ci| ≤ 2 for
each i.

Now,

Λ(u(ξ)) = 1 +
4
5

u(ξ) +
1
5
(u(ξ))4

= 1 +
2
5

b1ξ +

(
2
5

b2 −
1
5

b2
1

)
ξ2 +

(
1

10
b3

1 −
2
5

b2b1 +
2
5

b3

)
ξ3 + · · · . (18)

and

Λ(v(w)) = 1 +
2
5

c1w +

(
2
5

c2 −
1
5

c2
1

)
w2 +

(
1

10
c3

1 −
2
5

c2b1 +
2
5

c3

)
w3 + · · · . (19)

Assume that G ∈ OCVΣ(℘; ϑ) and H = G−1. Specifically, there exist holomorphic
functions u, v : ∆ −→ ∆, hence,

2℘− 1
2℘+ 1

+
2

2℘+ 1

(
((ξCϑ

τG(ξ))′)′

(Cϑ
τG(ξ))′

)
= Λ(u(ξ)), where ξ ∈ ∆, (20)

and
2℘− 1
2℘+ 1

+
2

2℘+ 1

(
((wCϑ

τH(w))′)′

(Cϑ
τH(w))′

)
= Λ(v(w)), where w ∈ ∆. (21)

From (20) and (21), we deduce that

2℘− 1
2℘+ 1

+
2

2℘+ 1

(
((zCϑ

τG(ξ))′)′

(Cϑ
τG(ξ))′

)
= 1 + 4

5 u(ξ) + 1
5 (u(ξ))

4

= 1 + 2
5 b1ξ +

(
2
5 b2 − 1

5 b2
1

)
ξ2 +

(
1

10 b3
1 −

2
5 b2b1 +

2
5 b3

)
ξ3 + · · · , (22)

and

2℘− 1
2℘+ 1

+
2

2℘+ 1

(
((zCϑ

τ g(w))′)′

(Cϑ
τ g(w))′

)
= 1 + 4

5 v(w) + 1
5 (v(w))4

= 1 + 2
5 c1w +

(
2
5 c2 − 1

5 c2
1

)
w2 +

(
1

10 c3
1 −

2
5 c2b1 +

2
5 c3

)
w3 + · · · . (23)

Equating the coefficients in (22) and (23) yields

4
2℘+ 1

Ξ2a2 =
2
5

b1, (24)

12
2℘+ 1

Ξ3a3 −
8

2℘+ 1
Ξ2

2a2
2 =

2
5

b2 −
1
5

b2
1, (25)

− 4
2℘+ 1

Ξ2a2 =
2
5

c1 (26)

and
12

2℘+ 1
(2a2

2 − a3)Ξ3 −
8

2℘+ 1
Ξ2

2a2
2 =

2
5

c2 −
1
5

c2
1. (27)

From (24) and (26), we have
b1 = −c1 (28)

and
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32

(2℘+ 1)2 Ξ2
2a2

2 =
8
25

(b2
1 + c2

1)

100

(2℘+ 1)2 Ξ2
2a2

2 = b2
1 + c2

1 (29)

a2
2 =

(2℘+ 1)2

100Ξ2
2

(b2
1 + c2

1). (30)

According to triangular inequality, we have

|a2|2 ≤ |2℘+ 1|2

|100Ξ2
2|

(|b1|2 + |c1|2)

By applying Lemma 1 for the coefficients b1, c1, in (30) , we obtain

|a2| ≤
√

2(2℘+ 1)
5Ξ2

.

If we add (25) to (27), we obtain

8(3Ξ3 − 2Ξ2
2)

2℘+ 1
a2

2 =
2
5
(b2 + c2)−

1
5
(b2

1 + c2
1). (31)

By substituting from (29) the value of b2
1 + c2

1 in the relation (31), we deduce that

a2
2 =

(2℘+ 1)2(b2 + c2)

10{2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2}
. (32)

By applying Lemma 1 for the coefficients b2, c2 in (32), we obtain

|a2| ≦
√

2(2℘+ 1)√
5{2(2℘+ 1)(3Ξ3 − 2Ξ2

2) + 5Ξ2
2}

.

By subtracting (25) from the relation (27) and applying b2
1 = c2

1, (28) we obtain |a3|. Hence,
this yields

24Ξ3

2℘+ 1
(a3 − a2

2) =
2
5
(b2 − c2),

a3 =
(2℘+ 1)(b2 − c2)

60Ξ3
+ a2

2 (33)

By applying Lemma 1 to the coefficients b2, c2, and then by using (30) in (33), we have

|a3| ≦
2℘+ 1
15Ξ3

+
2(2℘+ 1)2

25Ξ2
2

.

