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Abstract: Recent evidence shows that physiological cues, such as pupil dilation (PD), heart rate (HR),
skin conductivity (SC), and electroencephalography (EEG), can indicate cognitive load (CL) in users
while performing tasks. This paper aims to investigate physiological (multimodal) measurement of
CL in a Sternberg memory task as the difficulty level increases in both maintenance and probe phases.
For this purpose, we designed a Sternberg memory test with four levels of difficulty determined by
the number of letters in the words that need to be remembered. Our behavioral performance results
show that the CL of the task is related to the number of letters in non-semantic words, which confirms
that this task serves as an appropriate metric of CL (the task difficulty increases as the number
of letters in words increases). We were interested in investigating the suitability of multimodal
physiological measures as correlates of four CL levels for both the maintenance and probe phases in
the Sternberg memory task. Our motivation was to: (1) design and create four levels of task difficulty
with a gradual increase in CL rather than just high and low CL, (2) use the Sternberg test as our test
bed, (3) explore both the maintenance and probe phases for measurement of CL, and (4) explore
the correlation of physiological cues (PD, HR, SC, EEG) with CL in both phases. Testing with the
system, we found that for both the maintenance and probe phases, there was a significant positive
linear relationship between average baseline corrected PD and CL. We also observed that the average
baseline corrected SC showed significant increases as the number of letters in the words increased for
both the maintenance and probe phases. However, the HR analysis did not show any correlation with
an increase in CL in either of the maintenance or probe phases. An additional analysis was conducted
to investigate the correlation of these physiological signals for high (seven-letter words) versus low
(four-letter words) CL loads. Our EEG analysis for the maintenance phase found significant positive
linear relationships between the power spectral density (PSD) and CL for the upper alpha bands in
the centrotemporal, frontal, and occipitoparietal regions of the brain and significant positive linear
relationships between the PSD and CL for the lower alpha band in the frontal and occipitoparietal
regions. However, our EEG analysis of the probe phase did not show any linear relationship between
the PSD and CL in any region. These results suggest that PD, SC, and EEG could be used as suitable
metrics for the measurement of cognitive load in Sternberg memory tasks. We discuss this, limitations
of the study, and directions for future work.
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1. Introduction

Cognitive load (CL) is a useful measure for detecting if people are struggling or having
difficulty performing a task. Measuring CL is important for learning applications (i.e., being
able to dynamically adapt task difficulty based on users’ performance) or in applications
that require users to have an awareness of their own or others’ cognitive level, such as
training. Previous studies have introduced a variety of subjective (questionnaires) and
objective methods (physiological signals) for measuring CL. CL can also be measured using
several different physiological cues such as EEG, PD, SC, and HR [1–4].

The measurement of CL can benefit human–computer interaction (HCI). For example,
in a brain–computer interface (BCI), physiological measures could be combined to create
individual cognitive models during user interaction with the system [5]. Similarly, for
educational and training systems, multiple studies [6,7] have investigated the benefits of
combining subjective (questionnaires) and objective measures of the learning process to
better understand the cognitive state of the learner.

The advantage of using these physiological measures or wearable sensors for EEG,
GSR, eye tracking, and HR detection are not just limited to CL measurement but also
used for emotional measurement [7–9] and much more. Some of the advantages and
disadvantages of measuring CL using these objective or subjective measures are briefly
discussed in Section 2. Recent developments of machine learning (ML) algorithms enable
applications (or tasks and scenarios) such as VR training applications or non-VR educational
applications to use these inputs to adapt to users’ cognitive load by adjusting task difficulty,
guidance, and feedback.

HCI systems are known to take advantage of multimodal approaches and thus, the
next generation of HCI will be mostly multimodal [10,11]. Multimodal HCI could provide
the possibility of measuring the cognitive state through using multiple physiological sensors
and obtaining a better understanding of the CL and emotional state of the user during
learning or interaction [7]. There has been some investigation of the measurement of CL
using multimodal techniques, but still more work needs to be carried out on (1) how reliable
physiological measures are individually and how sensitive they are with slight increases
in CL; (2) how they differ in different designs, scenarios, and CL tasks; and (3) how this
measurement changes through the different stages of interaction with task. In this paper,
we will investigate the following research questions:

RQ: Can multiple physiological signals be used to reliably measure the cognitive
load state in cognitive tasks?

RQa: How can physiological signals be used to measure different levels of cogni-
tive load imposed by cognitive tasks and how sensitive are these measurements?

RQb: What are the physiological changes in these measurements through the
different stages of interaction with the task?

To answer the above research questions, we use Sternberg’s memory task [12,13] (for
reasons explained in Section 6) as our test bed, with four levels of difficulty and four
levels of CL. We investigate the measurement of CL for the different levels of difficulty
and investigate CL’s correlation with individual physiological sensors at different stages
(maintenance and probe phase) while the user interacts with the task.

The goal of our research is to investigate what physiological signals are accurate
measures of CL and so can be used to detect these CL changes for HCI systems without
interrupting the users as they interact with the system. Being able to detect and measure
the user’s cognitive load through physiological cues could help improve individual per-
formance. For example, measuring the user’s cognitive load could be used to adapt a
virtual reality (VR) training system application according to the user’s CL level. We want
to investigate how reliable, sensitive, and accurate each of the physiological measures
are using four levels of CL as the difficulty level slightly increases and, also, to find the
limitations of each physiological signal for different designs, scenarios, and CL tasks.
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Our contribution to the current state of multimodal measurement of CL are (1) providing
an empirical experimental paradigm and design that could isolate and separate CL from
other cognitive operations such as motor response (the modified Sternberg’s memory task),
(2) introducing and investigating the measurement of CL with four levels of CL as it gradually
increases instead of binary low–high CL levels, (3) exploring the correlation of CL with
physiological signals using four physiological sensors (EEG, PD, SC, HR), and (4) exploring
these correlations in different states (both maintenance and probe phases) of user interaction
with tasks.

2. Related Work

Researchers have studied cognitive load for many years. Cognitive load is defined
as the amount of mental effort required to learn new materials or perform a task [14–18].
Cognitive load theory (CLT) suggests that every individual has a fixed [19], limited working
memory capacity [20,21] that varies between different individuals [22,23].

Cognitive load theory [14,15] explains that successful completion of any task requires
a complex interaction between long-term memory, working memory, and sensory inputs.
Previously learned knowledge and skills are stored in long-term memory. Working memory
is where sensory and long-term memory interface and new sensory information is compiled
and integrated into long-term memory [24]. Although sensory and long-term memory have
a flexible capacity for processing large amounts of information, working memory has a
limited capacity [19,22]. Multiple research papers have shown that learning, performance,
stress, and burnout can be predicted by measuring CL [25–28].

A broad range of measurements of the peripheral nervous system are shown to be
reliable indicators of changes in CL [20], for example, ocular information [29] (such as
pupil dilation [30,31]), cardiovascular information (such as blood pressure [32], heart rate
(HR) [2,29,33,34], and heart rate variability (HRV) [35–37]), and the electrical conductance
of the skin (SC) [3,38]. On the other hand, the central nervous system oversees memory.
Emotions, stress, and frustration impact both the central and peripheral nervous system.
The peripheral nervous system can be functionally divided into the somatic (controlling
bodily and muscle movements) and the autonomic (controlling our inner organs) systems.
Furthermore, the sympathetic nervous system (SNS) and the parasympathetic nervous sys-
tem (PNS) are part the of autonomic nervous system. The SNS is physiologically excitatory;
it increases physiological arousal when it is active, while the PNS is the opposite, and it
inhibits physiological arousal when active.

In order to identify the cognitive processes and model how they operate and interact,
it is critical to accurately assess the cognitive states and measure CL. Multiple methods
are known in the literature for assessing the CL of a user while performing multitask
activity [39]: (1) measuring performance based on error rates (e.g., [40]) and learning times
(e.g., [41,42]), (2) user’s self-rating scales (e.g., [43]), and (3) measuring physiological cues.
The first two are subjective measures (e.g., [44]), while the third one is an objective measure.
Some of the disadvantages of subjective measures are that they cannot dynamically assess
the user’s cognitive load, they are interruptive, and they rely on the user’s ability to
rate their own cognitive load level. On the other hand, one of the biggest advantages of
objective measures is that they provide real-time cognitive measures without impacting or
interrupting the user’s performance. These physiological measures have been shown to be
sensitive to variation in CL over time [45,46].

