
Citation: Uddin, J. Attention-Based

DenseNet for Lung Cancer

Classification Using CT Scan and

Histopathological Images. Designs

2024, 8, 27. https://doi.org/

10.3390/designs8020027

Academic Editor: Richard Drevet

and Hicham Benhayoune

Received: 9 January 2024

Revised: 11 March 2024

Accepted: 13 March 2024

Published: 18 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Attention-Based DenseNet for Lung Cancer Classification Using
CT Scan and Histopathological Images
Jia Uddin

AI and Big Data Department, Endicott College, Woosong University, Daejeon 3400, Republic of Korea;
jia.uddin@wsu.ac.kr

Abstract: Lung cancer is identified by the uncontrolled proliferation of cells in lung tissues. The
timely detection of malignant cells in the lungs, crucial for processes such as oxygen provision and
carbon dioxide elimination in the human body, is imperative. The application of deep learning
for discerning lymph node involvement in CT scans and histopathological images has garnered
widespread attention due to its potential impact on patient diagnosis and treatment. This paper
suggests employing DenseNet for lung cancer detection, leveraging its ability to transmit learned
features backward through each layer continuously. This characteristic not only reduces model
parameters but also enhances the learning of local features, facilitating a better comprehension of
the structural complexity and uneven distribution in CT scans and histopathological cancer images.
Furthermore, DenseNet accompanied by an attention mechanism (ATT-DenseNet) allows the model
to focus on specific parts of an image, giving more weight to relevant regions. Compared to existing
algorithms, the ATT-DenseNet demonstrates a remarkable enhancement in accuracy, precision, recall,
and the F1-Score. It achieves an average improvement of 20% in accuracy, 19.66% in precision, 24.33%
in recall, and 22.33% in the F1-Score across these metrics. The motivation behind the research is to
leverage deep learning technologies to enhance the precision and reliability of lung cancer diagnostics,
thus addressing the gap in early detection and treatment. This pursuit is driven by the potential of
deep learning models, like DenseNet, to provide significant improvements in analyzing complex
medical images for better clinical outcomes.
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1. Introduction

Cancer has long been acknowledged as a perilous disease with the potential for
fatal outcomes. Lung cancer, a prevalent malignancy globally, stands out as a significant
contributor to cancer-related mortality in both developed and developing nations. The
majority of cases involve non-small-cell lung cancer (NSCLC), boasting a modest 5-year
mortality rate of only 18%. Despite notable advancements in medical science leading to
increased overall cancer survival rates, such progress is less pronounced in lung cancer
due to the prevalence of advanced-stage cases among patients [1]. Cancer cells typically
migrate from the lungs to the lymph glands and then enter the bloodstream, with natural
lymph flow directing the spread toward the chest’s center. Timely identification becomes
crucial to preventing metastasis if the cancer spreads to other organs. Late-stage lesions
are commonly treated with nonsurgical approaches like radiation, chemotherapy, surgical
intervention, or monoclonal antibodies. This underscores the pivotal role of follow-up
radiography in monitoring treatment response and tracking temporal changes in tumor
radiography [2]. Cancer analysis is usually conducted in a pathological laboratory using
various methods. Microscopic examinations, including biopsies, and electronic modalities
such as CT scans, ultrasound, and others are employed to examine cancerous tissue. Among
these, the CT scan is the most commonly utilized pathological test and is highly favored for
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diagnosis. This imaging technique captures high-resolution, high-contrast images of the
lungs from different perspectives, offering a three-dimensional assessment of the lesion.

Recent studies have introduced predictive algorithms that leverage the differential
expression of genes to categorize lung cancer patients according to different health out-
comes, including the likelihood of relapse and overall survival rates. Previous research has
underscored the importance of biomarkers in treating non-small-cell lung cancer (NSCLC).
The emergence of artificial intelligence (AI) has facilitated the quantitative evaluation of
radiographic tumor features, an approach referred to as “radiomics” [3]. Evidence from
numerous studies suggests that non-invasive characterization of tumor features through
radiomics offers enhanced predictive accuracy over traditional clinical evaluations.