Additionally, from (32) and (33), we get

a3 =
(2℘+ 1)(b2 − c2)

60Ξ3
+

(2℘+ 1)2(b2 + c2)

10{2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2}

and we have

|a3| ≦
(2℘+ 1)

15Ξ3
+

2(2℘+ 1)2

5{2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2}
.
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Fekete-Szegö Problem

By utilizing a2
2 and a3 values and motivated by Zaprawa’s recent work [38], as given

in the below lemma, we prove the Fekete-Szegö problem for G ∈ OCVΣ(℘; ϑ) in the
following theorem.

Lemma 2 ([38]). Let l1, l2 ∈ R and p1, p2 ∈ C. If |p1|, |p2| < ζ, then

|(l1 + l2)p1 + (l1 − l2)p2| ≤
{

2|l1|ζ , |l1| ≥ |l2|
2|l2|ζ , |l1| ≤ |l2|

Theorem 2. For 1
2 ≤ ℘ ≤ 1; h̄ ∈ R, and let G ∈ OCVΣ(℘; ϑ) be of the form (1). Then,

∣∣∣a3 − h̄a2
2

∣∣∣ ≤


2℘+1
15Ξ3

, 0 ≦ |ϕ(h̄,℘)| ≤ 2℘+1
6Ξ3

,

2
5 |ϕ(h̄, ξ)|, |ϕ(h̄,℘)| ≥ 2℘+1

6Ξ3
.

Proof. It follows from (32) and (33) that

a3 − h̄a2
2 =

(2℘+ 1)(b2 − c2)

60Ξ3
+ (1 − h̄)a2

2

=
(2℘+ 1)(b2 − c2)

60Ξ3
+ (1 − h̄)

(2℘+ 1)2(b2 + c2)

10{2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2}

=
1

10

[(
ϕ(h̄,℘) +

2℘+ 1
6Ξ3

)
b2 +

(
ϕ(h̄,℘)− 2℘+ 1

6Ξ3

)
c2

]
,

where

ϕ(h̄,℘) =
(2℘+ 1)2(1 − h̄)

2(2℘+ 1)(3Ξ3 − 2Ξ2
2) + 5Ξ2

2
.

According to Lemma 2, we obtain

∣∣∣a3 − h̄a2
2

∣∣∣ ≦


2℘+1
15Ξ3

, 0 ≤ |ϕ(h̄,℘)| ≤ 2℘+1
6Ξ3

,

2
5 |ϕ(h̄, ξ)|, |ϕ(h̄,℘)| ≥ 2℘+1

6Ξ3
.

By fixing h̄ = 1 in Theorem 2, we obtain the following result:

Corollary 1. If G ∈ OCVΣ(℘; ϑ) is as given in (1), then∣∣∣a3 − a2
2

∣∣∣ ≦ 2℘+ 1
15Ξ3

.

3. A New Class of Bi-Concave Functions

The function G : ∆ → C is said to belong to the family of concave functions CV0(α), if
G satisfies the following conditions:

1. G ∈ A with G(0) = G ′
(0)− 1 = 0;

2. G maps ∆ conformally onto a set whose complement with respect to C is convex;
3. The opening angle of G(∆) at ∞ is less than or equal to πα, α ∈ (1, 2].
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The class of concave univalent functions is referred to by CV0(α) (see [39,40]) if the
following inequality holds:

ℜ
(

1 +
ξ G ′′

(ξ)

G ′(ξ)

)
< 0, (ξ ∈ ∆).

Bhowmik et al. [41] showed that the function G ∈ A maps ∆ onto a concave domain
of angle πα if and only if ℜ(PG(ξ)) > 0, where

PG(ξ) =
2

α − 1

[
(α + 1)(1 + ξ)

2(1 − ξ)
− 1 − ξ G ′′

(ξ)

G ′(ξ)

]
.

Numerous studies have been conducted on the fundamental subclasses of concave
univalent functions (see [39,42–47]).

Motivated by the mentioned results, this is the first time we define a new subclass of
bi-concave functions BCVϑ

τ(λ) associated with the three-leaf domain:

Definition 5. Let G ∈ A have the form (1) if it is said to be in the class BCVϑ
τ(λ) if it satisfies the

following conditions:

2
λ − 1

 (1 + λ)(1 + ξ)

2(1 − ξ)
− 1 −

ξ
(
Cϑ

τG(ξ)
)′′(

Cϑ
τG(ξ)

)′
 ≺ Λ(ξ), (34)

and
2

λ − 1

 (1 + λ)(1 + w)

2(1 − w)
− 1 −

w
(
Cϑ

τH(w)
)′′(

Cϑ
τH(w)

)′
 ≺ Λ(w), (35)

with λ ∈ (1, 2] and H(w) = G−1(w).