2.1. Heart Rate (HR)

Previous studies have investigated CL measurement using different HR measurement
methods, such as within-beat analysis (WIB), empirical mode decomposition (EMD), heart
rate variability (HRV) [37], and low-frequency (LF) and high-frequency (HF) bands by using
time domain or frequency domain analysis (FFT analysis and various methods of wavelet
transformations) [37,47]. More detailed information about HR metrics and CL measurement
methods is given in [35,47]. It has been shown that the LF/HF ratio (the ratio of the power
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of the LF to HF bands) estimates the ratio between SNS and PNS activity and is a reliable
indicator of CL changes [37]. HRV has also been shown to correlate with CL [9,35], where a
low HRV indicates a calm state and a high HRV indicates stress or frustration.

In this paper, we chose to not use the above mentioned methods and instead use
an averaging method due to HR limitations. Some of these limitations include (1) HR
data are linear and constant and (2) HR shows a slow reaction to CL changes; therefore,
the HR reaction to changes in CL might not be detectable in shorter periods (e.g., few
seconds). Previous studies using the HR method for arithmetic stress tests have shown
an increase in HR as math equations were presented [48–50]. The HR averaging method
might be a better method for CL measurement in applications that have a shorter period.
Due to this limitation for our experimental paradigm (short period), we used an averaging
method, explained in Section 4. Based on the prior literature, we hypothesized that our
averaged heart rate would increase with the increase in CL for both maintenance and probe
phases [48–51].

2.2. Skin Conductance (SC)

Changes in the sympathetic nervous system (SNS) affect sweating, which changes
the skin’s salt content and hence, its electrical conductivity [52,53]. Thus, changes in skin
conductance (SC), also known as galvanic skin response (GSR), have been shown to be
related to changes in the SNS [54]. Studies have shown that when the arousal level increases,
SC also increases. GSR is shown to be related to stress, excitement, engagement, frustration,
and anger and is shown to be consistent with the self-reported assessment of arousal [55].

Studies have shown that there is a reliable relationship between SC and cognitive
activities [56–58]. Shi et al. [59] found that SC increases as the CL of the task increases
and has been proven to be a real-time indicator of CL using ML. They extract six features
from their GSR data including peak number, peak amplitude, rise duration, peak area,
accumulative GSR, and power spectrum for measurement of CL during two different
arithmetic experiments for their ML classifier. They show a high accuracy of CL detection
with the above mentioned feature classifier in their experiment. In [60–62], they extract the
slow-varying tonic and fast-varying phasic components of GSR to detect the CL changes
using fast Fourier transform (FFT) to extract SC frequency and amplitude on n-back test
and other CL tasks. They showed that SC frequency and amplitude serve as a good metric
for detection of high–low CL.

To simplify our analysis, we chose an averaging method rather than extract the tonic
and phasic components of GSR, which is explained in Section 4. Based on the prior
literature, we hypothesized that our averaged SC would increase with the increase in CL
for both maintenance and probe phases.

2.3. Pupillary Response

The pupillary response is shown to be a very sensitive and reliable measure for CL [63].
The pupillary dilation is controlled by the sympathetic pathways from the central nervous
system [63]. The sympathetic nervous system is associated with activation, so there is reason to
believe that task-evoked dilation is a measure of cognitive effort. The history of the relationship
between working memory and pupil response goes back to the 1960s [64], when Hess showed
that as the difficulty of multiplication tasks increased, the users’ pupil diameter also increased.
Similarly, Kahneman and Beatty [65] showed that pupil size increased when the number of
digits in a memory task increased. Users were verbally presented with digits that they had to
reproduce after a short delay. The authors’ results showed that the pupil size increases during
the encoding phase and decreases during the recall phase.

Beatty et al. [66] studied the impact of memory overload. In their study, participants
were presented with an increasing number of digits and asked for immediate recall. Their
study showed that the pupillary diameter increased as the number of digits increased,
but the pupillary diameter correlation stops when a certain maximum value is exceeded
(cognitive overload); this cognitive overload was reported as seven digits. Their conclusion
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was that once the memory is overloaded, pupillary dilation does not increase anymore.
Peavler [67] reported similar results in their study.

Blink rates have also been reported in several studies as an indicator of CL. In [4], eye
blinks (blink rate, blink number) have been used to assess the level of CL in arithmetic tasks.
The authors show that with increasing task difficulty the blink number and blink rate decrease.
However, for our analysis, we chose not to analyze the blink rate or blink number.

Based this prior literature, we hypothesized that the average PD will increase with the
increase in CL for both maintenance and probe phases [64,65].

2.4. Electroencephalography (EEG)

EEG measures neural activity in the brain and shows changes in neural activity almost
immediately, which makes it one of the most responsive and reliable measurements of
CL. The frequency-domain analysis of EEG is one of the most practical methods for this
purpose, which transforms the data from the time domain to the frequency domain and
divides them into several different frequency bands (e.g., alpha), then power spectral
density (PSD) is computed from each band for CL measurement across different levels of
CL. The diversity of neural activity changes happening in the brain during interaction with
the tasks adds complexity to the analysis and the use of EEG for CL detection. There is no
clear correlation between EEG signals and CL, but in some studies an increase or decrease
in alpha, beta, and theta bands is reported with an increase in CL [1,68], which creates
uncertainty about the direction of these relationships with CL.

Klimesch showed that an increase in theta and lower beta band powers in the frontal
midline regions are related to an increase in CL [69]. Studies conducted in [46,70,71] showed
an increase in alpha and beta band power related to an increase in mental workload. For
example, alpha power in the right frontal and parietal regions and also an increase in beta band
power in the temporal region was shown as an indicator of higher mental workload [69,72,73].
A recent meta-analysis by Chikhi et al. [68] and systematic review by Pavlov et al. [1] of
working memory papers summarizes the current literature on EEG measurement of CL,
showing an increase in frontal theta (4–8 Hz) relationship for high compared to lower
CL, showing that the frontal theta power has a proportional relationship with the number
of items to be maintained in memory [74–78]. Harmony et al. [79] and Petsche et al. [80]
found that the theta and delta band increase is related to task difficulty in arithmetic tasks.
Itthipuripat et al. [81] also found this increase in the frontal theta band followed by an
increase in the alpha band in the Sternberg task for the maintenance phase. However,
some studies reported the opposite, arguing a decrease in theta power associated with CL
(e.g., Brzezicka et al. [82]). This was also found in [83], where the theta and alpha band
power decreased when subjects encoded new information.

The alpha band shows more inconsistency; in some studies, an increase in the alpha band
tends to be the measure for an increase in CL [77,84], while the opposite trend is reported
in other studies [85,86]. The meta-analysis of Chikhi et al. [68] reported an overall inverse
correlation of CL and alpha band power, especially in the parietal regions, and the alpha
band increased systematically with memory load in both parietal-occipital (e.g., Pz and O2
and lateral electrodes (e.g., CP5 and T8) for the maintenance phase in the Sternberg task.
This inconsistency is also reported with the beta band. Some studies in the literature such as
Chikhi et al. [68] found a positive correlation between cognitive load and beta band power;
Chen et al. and Kornblith et al. [87,88] found that beta band power increases with increases
in CL, but other studies found the opposite (negative) correlation between CL and the beta
band [81,89]. Itthipuripat et al. [81] found a significant decrease in the beta band after showing
each letter in the Sternberg task.

Overall, these inconsistencies suggest that additional studies are needed to investigate the
relationship of CL with lower and higher alpha, beta, and theta across different brain regions
using several levels of difficulty. Additionally, it is still unclear what are the changes in these
frequency bands in different brain regions in the probe phase, as most of the studies in the
literature only analyze the maintenance phase. Informed by the highly variable literature on
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CL and EEG band power, we hypothesized that we would observe an increase in theta, alpha,
and beta and an increase in frontal theta, parietal alpha, and temporal beta in the maintenance
phase and expect an increase in frontal theta and parietal alpha in the probe phase.