Since the mid-19th century, pathologists have depended on traditional microscopy
and glass slides to make precise diagnoses. This standard method requires pathologists to
examine numerous glass slides by hand, a process that is both slow and requires significant
effort. The advent of slide-scanning technology, which creates digital slides, has ushered
classical pathology into a digital era, presenting various advantages for histopathology [4].
A key benefit is the use of computer simulations, like automated image analysis, which aids
medical professionals in examining and quantitatively evaluating slides. This advancement
aims to reduce the duration of manual examinations and improve the accuracy, consistency,
and efficiency of pathologists’ workflows. The employment of deep learning techniques
for diagnostic support has recently sparked significant interest in histopathology.

In a clinical context, lung cancer CT scan images and normal lung images exhibit
distinct characteristics that are crucial for accurate diagnosis. Radiologists analyze these
images to identify potential abnormalities and distinguish between healthy and diseased
lung tissue. For example, in CT scans, tumors or masses associated with lung cancer
typically appear as areas of increased density on CT scans. They may be present as
irregular, solid nodules or masses with varying degrees of density. However, normal lung
tissue appears as a relatively homogenous pattern of lower density on CT scans. The
texture is generally uniform, with no significant irregularities or masses.

For the effective classification of cancer and the selection of appropriate treatment
options, a detailed analysis of lymph glands is crucial. Assessing multiple levels of lymph
nodes is key for accurate prognosis and staging, which requires a thorough evaluation
of lymph node condition [5]. Recently, histopathological images have been identified
as reliable indicators of various treatment biomarkers. However, the manual review of
numerous slides is a demanding and time-consuming task for pathologists, who are prone
to errors due to the challenge of remembering which sections have already been reviewed.
Various solutions introduced in this field have been shown to outperform pathologists in
terms of identifying micro-metastases with greater accuracy, especially under the pressure
of a busy schedule. Similarly, in lung cancer, the presence of primary tumor metastases
plays a crucial role in determining the stage of cancer, treatment possibilities, and patient
outcomes, just as it does in breast cancer [6].

DenseNet (Densely Connected Convolutional Networks) is a deep learning archi-
tecture [7] that has demonstrated effectiveness in various image-related tasks, including
medical image analysis. Its unique structure and characteristics contribute to its success in
handling medical CT scans and histopathology images for cancer detection. The combina-
tion of DenseNet architecture with a Squeeze-and-Excitation (SE) block [8], particularly for
channel attention, enhances the model’s capabilities for medical image analysis. The SE
block enhances DenseNet by introducing channel-wise attention. This allows the model
to assign different levels of importance to different channels (features) in the intermediate
representations. In medical images, where certain features or channels are more informative
for detecting specific patterns associated with cancer, channel attention helps to focus on
relevant information. Based on this idea, to surpass the accuracy levels of the existing deep-
learning-based lung cancer detection methods, we propose an attention-based DenseNet
(ATT-DenseNet) for lung cancer detection using CT scan images and histopathological
images. We consider three baseline deep learning algorithms. First, we compare the per-
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formance of the proposed method with DenseNet having no attention mechanism. Then,
we compare it with AlexNet [9] followed by SqueezeNet [10]. ATT-DenseNet outperforms
these two baseline deep learning architectures by achieving increased accuracy and an
increased F1-score. The novelty of this work as inspired by [11] is summarized as follows:

• We introduce the SE feature channel attention block into DenseNet architecture. This
strategic incorporation aims to accentuate cancer-relevant information within the
feature map. By dynamically recalibrating feature responses, our enhancement ensures
greater emphasis on regions pertinent to cancer, thereby amplifying their significance
in the overall analysis.