Theorem 3. Let G ∈ A, as in the form (1). If G ∈BCVϑ
τ(λ), then

|a2| ≤ min


√

13λ2 + 30λ + 17
20Ξ2

2
+

(λ − 1)2

25Ξ2
2

;

√
λ∣∣2Ξ2

2 − 3Ξ3
∣∣
}

;

and

|a3| ≤ min

{
13λ2 + 30λ + 17

20Ξ2
2

+
4(λ − 1)2

25Ξ2
2

+
λ − 1
6Ξ2

,

λ(
2Ξ2

2 − 3Ξ3
) + λ − 1

6Ξ3

}
, (36)

where λ ∈ (1, 2], Ξ2 and Ξ3 are as assumed as per (16).

Proof. If G ∈ BCVϑ
τ(λ) from (34) and (35), it follows that

2
λ − 1

 (1 + λ)(1 + ξ)

2(1 − ξ)
− 1 −

ξ
(
Cϑ

τG(ξ)
)′′(

Cϑ
τG(ξ)

)′
 = Λ(u(ξ)), (37)

and
2

λ − 1

 (1 + λ)(1 + w)

2(1 − w)
− 1 −

w
(
Cϑ

τH(w)
)′′(

Cϑ
τH(w)

)′
 = Λ(v(w)). (38)

By equalizing the coefficients of ξ and w in (37) and (38), it is obvious that
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2[(1 + λ)− 2Ξ2a2]

λ − 1
=

2
5

b1, (39)

2
[
(1 + λ) + 4Ξ2

2a2
2 − 6Ξ3a3

]
λ − 1

=
2
5

b2 −
1
5

b2
1, (40)

−2[(1 + λ)− 2Ξ2a2]

λ − 1
=

2
5

c1, (41)

and
2
[
(λ + 1) + 4Ξ2

2a2
2 − 6Ξ3

(
2a2

2 − a3
)]

λ − 1
=

2
5

c2 −
1
5

c2
1. (42)

By using (39) and (41), we obtain
b1 = −c1, (43)

and from (39), we can write

a2 =
(λ + 1)

2Ξ2
− (λ − 1)

10Ξ2
b1. (44)

|a2| ≤ (λ + 1)
2Ξ2

+
|λ − 1|

5Ξ2

When squaring (39) and (41) after adding the relations, we obtain

a2
2 = −3(λ + 1)2

4Ξ2
2

+

(
λ2 − 1

)
10Ξ2

2
+

(λ − 1)2(b2
1 + c2

1
)

200Ξ2
2

. (45)

|a2
2| ≤

13λ2 + 30λ + 17
20Ξ2

2
+

(λ − 1)2

25Ξ2
2

. (46)

Thus, we get

|a2| ≤

√
13λ2 + 30λ + 17

20Ξ2
2

+
(λ − 1)2

25Ξ2
2

,

By adding (40) and (42), we have

a2
2 =

1
8
(
2Ξ2

2 − 3Ξ3
) ((λ − 1)(b2 + c2)− 4(λ + 1)). (47)

|a2
2| ≤ 1

8
∣∣2Ξ2

2 − 3Ξ3
∣∣ |(λ − 1)(b2 + c2)− 4(λ + 1)| (48)

=
λ∣∣2Ξ2

2 − 3Ξ3
∣∣ , (49)

which gives the bound for |a2|, as we asserted in our theorem.
In order to find the bound for |a3|, by subtracting (42) from (40), we obtain

a3 = a2
2 −

(λ − 1)(b2 − c2)

24Ξ2
. (50)

Additionally, upon substituting the value of a2
2 in view of (45) and (47) in (50), we obtain

a3 = −13λ2 + 30λ + 17
20Ξ2

2
+

(λ − 1)2(b2
1 + c2

1
)

200Ξ2
2

− (λ − 1)(b2 − c2)

24Ξ2
, (51)
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and
a3 =

1
8
(
2Ξ2

2 − 3Ξ3
) ((λ − 1)(b2 + c2)− 4(λ + 1))− (λ−1)(b2−c2)

24Ξ3
. (52)

By taking the absolute value of (51) and (52), we obtain

|a3| ≤
13λ2 + 30λ + 17

20Ξ2
2

+
4(λ − 1)2

25Ξ2
2

+
|λ − 1|

6Ξ2
,

and
|a3| ≤

λ(
2Ξ2

2 − 3Ξ3
) + λ − 1

6Ξ3
.