2.5. Multi-Modal Sensing

Research on the measurement of CL using multiple signal modalities suggests that
these modalities can carry complementary and overlapping information, so a fusion of these
physiological signals could help for better and more accurate CL detection. Some studies
such as [90–92] explore the measurement of different levels of CL and CL correlation with
several physiological signals such as SC, PD, HR, and EEG, while others utilize machine
learning (ML) techniques to detect and classify the CL using these signals [93]. However,
there is still a need for an investigation of the limitations and benefits of using a multi-modal
approach for CL detection and CL correlation with individual signals.

Previous work found that with increasing CL the HR accelerates, but there is lower heart
rate variability [29,33,94–96]. This CL correlation is also observed in pupillary response, for
example, an increase in saccades [30,97,98] in blink rate [99] and pupil dilation [20,100,101]. This
reaction of the autonomous nervous system and the correlation of signals with CL suggests that
the fusion of multi-modal signals has the potential to improve the accuracy of CL detection.

Some of the common multi-modal fusion strategies with ML are feature-level fusion,
decision-level fusion, and hybrid fusion. For example, in [4], multiple features of GSR (accu-
mulative GSR, power spectrum) and also eye blinks (blink rate, blink number) were used to
assess the level of CL in arithmetic tasks using ML techniques. Nourbakhsh et al. [4] used
ML to classify blinking and used GSR data for the feature extraction and classification. They
reported these significant correlations of accumulative GSR, the power spectrum of GSR, blink
number, and blink rate with CL and showed the accuracy of the CL classifier using these
features with SVM and naïve Bayes (NB). Nourbakhsh et al. [4] also reported that by using
feature-level fusion (combining GSR and blink features), the accuracy of the CL classifier
model was improved. Haapalainen et al. [33] used NB for ECG and eye movement feature
extraction in high–low CL task detection; they also reported an improvement in accuracy
from 76% to 80% by using feature-level fusion. In [34], Ferreira et al. used ECG, EEG, and
GSR features for CL classification in high–low CL tasks, and they reported an accuracy of up
to 73% for a 10-second model and 86% for a 60 s model with decision-level fusion.

Zhang et al. [102] also explored decision fusion to achieve a more robust prediction.
They combined sub-decisions of models trained on each modality and experimented with
using hybrid fusion, a combination of feature fusion and decision fusion, to improve the
performance of CL inference. The authors reported that the accuracy of feature-level fusion,
84%, was higher than the best accuracy of each single-modality classification. The highest
observed accuracy of decision-level fusion was 82% and the highest accuracy of hybrid-
level fusion was reported as 83%. In [103], Jimenez-Molina et al. used EDA, ECG, PPG, EEG,
temperature, and pupil dilation signals for feature extraction steps in SVM, multinomial
logistic regression (m-LR), and multi-layer perceptron (MLP) for CL classification. The
authors also observed an improvement in accuracy with feature fusion. Siegel et al. [104]
used PPG and pupillary response for feature extraction steps and CL classification using
feature fusion for a very wide data set and achieved an accuracy of 79%.

3. Method

In our study, we used the Sternberg memory-search task [12,13], which is a well-known
test for measuring short-term memory and cognitive load. We designed and modified this
test (maintenance, probe, and feedback phase) for the purpose of this study (1) to isolate
and separate the CL compound with other cognitive operations such as motor responses
and (2) to create four levels of difficulty to illustrate four levels of CL. The aim of this study
was (1) to test the effectiveness of common physiological measures of cognitive load using
the Sternberg memory-search task with four levels of CL and (2) to measure, analyze, and
compare the different levels of CL in both maintenance and probe phases.
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3.1. Participants

Fifteen participants (14 males; 1 female; age range: 18–30, M = 23 years old) took
part in the study. We recruited participants with good uncorrected vision and no prior
eye surgeries. Due to a sensor connection failure, heart rate data were only collected
for 12 participants, and the SC data were only collected for 10 participants. For some
participants, the eye tracker also failed to capture eye and eye dilation, so we excluded
the participants who had more than 75% data lost due to the eye tracker failure from data
analysis, and only 11 participants were used for PD analysis. For the EEG data analysis,
we had all 15 participants. Participants were given a NZD 20 supermarket voucher as
compensation. The study was approved by the University of Auckland Human Participants
Ethics Committee, Reference number UAHPEC22022.

3.2. Equipment and Data Collection

Participants were required to wear an EEG gel cap (Enobio 20 gel cap) [105] and
Shimmer hardware [106] was worn on the wrist of the participants’ non-dominant hand, as
illustrated in Figure 1. The participant was instructed to sit on a chair 45 cm from a monitor
(monitor resolution of 1920 × 1080), as illustrated in Figure 1.

Figure 1. A study participant wearing a Shimmer sensor on the wrist to capture GSR and HR data
and an EEG Enobio 20 gel cap. The eye tracker (Tobii Pro X3-120) was mounted on the display to
capture subject PD data (physiological sensors) and the iMotion GUI displays the stimuli on a monitor.
(A) The encoding phase; (B) the response phase.

The EEG data were collected using the Enobio 20 gel cap [105] and were sent through
the Lab Streaming Layer (LSL) to the iMotion software to be synchronized with other phys-
iological data using event markers. During task performance, EEG data were continuously
recorded from 20 electrodes with the Enobio 20 gel cap [105] using the electrode placement
following the international 10–20 system. Electrodes were placed at the following scalp
locations: frontal regions (Fpz, Fz, F3/F4, F7/F8), central regions (Cz, C3/C4, C5/C6),
temporal regions (T7/T8, P7/P8), and the parietal regions (Pz, P3/P4, CP5/CP6). The EEG
data were collected at a sampling rate of 500 samples per second.

iMotion [107] is a multidisciplinary sensor monitoring software that allows a researcher
to easily design stimuli (and event markers for these stimuli) and also record physiological
feedback. iMotion used the eye tracker (Tobii Pro X3-120) [108] to track and record eye data
and Shimmer hardware [106] to capture GSR and heart rate data. The captured data were
recorded by iMotion and could be visualized and replayed together or individually.

3.3. Experimental Task and Procedure

For this study, we used the Sternberg memory-search task (non-semantic words type).
The test has four phases: an encoding phase (2 s), a maintenance phase (3 s), a probe
phase (2 s), and a response (feedback) phase (free to respond up to a maximum of 3 s),
as illustrated in Figure 2A. During the encoding phase, a memory set of a combination
of random letters as a single non-semantic word was presented to the participant. For
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example, we showed the participants a combination of 4-letter words (or 4/5/6/7-letter
words) for 2 s.

The words were non-semantic and made up of random sets of characters, such as
“UTFK”. Each word was capitalized with a font size of 72 and appeared in the center of
the monitor in white color with a gray background. Figure 1A illustrates the encoding
phase. In the maintenance phase, we showed three seconds of blank (gray background).
In the probe phase, we displayed a random letter (e.g., “K” in white color with a gray
background, capitalized with a font size of 72), with the probability of 0.6 of the probe
matching one of the stimuli to be remembered. In the response phase, we asked the subjects
to answer whether or not the given letter (e.g., letter “K”) was present (belongs to the
memory set) in the encoding phase by pressing the allocated key for “Yes” or “No” on the
keyboard. Figure 1B illustrates the response phase. For each set (4/5/6/7-letter word), we
repeated the above procedure for a total of 20 non-semantic words. Each block of the sets
contained 10 trials starting with a 4-letter word and a 10 s rest at the beginning of each set
see Figure 2B). The second block set was a 5-letter word and continued with 6-letter and
7-letter words with a 10 s rest in between, and the cycle was repeated for another round
starting with a 4-letter word see Figure 2B).

Figure 2. (A) Schematic depiction of the Sternberg memory-search task (for the 4-letter word UTFK);
(B) diagram of the experimental design.

To reduce blink artifacts and EEG noise, we asked the participants to only blink during
the fixation period at the beginning of each trial. At the beginning of the study, we also let
participants practice the task for 1 min using different words that were not used in the task
in order to familiarize themselves with the response keys as well as the study procedure.

4. Data Preprocessing

As the aim of this study was to investigate the effectiveness of physiological cognitive
load measures with the Sternberg task, we chose to focus our analysis on the maintenance and
probe phase of our study (see Figure 2A). In order to relate the CL imposed by each difficulty
level, we only analyzed trials in which the participant successfully responded (Hit).