• The network’s ability is enhanced to focus on crucial features by substituting average
pooling with max pooling in the third transition layer. This modification strategically
places additional emphasis on important regions during the analysis, improving the
model’s capacity to capture relevant patterns associated with lung cancer.

• Drawing inspiration from [11], we implement an efficient method to prevent neuron
deaths during model training. By addressing this challenge proactively, our methodol-
ogy ensures the stability and robustness of the deep learning framework, leading to
improved performance in lung cancer detection tasks.

• Sophisticated data augmentation techniques are employed, including rotation, scaling,
and horizontal flipping, to preprocess both CT scan images [12] and histopathological
images [13]. Furthermore, normalization of the dataset is performed to maintain
appropriate pixel value ranges, thereby preventing potential distortions caused by
excessively high or low values. These preprocessing steps are crucial for enhancing the
model’s ability to generalize across diverse datasets and improve overall performance.

• In contrast with other algorithms, the ATT-DenseNet shows a notable boost in ac-
curacy, precision, recall, and the F1-Score. It attains an average increase of 20% in
accuracy, 19.66% in precision, 24.33% in recall, and 22.33% in the F1-Score across these
performance measures.

In summary, the methodology represents a comprehensive and innovative approach
to lung cancer detection, incorporating cutting-edge techniques in deep learning, strategic
architectural enhancements, and meticulous data preprocessing strategies. By addressing
key challenges and leveraging the latest advancements in the field, we aim to significantly
improve the accuracy and reliability of lung cancer diagnosis, ultimately contributing to
advancements in healthcare and patient outcomes.

The structure of the remainder of this paper is organized as follows: Section 2 delves
into related works, offering a concise review of current methodologies for detecting lung
cancer. Following this, Section 3 thoroughly describes the methodology employed, includ-
ing details of the dataset used, the DenseNet architecture, and the implementation of the
attention block. Section 4 presents the experimental outcomes, showcasing a performance
comparison with leading deep learning architectures currently considered state of the art.
Finally, Section 5 concludes the paper.

2. Related Works

Machine learning algorithms have changed the research paradigm in the whole
community of researchers starting from image processing [14] and network optimiza-
tion [15,16] to healthcare applications. Lung cancer refers to the formation of malignant
cells in the lungs, leading to an overall rise in mortality rates for both men and women
due to the increasing incidence of cancer. The disease involves the rapid multiplica-
tion of cells in the lungs. While lung cancer cannot be completely eliminated, it can
be mitigated [17]. The incidence of lung cancer is directly proportional to the number
of individuals who engage in continuous smoking. Various classification approaches,
including Naive Bayes, SVM, decision tree, and logistic regression, have been employed
to assess the treatment of lung cancer.
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2.1. Lung Cancer Detection Using CT Scan Images

Pradhan et al. [18] conducted a comprehensive evaluation of various machine learning
approaches for the detection of lung cancer via IoT devices. This study included an
extensive review of around 65 publications that applied machine learning algorithms
for the prediction of different diseases. The objective was to investigate a variety of
machine learning strategies for diagnosing a wide range of diseases, particularly focusing
on uncovering existing deficiencies in lung cancer detection when integrated with medical
IoT technology.

Bhatia et al. [19] utilized deep residual learning for lung cancer detection from CT
scans, implementing a series of preprocessing techniques with the help of UNet and ResNet
algorithms. These techniques were designed to accentuate areas within the lungs that are
susceptible to cancer and to extract pertinent features from the scans. The features thus
extracted were fed into several classifiers, such as Adaboost and Random Forest, to make
individual predictions. These predictions from the classifiers were then aggregated to
determine the probability of a CT scan showing signs of cancer.

Shin et al. [20] applied deep learning methods to study the properties of cell exosomes
and to find parallels in human plasma extracellular vesicles. Their deep learning classifier,
tested on exosome Surface-Enhanced Raman Scattering (SERS) data from both normal
and lung cancer cell lines, attained a classification accuracy of 95%. Across a sample of
43 patients, this algorithm found that 90.7% of the plasma exosomes from patients were
more similar to those of lung cancer cells than to those from healthy controls. This sample
included individuals diagnosed with stage I and II lung cancer.