This concludes the theorem’s proof.

4. Conclusions

The research described here deals with two novel subclasses of Ozaki-type bi-close-to-
convex functions (OCVΣ(℘; ϑ)) and bi-concave functions (BCVϑ

τ(λ)) that involve three-leaf
functions in the open unit disc and modified Caputo’s fractional operator. This is the first
time we have obtained the initial coefficients |a2| and |a3| for the functions that are part of
the classes OCVΣ(℘; ϑ) and BCVϑ

τ(λ). In addition, the Fekete-Szegö inequalities have been
studied for G ∈ OCVΣ(℘; ϑ). By fixing the parameters, a number of novel consequences
from the findings can be highlighted as corollaries. These subclasses of functions have not
been previously examined in the literature in relation to any of the geometrical domains
mentioned in [10,25–31] associated with modified Caputo’s fractional operator.

We conclude that one can determine new results for various new subclasses ofOCVΣ(℘; ϑ)
and BCVϑ

τ(λ) by selecting a specific Λ related to the series associated with telephone numbers,
Van der Pol Numbers (VPNs), Gregory coefficients, and rational functions (see [11,12,48]).
In conclusion, considering the tremendous amount of research embedding q-calculus into
geometric function theory (see, for example, [49] and the references stated therein), this research
could inspire future q-calculus developments for the above-mentioned classes by applying
some obvious parametric and argument variations.
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38. Zaprawa, P. On the Fekete-Szegő problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 1–192.

[CrossRef]
39. Bayram , H.; Altinkaya, S. General Properties of Concave Functions Defined by the Generalized Srivastava-Attiya Operator.

J. Comput. Anal. Appl. 2017, 23, 408–416.
40. Cruz, L.; Pommerenke, C. On Concave Univalent Functions. Complex Var. Elliptic Equ. 2007, 52, 153–159. [CrossRef]

http://dx.doi.org/10.1186/1029-242X-2013-317
http://dx.doi.org/10.7153/jca-02-05
http://dx.doi.org/10.1007/s13398-022-01286-6
http://dx.doi.org/10.3390/sym15030638
http://dx.doi.org/10.3390/math11132857
http://dx.doi.org/10.1007/s11192-013-1032-6
https://label2.tecnico.ulisboa.pt/vilela/Cursos/Frac_calcul.pdf
http://dx.doi.org/10.1090/S0002-9947-1969-0232920-2
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1007/s41980-018-0127-5
http://dx.doi.org/10.1007/s40840-014-0026-8
http://dx.doi.org/10.1007/s13370-015-0387-7
http://dx.doi.org/10.1007/s40840-020-00935-6
http://dx.doi.org/10.15672/HJMS.2015449676
http://dx.doi.org/10.1307/mmj/1028988895
http://dx.doi.org/10.1017/S0004972718000989
http://dx.doi.org/10.36045/bbms/1394544302
http://dx.doi.org/10.1080/17476930601063693


Fractal Fract. 2024, 8, 220 14 of 14

41. Bhowmik, B.; Ponnusamy, S.; Wirths, K.J. Characterization and the pre-Schwarzian norm estimate for concave univalent functions.
Monatsh Math. 2010, 161, 59–75. [CrossRef]

42. Altinkaya, S.; Yalcin, S. General Properties of Multivalent Concave Functions Involving Linear Operator of Carlson-Shaffer Type.
C. R. Acad. Bulg. Sci. 2016, 69, 1533–1540.

43. Avkhadiev, F. G., Pommerenke, C.; Wirths, K.-J. Sharp inequalities for the coefficient of concave schlicht functions. Comment.
Math. Helv. 2006, 81, 801–807. [CrossRef] [PubMed]

44. Avkhadiev, F.G.; Wirths, K.-J. Concave schlicht functions with bounded opening angle at inonity. Lobachevskii J. Math. 2005,
17, 3–10.

45. Rosy, T.; Sumil Varma, S.; Murugusundaramoorthy, G. Fekete-Szego problem for concave univalent functions associated with
Fox-Wright’s, generalized hypergeometric functions. Facta Univ. Ser. Math. Inf. 2015, 30, 465–477.

46. Altinkaya, S. Bi-concave functions defined by Al-Oboudi differential operator. Iran. J. Math. Sci. Inform. 2022, 17, 207–217.
[CrossRef]

47. Sakar, F.M.; Guney, O.H. Coefficient estimates for bi-concave functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019,
68, 53–60. [CrossRef]
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