4.1. Baseline Correction: SC, PD, and HR

The skin conductance (SC) amplitude, heart rate (HR), and pupil dilation (PD) data
were calculated using an iMotion internal function and the data were stored in a .csv-format
file for offline analysis. These data were collected at a sampling rate of 120 samples per
second. The baseline correction just applied to SC, PD, and HR. We calculated the baseline
from the 10 s rest period at the beginning of each set (see Figure 2B). The baseline was
determined for each set by measuring from a 1000 ms period preceding the end of the
rest period (10 s rest at the beginning of each set). This baseline was calculated for each
physiological sensor, SC, PD, and HR, using an averaging method from the rest period.
The baseline was calculated for each difficulty set separately and stored in a .csv format.
The baseline correction was conducted by subtracting the baseline value from the trial data



Multimodal Technol. Interact. 2024, 8, 34 9 of 27

for both the maintenance and probe phases. This baseline correction was applied for all of
the trials using the baseline calculated at the previous step for each difficulty set. The same
process was applied for each physiological sensor: SC, PD, and HR. The averaging method
was then used for the final step to calculate the average baseline correction over trials for
each difficulty set. These average baseline corrected data were used for statistical analysis
of each above mentioned physiological sensor.

With regard to the methods explained in the related work Section 2 and the related
literature on processing the SC, PD, and HR, the proposed averaging method avoids any
complexity and heavy computation to extract the future for data analysis. This method
simplifies unnecessary steps to measure CL and to show the CL correlation with the above
mentioned physiological signals.

4.2. EEG Preprocessing

The EEG analysis was performed using custom MATLAB code and functions from
the EEGLAB Toolbox [109]. The data were first re-referenced against the average mastoids,
highpass filtered above 0.05 Hz, notch filtered to remove line noise using Cleanline, and
resampled to 250 Hz. Eye-blinks were rejected using the automatic rejection via the ic f lag
function in EEGLAB with a threshold of 0.7 and component from data that were highpass
filtered above 2 Hz. Data were subsequently cleaned using the cleanrawdata function with
a flatline criterion of 10, channel criterion of 0.6, line noise criterion of 6, burst criterion
of 80, window criterion of 0.5, and burst rejection. The data were re-referenced against
the mastoid.

Events were created based on behavioral performance, i.e., correct or incorrect re-
sponse for each level of difficulty (corresponding to 4/5/6/7-letter words). We only focused
on the correct response epochs, as there were insufficient trials with incorrect responses
for analysis. We calculated the log power spectral density for each subject, condition
(4/5/6/7-letter words), and channel in both the maintenance and probe phases. This was
carried out by using the EEGLAB function spectopo. We then calculated the mean absolute
power for the following bands: delta (1–4 Hz), theta (4–8 Hz), lower alpha (8–10.5 Hz),
upper alpha (10.5–13 Hz), lower beta (13–20 Hz), and upper beta (20–30 Hz). Then, to
increase the normality of the data for statistical analysis, we log-transformed the values
(log power spectral density). Due to our blocked experimental design, the fast-moving
spectrotempoal dynamics of EEG, and to avoid potential effects of other cognitive processes
that might reflect the pre-trial interval, we did not apply the baseline correction. To simplify
our analysis, the eighteen channels were clustered into three clusters based on the prior
literature [68] as follows: frontal (F3, F4, F7, F8, Fz), centrotemporal (C3, C4, CP5, CP6,
T7, T8, Cz), and occipitoparietal (P3, P4, P7, P8, Pz). For each frequency band across all
electrodes, we also performed additional analysis and looked at the contrast between low-
and high-load conditions.

4.3. Statistical Analysis

We used two methods of statistical analysis to investigate the physiological correlates
of CL with the Sternberg memory-search task. Our experimental design included a cogni-
tive load parameter of four-, five-, six-, and seven-letter (non-semantic) words, with only
correct trials being included in the analysis. First, we tested if each physiological measure-
ment showed a linear relationship with CL using a linear mixed effects model, following
similar methodology as [90]. Each model was fit using restricted maximum likelihood with
the fitlme function in MATLAB. The model formula was “Physiological Measurement 1 +
Load + (1 + Load | Participant )”. The load was modeled as a fixed and random effect to
allow the slopes of the regression model to vary across individuals, because we anticipated
a different rate of change across participants, partially due to variations in physiology. The
pupil dilation analysis included an additional effect to model which eye (left or right). The
EEG data included multiple comparisons (frequency bands x channel clusters), so we used
the Holm–Bonferroni method to adjust the reported p-values.
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In order to make an easier comparison to CL experiments that solely contrast low-
versus high-load conditions, we also conducted a second analysis. We compared our “lower
load” (four letters) and “higher load” (seven letters) conditions with repeated measures
ANOVA, followed by post hoc paired comparisons. Estimates indicate that working
memory capacity is approximately four items [21,110], which is our lowest number of
letters (low load), and we anticipated that this might result in some differences between
these findings and those that use a low load of a lower number of stimuli (e.g., one to three
items). Estimates of effect size (HG) [111] use Hedges’ g; this is also known as the unbiased
estimate of Cohen’s d.

5. Results

As most psychology studies just investigate the correlations of CL in the maintenance
phase [1,68], one of the motivations of this study was to see these correlations of CL not just
in the maintenance phase but also in the probe phase. We were interested to see what are
the CL correlation in individual physiological signals and changes in this CL correlation
from the maintenance to the probe phase. As our main objective for future work was to
extend this study to VR training applications and most VR applications consist of encoding
(study) and probe (play) phases, our goal was to investigate to what extent we can still see
these correlations of CL for each individual physiological signal in the probe phase.

5.1. Behavioral Performance

To analyze the behavioral data, we divided the trial into Hit and Miss based on participant
answers in the response phase. If the participant correctly identified the letter belonging to
the set that was shown in the encoding phase we consider that trial as a Hit; otherwise, it
is a Miss. Figure 3 illustrates the behavioral results. As the number of letters in the word
increased, the percentage of correct trials decreased (the dashed lines represent individual
subject accuracy). The mean and standard deviation for these data are illustrated in Table 1.
The linear mixed model (LMM) results for the factor of CL are illustrated in Table 2. This
result implies a relationship between CL and the percent of correct responses. This significant
effect indicates a decrease in accuracy of 1.9 for each increase in CL level.

For our high–low (H-L) comparison, four-letter combinations (L) versus seven-letter
-combinations (H) yielded a mean difference of 6 and a standard deviation of 10.4. The
statistical t-test showed a significant difference between the high- and lower-load conditions,
t(14) = −2.24, p < 0.05, with a large Hedges’ g effect size of −0.7 [95%CI: −1.5,−0.01].
This result confirmed that the task difficulty increased as the number of combination letters
in a word increased, suggesting that this task serves as an appropriate metric of CL.

Table 1. Physiological cues’ (maintenance phase) mean and standard deviation.

Physiological Cue
Combination Letter

4 5 6 7

Behavioral Mean 97.36 94.86 90.24 79.41
Std. 2.31 4.77 7.81 79.4

SCR Mean −0.05 −0.04 0.02 0.03
Std. 0.05 0.11 0.05 0.08

Eye Left Mean -0.24 -0.10 0.06 0.11
Std. 0.33 0.19 0.15 0.24

Eye Right Mean −0.13 −0.08 0.17 0.24
Std. 0.39 0.21 0.33 0.22

HR Mean 1.4 0.19 −0.06 −0.3
Std. 2.27 1.04 2.13 2.17
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Figure 3. Behavioral performance: average percent correct versus CL (bold black lines represent
mean, error bars show 95% confidence intervals, and dashed lines show individual participants).

Table 2. Physiological cues’ (maintenance phase) statistical result (LMM).

Measurement Behavioral SCR PD HR

Estimate −0.019 0.03 0.16 -0.52
SE 0.008 0.013 0.03 0.35

t Stat −2.52 2.57 5.16 −1.5
df 58 38 85 46

p-value 0.014 0.014 1.55 × 10−6 0.14

CL std 0.02 0.02 0.084 0.96

AIC −139 −64.6 8.61 207
Model R2 0.61 0.12 0.59 0.31

5.2. Maintenance Phase

The maintenance phase is the 3 s period in each trial after the non-semantic word
stimulus has been removed. During this time, participants attempt to maintain the letters in
memory before responding to a probe (see Figure 2A). The screen looks the same regardless
of the number of letters to be remembered, which indicates that the differences observed
during this period are the effect of cognitive load, not the stimuli themselves.