A model for detecting lung cancer that utilizes image analysis and machine learning
has been crafted to discern the presence of lung cancer via CT scans and blood tests [21].
Although CT scan results are generally more effective than mammograms in identifying
lung cancer, patient CT images are often classified simply into normal and abnormal
categories [22,23]. It is important to note that among patients with non-small-cell lung
cancer (NSCLC) who are at the same stage of tumor development, there is a significant
variability in clinical outcomes and performance.

Lakshmanaprabhu et al. [24] presented a groundbreaking automatic diagnosis cat-
egorization system specifically designed for lung CT scans in their study. This system
processes lung CT images utilizing a combination of the Optimal Deep Neural Network
(ODNN) and Linear Discriminant Analysis (LDA) techniques.

2.2. Lung Cancer Detection Using Histopathological Images

A deep learning network, integrated with a tumor cell and metastatic staging system,
was used to evaluate the reliability of personalized treatment recommendations generated
by the deep learning preservation neural network. The effectiveness of the model was
assessed using C statistics. The longevity predictions and treatment strategies produced
by the computational intelligence survival neural network model were made accessible
through the development of a user interface [25].

Ardila et al. [26] introduced a novel system aimed at predicting the risk of lung cancer by
analyzing both historical and current computerized tomography (CT) dimensions of a patient.

The primary inspiration for our research comes from [27], where the authors intro-
duced a classification method for cancer detection based on Convolutional Neural Networks
(CNNs). However, we contend that employing a more sophisticated deep learning architec-
ture, which includes an attention block, can more effectively discern image features, thereby
enhancing the accuracy of cancer detection. Consequently, we introduce ATT-DenseNet as
a novel approach for detecting cancer using CT scans and histopathological images, with
this achieving superior accuracy compared to the CNN baselines previously considered.

Saric et al. introduce an entirely automated technique for detecting lung cancer
in comprehensive slide images of lung tissue samples [28]. The classification process
operates at the image patch level, employing CNNs. The study involves training two CNN
architectures, namely VGG and ResNet, and subsequently comparing their performance.
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The findings indicate that the CNN-based methodology exhibits promise in supporting
pathologists during lung cancer diagnosis.

Shahid et al. utilized a large dataset of lung and colon histopathology images,
equally divided into five classes, for training and validation [29]. They fine-tuned a
pretrained AlexNet by modifying four layers and achieved an initial accuracy of 89%. To
enhance accuracy while maintaining computational efficiency, they applied a contrast
enhancement technique to images in the underperforming class. This improved overall
accuracy to 98.4%.

Yang et al. explore deep learning models’ potential in identifying lung cancer subtypes
and mimics from digital whole slide images (WSIs) [30]. A novel threshold-based approach
is proposed for label inference of WSIs with complex tissue components.

3. Materials and Methods

In this section, we first talk about the datasets that we use for lung cancer detection,
consisting of chest CT scan images and histopathological images. Next, we discuss some
details about the channel attention squeeze and excitation block, which we refer to as an
SE block throughout this paper. Lastly, details regarding the DenseNet architecture are
presented at the end of this section.

3.1. Dataset Description

The dataset contains 15,000 histopathological images, each with dimensions of
768 × 768 pixels and stored in a JPEG format. These images come from a source that
is compliant with HIPAA regulations and has been validated for accuracy. Initially,
the collection included 750 images of lung tissue, which was equally divided among
250 images of benign lung tissue, 250 images of lung adenocarcinomas, and 250 images of
lung squamous cell carcinomas.

• Lung benign tissue;
• Lung adenocarcinoma;
• Lung squamous cell carcinoma.