5.2.1. Pupil Dilation (PD)

Figure 4 shows our averaged baseline-corrected pupil dilation (PD) analysis in each
eye for each CL level difficulty (four levels of CL). The result shows that with an increase in
CL, the change in PD relative to the baseline period increased. These data (mean, SD) are
illustrated in Table 1. The model also included a fixed effect of eye (left vs. right), which
shows no significant effect between left and right eyes. The linear mixed model result
shows a significant linear relationship of CL for each additional letter to be remembered
with PD, with an increase of 0.16 mm [95%CI: 0.1, 0.2] (Table 2). For our high–low (H-L)
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comparison in the left eye, four-letter combinations (L) of −0.31 mm versus seven-letter
combinations (H) of 0.12 mm, a paired t-test revealed a statistically significant difference
between the high- and lower-load conditions, t(10) = 4.2, p = 0.002, and a Hedges’ g
effect size of 1.55 [95%CI: 0.61, 2.93]. For our high–low (H-L) comparison in the right eye,
four-letter combinations (L) of −0.26 mm versus seven-letter combinations (H) of 0.24 mm,
a paired t-test revealed a statistically significant difference between the high- and lower-load
conditions, t(10) = 4.72, p = 8.1× 10−4 and a Hedges’ g effect size of 2.0 [95%CI: 0.89, 3.71].
We observed a highly consistent relationship between CL and PD within subjects for the
right eye for ten of eleven participants and the left eye for all eleven participants.

Figure 4. Average baseline-corrected pupil dilation (maintenance phase) in each CL level (the dashed
lines show individual participants; the bold black lines represent means; the error bars show 95%
confidence intervals).

5.2.2. Skin Conductance Responses (SCR)

Figure 5A shows our averaged baseline-corrected skin conductance response (SCR)
analysis for each CL level difficulty (four levels of CL). The result shows that with an increase in
CL, the change in conductance relative to the baseline period increased. These data (mean, SD)
are illustrated in Table 1. The linear mixed model result shows a significant linear relationship
of CL for each additional letter to be remembered with SC with an increase of 0.032 µ

Siemens [95%CI: 0.007, 0.06] (see Table 2). For our high–low (H-L) comparison, four-letter
combinations (L) of −0.055µS versus seven-letter combinations (H) of 0.033µS, a paired t-test
revealed a statistically significant difference between the high- and lower-load conditions,
t(9) = 2.89, p = 0.018, and a Hedges’ g effect size of 1.2 [95%CI: 0.2, 2.57]. Of the ten
participants with SCR data for the five-letter combination condition (five-letter CL), two
had greater skin conductivity and one had the lowest skin conductivity compared to the
high-load condition.
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Figure 5. (A) GSR data—maintenance phase: the CL versus average baseline-corrected SC; (B) HR
data—maintenance phase: the CL versus average baseline-corrected HR (the dashed lines show
individual participants; the bold black lines represent means; the error bars show 95% confi-
dence intervals).

5.2.3. Heart Rate (HR)

Figure 5B shows our averaged baseline-corrected heart rate (HR) analysis for each
CL level difficulty (four levels of CL). These data (mean, SD) are illustrated in Table 1.
The linear mixed model result shows no significant linear relationship between CL and
the baseline-corrected HR (see Table 2). For our high–low (H-L) comparison, four-letter
combinations (L) of 1.38 ∆bpm versus seven-letter combinations (H) of −0.28 ∆bpm, a
paired t-test also did not show a significant difference between the high- and lower-load
conditions, t(11) = −1.46, p = 0.17 and a large Hedges’ g effect size of −0.7 [95%CI:
−2.0, 0.37]. We also observed highly inconsistent results across participants, with four
participants having a faster HR for the high load and seven participants showing a faster
HR for the lower load.

5.2.4. Electroencephalography (EEG)

The main objective of our EEG analysis was to evaluate the correlation between the log
power spectral density (PSD) and CL. To reduce dimensionality, we clustered our electrodes
into three regions: frontal, centrotemporal, and occipitoparietal. To calculate PSD, we used
the EEGLAB function spectopo and calculated the mean absolute power for the delta, theta,
lower alpha, upper alpha, lower beta, and upper beta frequency bands. Figure 6 shows the
mean log power spectral density of four levels of CL across frequency bands and electrode
clusters. For simplicity, individual participant lines are not included.

Table 3 shows the results of the 15 mixed effects models (five bands × three channel
clusters), with a post hoc Holm–Bonferroni p-value correction for multiple comparisons.
This linear mixed model (LMM) result and significant relationship between CL and PSD
is shown in Table 3 and illustrated with solid lines in Figure 6. These results show a
significant linear relationship between PSD and cognitive load for all three channel clusters
in the upper alpha band (centrotemporal, frontal, occipitoparietal) and a linear relationship
between PSD and cognitive load for the lower alpha band in frontal and occipitoparietal
channel clusters.

In addition, we conducted a high–low (H-L) CL comparison for our EEG data (four-
letter combinations (L) versus seven-letter combinations (H)), which is often referred to as
high–low CL in the literature. A repeated-measures ANOVA with factors of CL, frequency
band, and channel cluster indicated a significant interaction between frequency band
and channel cluster, F(10,140) = 2.39, p = 0.01. The post hoc comparison of each band
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and channel cluster was then conducted using the Tukey–Kramer method; Table 4 shows
this result. The result showed significant differences for the upper and lower alpha (for
the channel clusters centrotemporal, frontal, and occipitoparietal), theta (for the channel
clusters centrotemporal, frontal, and occipitoparietal), and lower beta (for the channel
clusters centrotemporal and frontal) between the high- and lower-load conditions.

Figure 6. The CL versus log power spectral density (maintenance phase) for 6 frequency bands
(region: blue = centrotemporal, red = frontal, yellow = occipitoparietal (color-coded lines)). Solid
lines = significant effect of CL in the LMM; dotted lines = not significant.

Table 3. Linear mixed model (LMM)—EEG statistical results in the maintenance phase. CT = cen-
trotemporal, F = frontal, OP = occipitoparietal, L-A = lower alpha, U-A = upper alpha, L-B = lower
beta, U-B = upper beta. Top bar abbreviations: ES = estimate, SE = standard error, p = p-value,
C-p = corrected, RF = random effect standard deviation, AIC = Akaike information criterion. R2 is for
the whole model.

Es SE tStat p C-p RF AIC R2

Delta
CT 0.37 0.06 0.56 0.57 1.00 0.16 4342 0.45
F −0.03 0.06 −0.53 0.6 1.00 0.16 4252 0.38

OP −0.05 0.07 −0.69 0.49 1.00 0.15 4543 0.4

Theta
CT 0.08 0.06 1.28 0.2 1.00 0.2 3882 0.77
F 0.09 0.06 1.38 0.17 1.00 0.19 3892 0.7

OP 0.16 0.07 2.47 0.014 0.16 0.2 3970 0.69

L-A
CT 0.21 0.07 3.09 0.002 0.26 0.15 4587 0.82
F 0.21 0.06 3.43 0.0006 0.0088 0.1 4582 0.81

OP 0.22 0.06 3.6 0.0003 0.0049 0.11 4554 0.8
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Table 3. Cont.

Es SE tStat p C-p RF AIC R2

U-A
CT 0.36 0.09 3.98 7.2 × 10−5 0.0012 0.26 4651 0.73
F 0.37 0.09 3.97 7.7 × 10−5 0.0012 0.29 4656 0.74

OP 0.37 0.09 4.24 2.4 × 10−5 0.0004 0.25 4656 0.72

L-B
CT 0.06 0.06 1.02 0.3 1.00 0.19 3390 0.82
F 0.08 0.05 1.59 0.11 1.00 0.15 3263 0.83

OP −0.006 0.07 −0.09 0.92 1.00 0.23 3307 0.8

U-B
CT −0.008 0.06 −0.14 0.89 1.00 0.19 3079 0.8
F 0.03 0.05 0.56 0.57 1.00 0.15 3001 0.8

OP −0.07 0.09 −0.75 0.45 1.00 0.32 3189 0.79

Table 4. Repeated-measures ANOVA (post hoc Tukey–Kramer method)—EEG statistical results in the
maintenance phase. CT = centrotemporal, F = frontal, OP = occipitoparietal. Top bar abbreviations:
Reg = region, H-L = high minus low load, SE = standard error, p = p-value, L and U = lower and
upper (95%CI), ES = effect size (Hedges’ g).