Figure 1 presents samples associated with these three classes.
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Figure 1. Histopathological images for lung cancer detection: (a) lung benign tissue, (b) adenocarci-
noma, (c) squamous cell carcinoma.

For the chest CT scan images, we consider three classes of cancer and a normal class.
Among the cancer classes, there are three types: adenocarcinoma, large-cell carcinoma,
and squamous cell carcinoma. A total of 340 images for each class including the normal
class have been used for training and testing. Figure 2 presents sample images from
these classes.
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3.2. DenseNet

DenseNet addresses significant challenges such as vanishing gradients and the ineffi-
cient use of parameters that are common in deep learning models [31]. Its standout feature
is the implementation of dense connectivity, ensuring that each layer is directly linked to
every other layer in a feedforward fashion. This structure promotes the seamless flow of
information and gradients across the network, enhancing learning efficiency and stability.
The fundamental component of DenseNet is the dense block, which consists of a series of
layers where each layer receives input from all preceding layers and, in turn, passes its
feature maps forward. This pattern of dense connections fosters substantial feature reuse
across the network, effectively leveraging and amalgamating learned representations from
various depths. Moreover, DenseNet mitigates the issue of vanishing gradients by intro-
ducing shortcut connections that facilitate a more straightforward flow of gradients during
the training process, thereby improving the model’s training efficiency and performance.

To manage the model’s complexity and computational cost, DenseNet incorporates
transition layers between dense blocks. These transition layers typically include a combina-
tion of convolutional and pooling operations, serving to reduce the number of channels
and downsample spatial dimensions. The growth rate, a hyperparameter, determines the
number of additional channels introduced by each layer in the dense block, influencing the
network’s capacity to learn and represent features.

In addition to dense connectivity, DenseNet often employs bottleneck layers within
each dense block. These bottleneck layers consist of a 1× 1 convolution followed by a 3 × 3
convolution, enhancing computational efficiency. The architecture typically concludes with
a global average pooling layer, reducing spatial dimensions to a 1 × 1 grid, and a final
classification layer.

The advantages of DenseNet include its ability to effectively utilize parameters, result-
ing in models with fewer parameters compared to traditional architectures. This efficient
parameter usage, combined with dense connectivity, contributes to improved accuracy
and training efficiency. DenseNet has proven particularly effective in image classification
tasks and is widely adopted in the field of computer vision. A simplified representation of
DenseNet is presented as follows:

• Dense block: Assuming that input for the dense block is Xl (output of the lth layer), Hl
is a set of convolutional operations. Next, a function is needed for concatenating input
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with the output of Hl . The output of the lth layer is the concatenation of all previous
layer outputs and the output of the Hl operation.

• Transition layer: Input, Xl (output of the lth dense block). θl is the compression factor
that reduces the number of channels. Next, convolution and average pooling operations
are performed. The output of the transition layer can be represented as follows:

Xl+1 = Conv(AvgPool(Xl)θl). (1)

The transition layer is used to reduce the number of channels and spatial dimensions,
aiding in parameter efficiency.

• Overall DenseNet Structure: If we assume X0 as an input image, and H1, H2, . . ., HL
are dense blocks, θ1, θ2, . . ., θL are compression factors for each transition layer. k is
the growth rate (number of additional channels added by each layer)

The overall structure is a sequence of dense blocks connected by transition layers,
forming a dense and interconnected network. The DenseNet architecture for detecting lung
cancer using chest CT scans and histopathological images is presented in Figure 3.
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3.3. SE Block

The attention mechanism functions as a mechanism for resource allocation and can be
categorized into various types, including channel attention, pixel attention, multistage at-
tention, and others. In this study, we focus on the channel attention SE block, as introduced
in [32]. The fundamental concept of this block is to determine feature weights based on the
loss, assigning greater weight to effective feature maps. The SE block consists primarily of
two components: squeeze and excitation.