Band Reg H−L SE p L U ES

delta
CT −1.3 5.46 0.814 −13.00 10.40 −0.037
F −3.7 6.48 0.577 −17.59 10.19 −0.12
OP −6.86 5.60 0.269 −19.64 5.92 −0.18

theta
CT 8.35 3.32 0.024 1.22 15.47 0.16
F 7.83 3.20 0.028 0.97 14.69 0.18
OP 10.77 3.43 0.007 3.41 18.13 0.24

lower CT 22.43 4.98 0.00049 11.75 33.12 0.27
Alpha F 21.36 4.33 0.00022 12.06 30.66 0.27

OP 22.29 4.20 0.00011 13.29 31.29 0.30

upper CT 27.64 5.51 0.00019 15.81 39.48 0.42
Alpha F 27.77 4.84 5.1 × 10−5 17.39 38.16 0.41

OP 27.47 4.76 4.8 × 10−5 17.27 37.68 0.43

lower CT 13.98 6.40 0.046 0.26 27.70 0.31
Beta F 15.07 6.05 0.026 2.08 28.06 0.33

OP 10.25 6.49 0.136 −3.66 24.17 0.26

upper CT 11.75 8.62 0.194 −6.73 30.24 0.25
Beta F 13.52 8.09 0.116 −3.83 30.89 0.30

OP 8.82 8.19 0.300 −8.75 26.4 0.20

5.3. Probe Phase

In the probe phase of each trial, the participant was shown a random letter for 2 s
(see Figure 2A). The participants were instructed not to respond during the probe phase,
but simply to note if the letter was a member of the set of letters that they remembered
or not. This design aimed to separate the cognitive response of the probe from the motor
response component.

5.3.1. Pupil Dilation (PD)

Figure 7 shows our averaged baseline-corrected pupil dilation (PD) analysis in each
eye for each CL level difficulty (four levels of CL). This result shows that with an increase
in CL, the change in PD relative to the baseline period increased. These data (mean, SD) are
illustrated in Table 5. The model also included a fixed effect of eye (left vs. right), which
shows no significant difference between the left and right eyes. The linear mixed model
result shows a significant linear relationship of CL for each additional letter remembered
with an increase in PD of 0.18 mm [95%CI: 0.12, 0.24] (Table 6). For our high–low (H-L)
comparison in the left eye, four-letter combinations (L) of −0.38 mm versus seven-letter
combinations (H) of 0.10 mm, a paired t-test revealed a statistically significant difference
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between the high- and lower-load conditions, t(10) = 5.37, p < 0.001, and a Hedges’ g
effect size of 2.0 [95%CI: 0.97, 3.62]. For our high–low (H-L) comparison in the right eye,
four-letter combinations (L) of −0.36 mm versus seven-letter combinations (H) of 0.23 mm,
a paired t-test revealed a statistically significant difference between the high- and lower-
load conditions, t(10) = 4.9, p < 0.001, and a Hedges’ g effect size of 2.08 [95%CI: 0.96, 3.80].
We observed a highly consistent relationship between CL and PD within subjects for the
right eye in ten of eleven participants and the left eye for all eleven participants.

Figure 7. Average baseline-corrected pupil dilation (probe phase) at each CL level (the dashed
lines show individual participants; the bold black lines represent means; the error bars show 95%
confidence intervals).

Table 5. Physiological cues’ (probe phase) mean and standard deviation.

Physiological Cue
Combination Letter

4 5 6 7

SCR Mean −0.05 −0.04 0.02 0.03
Std. 0.06 0.11 0.057 0.086

Eye Left Mean −0.38 −0.12 −0.02 0.09
Std. 0.21 0.27 0.23 0.22

Eye Right Mean −0.36 −0.14 0.09 0.23
Std. 0.2 0.24 0.33 0.31

HR Mean 2.04 1.7 1.75 1.57
Std. 1.86 1.74 1.67 1.72

5.3.2. Skin Conductance Responses (SCR)

Figure 8A shows our averaged baseline-corrected skin conductance response (SCR)
analysis for each CL level difficulty (four levels of CL). This result shows that with an
increase in CL, the change in conductance relative to the baseline period increased. These
data (mean, SD) are illustrated in Table 5. The linear mixed model result shows a significant
linear relationship of CL for each additional letter remembered with an increase in SC of
0.034 µSiemens [95%CI: 0.007, 0.061] (see Table 6). For our high–low (H-L) comparison,
four-letter combinations (L) of −0.058µS versus seven-letter combinations (H) of 0.034µS, a
paired t-test revealed a statistically significant difference between the high- and lower-load



Multimodal Technol. Interact. 2024, 8, 34 17 of 27

conditions, t(9) = 2.87, p = 0.018, and a Hedges’ g effect size of 1.15 [95%CI: 0.19, 2.49]).
Of the ten participants with SCR data for the five-letter combination condition (five-letter
CL), one had greater skin conductivity and one had the lowest skin conductivity compared
to the high-load condition.

Table 6. Physiological cues’ (probe phase) statistical result (LMM).

Measurement SCR PD HR

Estimate 0.034 0.17 −0.13
SE 0.013 0.03 0.22

tStat 2.55 6.0 −0.6
df 38 85 46

p-value 0.014 4.05 × 10−8 0.55

CL std 0.02 0.08 0.56

AIC −63.4 10.7 191.25
Model R2 0.22 0.69 0.5

Figure 8. (A) GSR data—probe phase: the CL versus average baseline-corrected SC; (B) HR data—
probe phase: the CL versus average baseline-corrected HR (the dashed lines show individual partici-
pants; the bold black lines represent means; the error bars show 95% confidence intervals).

5.3.3. Heart Rate (HR)

Figure 8B shows our averaged baseline-corrected heart rate (HR) analysis for each
CL level difficulty (four levels of CL). These data (mean, SD) are illustrated in Table 5.
The linear mixed model result shows no significant linear relationship between CL and
the baseline-corrected HR (see Table 6). For our high–low (H-L) comparison, four-letter
combinations (L) of 2.04 ∆bpm versus seven-letter combinations (H) of 1.58 ∆bpm, a paired
t-test also did not show a significant difference between the high- and lower-load conditions,
t(11) = −0.6, p = 0.55, and a large Hedges’ g effect size of −0.24 [95%CI: −1.23, 0.68]. We
also observed highly inconsistent results across participants, with three participants having
a faster HR for the high load and three participants showing a faster HR for the lower load.

5.3.4. Electroencephalography (EEG)

Table 7 shows the results of the 15 mixed effects models (five bands × three channel
clusters) with a post hoc Holm–Bonferroni p-value correction for multiple comparisons.
This linear mixed model (LMM) result and significant correlation between CL and PSD is
shown in Table 7 and illustrated with solid lines in Figure 9.
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Figure 9. The CL versus log power spectral density (probe phase) for 6 frequency bands (re-
gions: blue = centrotemporal, red = frontal, yellow = occipitoparietal (color-coded lines)). Solid
lines = significant effect of CL in the LMM; dotted lines = not significant.

Table 7. Linear mixed model (LMM)—EEG statistical results in probe phase. CT = centrotemporal,
F = frontal, OP = occipitoparietal, L-A = lower alpha, U-A = upper alpha, L-B = lower beta, U-
B = upper beta. Top bar abbreviations: ES = estimate, SE = standard error, p = p-value, C-p = corrected,
RF = random effect standard deviation, AIC = Akaike information criterion. R2 is for the whole model.

Es SE tStat p C-p RF AIC R2

Delta
CT −0.09 0.07 −1.25 0.20 1.00 0.2 4453 0.42
F −0.14 0.08 −1.79 0.07 0.95 0.25 4376 0.32

OP −0.22 0.07 −2.97 0.003 0.054 0.17 4662 0.38

Theta
CT 0.09 0.05 1.72 0.08 1.00 0.09 4045 0.65
F 0.08 0.06 1.31 0.19 1.00 0.17 4008 0.54

OP 0.05 0.07 0.75 0.45 0.95 0.19 3999 0.62

L-A
CT 0.13 0.08 1.54 0.12 1.00 0.22 4698 0.72
F 0.08 0.08 0.1 0.31 1.00 0.24 4678 0.72

OP 0.12 0.09 1.34 0.18 1.00 0.26 4546 0.72

U-A
CT 0.2 0.08 2.7 0.007 0.12 0.2 4602 0.66
F 0.17 0.08 1.96 0.054 0.70 0.25 4585 0.66

OP 0.15 0.07 2.01 0.044 0.66 0.19 4478 0.65

L-B
CT 0.06 0.05 1.29 0.2 1.00 0.14 3521 0.74
F 0.05 0.04 1.1 0.27 1.00 0.01 3447 0.73

OP 0.007 0.08 0.089 0.92 0.92 0.27 3515 0.72

U-B
CT −0.1 0.04 −2.49 0.013 0.2 0.13 3061 0.79
F −0.06 0.04 −1.48 0.14 1.00 0.11 3155 0.72

OP −0.11 0.1 −1.06 0.29 1.00 0.4 3282 0.77
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The results of our linear mixed model (LMM) for the probe period show no significant
linear relationships between PSD and cognitive load for any region (channel clusters) after
correcting for multiple comparisons (corrected p-value using Holm–Bonferroni method).
The upper alpha and lower beta frequencies do visually appear to scale linearly with the
number of letters, but drop off after six letters, which could indicate participants struggling
after exceeding their memory capacity.

In addition, we conducted a high–low (H-L) CL comparison for our EEG data (four-letter
combinations (L) versus seven-letter combinations (H)), which is often referred to as high–low
CL in the literature. A repeated-measures ANOVA with factors of CL, frequency band,
and channel cluster indicated a significant interaction between the frequency band and CL,
F(5,70) = 4, p = 0.003. Also, a repeated-measures ANOVA with factors of CL, frequency band,
and channel cluster indicated a significant interaction between the frequency band and
channel cluster, F(10,140) = 10.23, p < 0.001. The post hoc comparison of each band and chan-
nel cluster was then conducted using the Tukey–Kramer method; Table 8 shows this result.
The result showed significant differences for the centrotemporal upper alpha and upper
beta and also for the occipitoparietal delta between the high- and lower-load conditions.

Table 8. Repeated-measures ANOVA (post hoc Tukey–Kramer method)—EEG statistical results
in probe phase. CT = centrotemporal, F = frontal, OP = occipitoparietal. Top bar abbreviations:
Reg = region, H-L = high minus low load, SE = standard error, p=p-value, L and U = lower and upper
(95%CI), ES = effect size (Hedges’ g)).

Band Reg H-L SE p L U ES

delta
CT −0.34 0.20 0.118 −0.79 0.10 −0.18
F −0.49 0.23 0.056 −1.00 0.15 −0.33
OP −0.74 0.18 0.001 −1.13 −0.34 −0.39

theta
CT 0.27 0.17 0.131 −0.09 0.63 0.11
F 0.25 0.20 0.225 −0.17 0.68 0.14
OP 0.16 0.19 0.406 −0.24 0.56 0.08

lower CT 0.38 0.28 0.195 −0.22 0.98 0.10
Alpha F 0.26 0.30 0.388 −0.37 0.90 0.07

OP 0.32 0.27 0.251 −0.25 0.90 0.09

upper CT 0.59 0.25 0.037 0.04 1.13 0.18
Alpha F 0.49 0.27 0.098 −0.10 1.08 0.15

OP 0.40 0.27 0.153 −0.17 0.98 0.12

lower CT 0.19 0.15 0.217 −0.13 0.52 0.08
Beta F 0.10 0.11 0.392 −0.14 0.34 0.04

OP 0.03 0.23 0.899 −0.48 0.54 0.01

upper CT 0.32 0.14 0.034 −0.62 -0.02 −0.15
Beta F 0.22 0.14 0.142 −0.52 0.08 −0.11

OP 0.35 0.31 0.285 −1.02 0.32 −0.15

6. Discussion

The aim of this study was to test the effectiveness of common physiological measures
of CL using the Sternberg memory-search task as the difficulty level increases (four lev-
els of CL). We were also interested in investigating how reliable these measurements of CL
were with physiological cues in the probe phase by analyzing and comparing the different
levels of CL in both the maintenance and probe phases.

For this purpose, we specifically used the Sternberg memory-search task to design four
levels of difficulty and measure participants’ CL using multimodal physiological signals
(EEG, SC, HR, PD). Some of the reasons for using the Sternberg memory-search task in this
study include the fact that in the classic Sternberg task, only one item is probed, which
means that maintaining the order of the presented items is irrelevant to the task; to analyze
and measure CL using EEG signals, it is important to isolate and have a clear separation
between maintenance, probe, and feedback with other cognitive operations such as motor
responses. The difficulty in the isolation of directly working memory-related cognitive
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operations makes the task hardly suitable for EEG. Unlike the n-back test or other well-
known CL tasks, the Sternberg memory-search task has all of the above mentioned features.

Most of the existing examples of physiological measures of CL in the literature were
mainly analyzed using the maintenance phase. Our main goal is to extend these physio-
logical measures of CL to a VR environment for training purposes and most VR studies
are task-based, which does not include maintenance. Rather, they just contain an encoding
phase and feedback or probe phase. Thus, we were interested in investigating to what
extent we still can find these correlations of CL with physiological cues in the probe phase
and transform the correlation of CL from the maintenance phase to the probe phase.

In addition, the measures of CL in the literature usually use shorter time windows
(several seconds) and are stimulus-based, while VR studies are mainly task-based and
require a longer period (several minutes) to solve tasks. This study contributes to the
CL literature by (1) measuring CL with several different physiological cues (multi-modal
CL measurement), (2) including four levels of cognitive load, enabling high- vs. low-
load comparisons and linear models of CL, and (3) looking at the correlation of CL with
individual physiological signals in both the maintenance and probe phase.

Our behavioral measures statistically confirm that differences in workload were indeed
experienced: as the number of letters in non-semantic words to be remembered increased,
the CL increased, and the task performance was shown to decrease. These behavioral
findings indicate that the number of letters in the Sternberg memory-search task serves as
an appropriate metric for the CL.

In the maintenance phase, we observed that the SC measurement had a statistically
significant positive relationship with CL, supporting our hypothesis. We also observed the
same significant positive relationship with the CL during our probe phase as well. The
linear mixed model demonstrates a linear relationship with a positive slope between SCR
and CL in both maintenance and probe phases. Our paired t-test comparison of the high
versus lower CL for both maintenance and probe phases also shows a significant difference
between the SCR in the high versus lower loads. This result is aligned with the previous
studies in the literature [59], which shows that with an increase in CL, the SC increases.
This finding suggests that the average SC is a reliable measure of CL for both maintenance
and probe phases.

Our PD results in the maintenance and probe phases showed a reliable relationship
with CL, with all participants showing significantly larger pupil dilation for the high load
compared to the lower-load condition (high vs. low CL). Our PD paired t-test showed
this significant increase in both eyes as CL increases in the high–low comparison for
both maintenance and probe phases. Our linear mixed model for both the maintenance
and probe phases also showed a significant linear increase in pupil size as CL increased,
which aligned with our hypothesis. Our results confirm the previous finding of a positive
correlation between CL and PD [65–67]. This finding suggests that PD is a reliable measure
of CL for both maintenance and probe phases.

Comparing the maintenance to the probe phase, the SCR and PD results suggest that
(1) there were no differences between these two phases and we observed statistical significance
with a positive slope between SCR or PD and CL for both phases. (2) We still can observe these
SCR and PD correlations with CL in the probe phase. Overall, SC and PD appear to serve
as a moderately effective and reliable measure of CL in the Sternberg memory-search task.
The contribution of this finding with the average SC or PD method to the state of knowledge
are (1) the average SC or PD method for measurement of CL could not just apply to the
maintenance phase but also the probe phase as well, which suggests that it might a reliable
measurement of CL in studies that require longer time periods to solve tasks (several minutes);
(2) the result suggests the possibility of CL measurement using PD or SC with even a very
simple averaging method; furthermore, there is no need for expensive and complex methods
such as extraction of the tonic and phasic components of GSR data.