The squeeze operation in neural network architectures compresses features along
the spatial dimensions, effectively transforming each two-dimensional feature map into a
single real number. This compression process generates a global receptive field, allowing
the network to capture and respond to global information present in the input data. On
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the other hand, the excitation step is akin to the gating mechanism found in Recurrent
Neural Networks (RNNs). This mechanism involves selectively amplifying or dampening
specific features based on their relevance to the task at hand, enabling the network to
focus on the most informative parts of the input data. Together, squeeze and excitation
operations allow a neural network to dynamically adjust the importance of different
channels, enhancing its ability to learn complex patterns and relationships in the data. It
generates weights for each feature channel using parameters and learns these weights to
explicitly model the correlation between feature channels. The graphical representation
of the SE block is depicted in Figure 4. For any given transformation Ftr, mapping the
input X

(
X ∈ RH′×W ′×C′

)
to the feature map U where U ∈ RH×W×C, we can construct

a corresponding SE block to perform feature recalibration. The feature U first passes
through a squeeze operation Fsq, which compresses U into a 1 × 1 × C feature. Next,
through excitation operation Fex, the feature from Fsq is excited. Lastly, through Fscale,
the recalibration feature is achieved, where Fscale implies that the weights assigned to
the excitation output are individually applied to each preceding feature channel through
multiplication. Through this process, the original characteristics in the channel dimension
are recalibrated, achieving a fine-tuning of the importance of each feature channel.
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The ATT-DenseNet model leverages a sophisticated attention mechanism, specifically
the squeeze-and-excitation (SE) block, to improve its performance in lung cancer detection
using CT and histopathological images. Here is a detailed explanation of how this attention
mechanism is implemented and its impact on the model’s performance:

3.3.1. Implementation of the SE Block

• Squeeze Operation: This component of the SE block compresses the spatial dimensions
of the feature maps. Each two-dimensional feature map is aggregated into a single
real number, effectively summarizing the spatial information into a channel descriptor.
This operation creates a global receptive field for each channel, capturing global spatial
information succinctly.

• Excitation Operation: The excitation step follows the squeezing of feature maps. It
uses a fully connected layer to learn a set of weights for each channel. These weights
are learned during training and are used to model the interdependencies between the
channels. The operation is similar to a gating mechanism in recurrent neural networks
(RNNs), allowing the model to assign adaptive importance to each channel based on
the current input.

• Feature Recalibration: The output from the excitation step, which consists of weights
for each channel, is used to recalibrate the original feature maps. This is achieved by
scaling each channel of the feature map by its corresponding learned weight. The
recalibrated feature maps emphasize informative features while suppressing less
useful ones, enhancing the representational power of the network.

3.3.2. Impact on Model Performance

• Enhanced Feature Representation: By dynamically recalibrating the feature channels
based on their relevance to the task at hand, ATT-DenseNet can focus more on im-
portant features while ignoring irrelevant ones. This results in a more discriminative
feature representation, improving the model’s accuracy in detecting lung cancer.
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• Improved Model Generalization: The ability to adaptively adjust the importance of
features based on the input allows ATT-DenseNet to generalize better across different
datasets and imaging conditions. This adaptability is crucial in medical imaging,
where variability across images is common.

• Efficient Use of Model Parameters: Despite the added complexity of the attention
mechanism, the SE block’s efficient design ensures that the increase in computational
cost and parameters is minimal. This efficiency is particularly important in medical
applications, where model deployment may need to be resource-conscious.

In summary, the attention mechanism used in ATT-DenseNet, embodied by the SE
block, plays a critical role in enhancing the model’s ability to detect lung cancer from
CT and histopathological images. By focusing on relevant features and suppressing
irrelevant ones, the model achieves improved performance metrics, including accuracy,
precision, recall, and the F1-score, making it a powerful tool for early and accurate lung
cancer detection.