Our HR result showed highly inconsistent results across participants and showed no
relationship between CL and our average baseline-corrected HR in both the maintenance
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and probe phases. However, due to sensor disconnection, we had a low sample size (a few
trials in 11 participants) for our HR data. In addition, the most common HR analysis is using
heart rate variability (HRV) [9,62] and due to the short duration of the maintenance and
probe phases, we were not able to extract HRV for our data analysis. We had hypothesized
that HR would increase with CL, but we observed no consistent relationship between
average HR and CL. Apart from the sensor disconnection, which left us with less data,
another limitation of HR analysis and validation of CL measurement using HR was its
very slow response period to react to changes in CL, meaning that it requires (1) a longer
duration to extract HRV and (2) a longer duration to respond to CL changes. For paradigms
with longer duration, HRV analysis is an alternative approach for CL measurement that
might reveal a better result.

Based on the prior literature looking at EEG and cognitive load, we hypothesized
that we would observe an increase in theta, alpha, and beta bands and an increase in
frontal theta, parietal alpha, and temporal beta in the maintenance phase and an increase
in frontal theta and parietal alpha in the probe phase [46,70,71]. Our results show similar
alignment with our hypotheses based on the literature [1,68,79,81,112] (see Figure 6). We
observed an overall increase in EEG power as CL increases during the maintenance phase
but this relationship does not continue robustly in the probe phase (see Figure 9). In the
maintenance phase, this relationship was statistically significant for all channel clusters in
the upper alpha band and, in the occipitoparietal and frontal channels, in the lower alpha
band, which supported our hypothesis. However, in the probe phase, the upper alpha
and lower beta frequencies do visually appear to scale linearly with the number of letters
(not statistically significant), but drop off after six letters, which could indicate participants
exceeding their memory capacity. Our result in the theta and beta bands also did not
support our hypothesis and we did not observe an increase in the theta and beta bands in
our result for the maintenance phase. Finally, our result did not support our hypothesis for
the probe phase either (an increase in frontal theta and parietal alpha).

In our direct comparison of the high- versus lower-load conditions, we observed that
the upper and lower alpha was significantly different in all regions for the maintenance
phase. We additionally observed differences in the centrotemporal and frontal electrodes
for lower beta and in all regions for the theta band. This high–low comparison for the
probe phase just continues in the centrotemporal upper alpha, although we did not observe
any significance in centrotemporal upper beta in the maintenance phase, but we started to
observe this significance in the probe phase.

In conclusion, (1) the LMM illustrates the measurement of CL for the maintenance
phase with an increase in PSD in the alpha band in most all regions but did not continue
in the probe phase; (2) we did not observe any significant increases in theta in any region
for the maintenance or probe phase; (3) the high–low comparison illustrates significant
theta and lower alpha in all regions in the maintenance phase, which did not continue in
the probe phase, also the significant upper alpha in all regions in the maintenance phase,
which this significant just continued for the centrotemporal region in the probe phase, as
well as, the significant lower beta for the centrotemporal region in the maintenance phase
turned to upper beta in the probe phase.

As our analysis focuses on both maintenance and probe periods, our findings can
help to elucidate the effectiveness of physiological measurements of CL with evidence for
additional probe phases. In contrast, most studies in regard to the measurement of CL with
physiological cues are just focused on the maintenance phase.

7. Limitations

One of the biggest limitations of the current study is the number of sensor failures,
disconnections, and loss of data, especially with the HR and eye tracker sensor. The problem
with the eye tracker was mostly in a loss of detecting both eyes of the participants. The
eye tracker was mounted on the monitor in front of the participant and had a fixed field
of view to detect eyes. Thus, with small movements of the head, the eye tracker was not
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be able to find and track the eyes. Note that this limitation is solved in head-mounted VR
displays with an integrated eye tracker.

As one of our future goals is to expand our results to measuring the CL in VR experi-
ences, this will require future VR experiences to detect both fast and slow changes in CL
and to be robust enough to let the learner move physically within VR as well. To expand
these measurements of CL with physiological cues for VR studies, one of the limitations
of our current research is that the physiological responses were measured during a short
period and were stimulus-based. In contrast, VR studies are task-based and require a longer
period to interact with the system. This is especially important for CL measurement with
EEG signals.

The limitation of a long period for CL measurement is not well-aligned with some
physiological measurements, such as HR metrics, which are slow and require a longer
period to react to CL changes; EEG, which is fast and shows its reaction to CL changes in
shorter periods; or PD, which starts to react to CL changes after 500 to 600 ms after stimulus
onset and also requires 2.6 to 3 s of rest to return to normal (pupil) dilation (if it needs to
be used for its baseline correction). It is also unclear if these findings can be generalized
to more complex and longer-period tasks. Another challenge in expanding CL detection
to VR learning applications is additional sources of noise such as physical movement that
are always part of VR. The user’s physical movement could interfere with physiological
signal measurements (especially in EEG, but also in other sensors as well). Future studies
will need to investigate if these signals are robust enough to measure CL in the presence of
movements and also investigate other VR effects in physiological signals.

8. Conclusions

We used the Sternberg memory-search task and designed four levels of CL, 4/5/6/7-
letter words, to measure CL with multi-modal physiological measurements: SCR, PD,
HR, and EEG frequency band power. The purpose of this study was to investigate the
feasibility of measurements of CL using the Sternberg memory-search task with a multi-
modal physiological measurement method to compare these correlation changes with CL
in both maintenance and probe phases.

For this study, the CL of the task was related to the number of letters in non-semantic
words. The PD and SCR are both shown as reliable metrics, with all participants showing
an increase in pupil dilation under higher CL for both maintenance and probe phases and
also a positive correlation of SC with an increase in CL.

EEG demonstrated promising metrics of CL showing a significant linear relationship
with CL in the maintenance phase (positive linear relationship with CL with an increase
in the alpha band). We also expected to observe an increase in frontal theta and temporal
beta bands, but the result did not show any significant correlation of CL in those regions in
the maintenance phase. Unfortunately, we did not observe any continuation of this linear
relationship with CL in the probe phase and the result did not support our hypothesis for
the probe phase (an increase in frontal theta and parietal alpha in the probe phase).

However, we observed the following major shift of PSD in three channel clusters in
the high–low comparison: (1) we observed a significant increase in the theta band in all
channel cluster regions, which disappeared in the probe phase; (2) we observed a significant
increase in the lower alpha band in all channel cluster regions, which disappeared in the
probe phase; (3) we observed a significant increase in the upper alpha band in all channel
cluster regions, which just continued in the centrotemporal region in the probe phase; (4) we
observed a significant increase in the lower beta band in the centrotemporal and frontal
regions, which disappeared in the probe phase; (5) we observed a significant increase in the
upper beta band in the centrotemporal region in the probe phase, which we did not observe
in the maintenance phase; and, (6) surprisingly, we observe a significant correlation of the
delta band in the occipitoparietal region in the probe phase.

Overall, the SC and PD show a slower reaction (few seconds delay) to changes in
CL compared to EEG. Although the EEG signals react faster to these changes in CL, the
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complexity and sensitivity of this signal to other artifacts such as blinking or muscle
movement are inevitable and expensive to process. This paper provides statistical evidence
for individual physiological signals in support of measurement of CL with a multi-modal
approach in both the maintenance and probe phases. This also demonstrated a comparison
of the measurement of CL with physiological signals as the difficulty slightly increased
with four levels of CL, as well as additional binary high–low difficulty level at different
stage of user interaction with the system.

9. Future Work

VR is used increasingly in training applications [113], but very little research has
focused on real-time adaptive training based on users’ CL state in VR using physiological
metrics. As we aim to extend this study and investigate the measurement of CL using multi-
modal techniques with several physiological cues in a VR environment, the first step is to
investigate the feasibility and limitations of these measurements of CL while participants
perform a series of short-sequence memory tasks requiring moderate movement. The
question here is if these metrics are reliable for the measurement of CL with the presence of
muscle movement.

In this study, we showed that pupil dilation, SCR, and EEG demonstrate a reliable
relationship with CL. The second step of our research will be to demonstrate the CL
measurement of learners through physiological cues in VR applications in real time and
adapt the VR training system accordingly. This could be conducted through the use of ML
classification to investigate how accurately we can detect human CL changes while learners
interact with the VR environment.
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