The SE block significantly enhances the functionality of the ATT-DenseNet model by
introducing a novel approach to feature recalibration within deep learning architectures.
In its functionality, the SE block first executes a squeeze phase, which aggregates spatial
information across the feature maps by compressing the spatial dimensions of each channel
into a single value. This process captures global contextual information from each feature
map, providing a comprehensive summary of the spatial attributes. Following this, the ex-
citation phase employs a fully connected layer to learn weights for each channel, effectively
determining the importance of each feature based on the aggregated global information.
This mechanism enables the model to understand the intricate relationships between chan-
nels and to assign more weight to those features deemed crucial for the task at hand. The
culmination of the SE block’s process is the feature recalibration stage, wherein the original
feature maps are scaled by the learned channel-specific weights. This recalibration allows
the model to enhance or suppress features based on their learned importance, optimizing
the network’s focus and resource allocation towards the most informative features for the
specific task of lung cancer detection.

The role of the SE block in emphasizing cancer-related information within the feature
maps is pivotal for the enhanced performance of the ATT-DenseNet model in detecting lung
cancer. By dynamically adjusting the emphasis on different features, the SE block enables
the model to concentrate more effectively on the characteristics indicative of cancerous
tissues, such as abnormal growth patterns and irregular tissue structures, while diminishing
the focus on less relevant features. This selective attention to cancer-related features allows
the model to be more sensitive and accurate in identifying potential cancerous lesions
within CT and histopathological images. The ability to discern and prioritize critical cancer-
related information over normal tissue characteristics significantly improves the model’s
diagnostic precision, enabling it to detect lung cancer with greater accuracy, precision, recall,
and F1-score. Through the implementation of the SE block, ATT-DenseNet advances the
field of medical imaging analysis by providing a more effective tool for the early detection
and diagnosis of lung cancer, potentially leading to better patient outcomes through timely
and accurate treatment planning.

3.4. Neuron Death Avoidance

PReLU (Parametric Rectified Linear Unit) is a variation of the popular ReLU (Rec-
tified Linear Unit) activation function commonly used in neural networks [33]. While
ReLU sets all negative values to zero, PReLU allows for a small negative slope, which
is learned during training. Neuron death, or dying ReLU problem, can occur when the
ReLU units always output zero for a particular input during training, leading to those
units no longer updating their weights. This can happen when the input to a ReLU
neuron is consistently negative, causing the gradient to be zero and thus preventing the
weights from being updated. By allowing for a small negative slope in PReLU, even
for negative inputs, it helps to alleviate this issue by providing a non-zero gradient for
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those inputs. This encourages the flow of gradients during backpropagation, preventing
neurons from becoming inactive during training.

3.5. Pseudocode of the Proposed Method

The pseudocode describes a step-by-step method to analyze medical images for
lung cancer using a special computer program. It starts by preparing the images in a
consistent way. Then, for each image, it goes through several layers that automatically
extract important features. A special attention mechanism then focuses on the most relevant
features, making them more prominent for the final decision-making process. Finally, the
program decides whether the image shows signs of lung cancer. The effectiveness of this
process is checked by seeing how accurate and reliable the decisions are.

1. Input: CT Scan and Histopathological Images;
2. Preprocessing: Normalize images to the same scale;
3. For each image in the dataset:

a. Pass image through DenseNet layers:

- Convolutional layers: Extract features from the image;
- Pooling layers: Reduce spatial dimensions of the feature maps;
- Dense blocks: Enhance feature extraction through densely connected layers;

b. Integrate Attention Mechanism:

- Compute attention scores for feature maps generated by DenseNet;
- Multiply attention scores with corresponding DenseNet feature maps;

c. Classification Layer:

- Flatten the attended feature maps;
- Pass through fully connected layers to obtain the final classification;

4. Output: Lung cancer diagnosis (Cancerous or Non-Cancerous);
5. Evaluation:

- Use metrics such as accuracy, precision, recall, and the F1-Score to evaluate
model.

The problem statement in this paper focuses on the challenge of detecting lung cancer
accurately and efficiently using CT and histopathological images. Despite advances in
medical imaging, accurately diagnosing lung cancer early remains difficult due to the
complex nature of tumor appearances and variations in imaging. This paper introduces
the ATT-DenseNet model as a solution to improve diagnostic performance by leveraging
deep learning and attention mechanisms to enhance the model’s ability to focus on relevant
features within the images, aiming to increase the accuracy, precision, recall, and F1-score of
lung cancer detection. In the medical industry, this model could significantly impact early
lung cancer diagnosis, treatment planning, and patient outcomes. It could be integrated into
diagnostic imaging systems in healthcare facilities to assist radiologists and pathologists,
enhancing the precision of lung cancer detection and enabling more personalized treatment
strategies, ultimately leading to better patient care and survival rates.

4. Results
4.1. Parameter Settings and Implementation Details

For all the experimental results conducted, we used AMD Ryzen 7-5800HS CPU, having
40 GB of randomly accessible memory. NVIDIA GeForce RTX 4060 GPU was used for
simulation. Furthermore, we used Tensorflow 2.15.0 and Python 3.10.12 for all the results
acquired. Implementation details of the proposed ATT-DenseNet are described in Table 1. We
used 70% of the data for training, and rest of the 30% data were used for validation.
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Table 1. Hyper parameters associated with the model.

Parameters Values

Number of filters (channels) 32

Growth rate 32

Dropout rate 0.2

Number of dense blocks 4

Learning rate 0.001

Batch size 64

Weight decay 0.0005

Optimizer Adam

4.2. Histopathological Images

First, we present the results associated with cancer detection for histopathological
images. In the context of evaluating the performance of classification models within
machine learning, the confusion matrix stands out as a pivotal tool. This matrix provides a
detailed breakdown of the predictions made by a model, allowing for a nuanced assessment
of its performance in terms of accurately predicting different classes. The confusion matrix
is structured as a table, categorizing predictions into four fundamental types: True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). TPs and TNs
represent instances where the model has correctly predicted the positive and negative
classes, respectively. By contrast, FPs and FNs reflect the errors in prediction, where the
model incorrectly identifies the positive and negative classes.

Derived from the confusion matrix, several key performance metrics that offer insights
into different aspects of the model’s predictive accuracy are accuracy, precision, recall,
and F1 score. These metrics, derived from the confusion matrix, are instrumental in
comprehensively understanding the performance of a classification model. They highlight
not only the model’s accuracy but also the nature and extent of any prediction errors,
thereby guiding further model refinement and optimization.

We had 750 images in total representing three different classes and an even distribution
of 250 images for each class. We reserved 15% of the data for validation, and the results
presented are based on this validation data performance. Figure 5 presents the confusion
matrix for ATT-DenseNet implementation along with two other baselines, namely AlexNet
and SqueezeNet.

Figure 6 presents a performance comparison of DenseNet, Alexnet, and SqueezeNet.
The performance metrics considered are average accuracy, precision, recall and the F1-score.

As we can see from the presented confusion matrices in Figure 5, very few samples
have been misclassified by the DenseNet compared to the baselines. Figure 6 provides a
figure showing the performance of DenseNet against AlexNet and SqueezeNet in terms
of accuracy, precision, recall, and F1 score. For all the performance metrics, DenseNet
performs better. DenseNet’s architecture allows for each layer to have direct access to the
gradients from the loss function and the original input signal, leading to more efficient
training and feature reuse. This is particularly useful in histopathological image analysis,
where subtle features and patterns are crucial for accurate classification. Furthermore, in
DenseNet, each layer receives a “collective knowledge” from all preceding layers, which
improves the flow of gradients throughout the network. This leads to better learning and
performance, as each layer can learn more complex features based on all previous layers.
To further improve the performance, as presented in Section 3, we adopt ATT-DenseNet,
which is our proposed method. We achieved the following performance (Figure 7), which
surpasses the traditional DenseNet, AlexNet and SqueezeNet.
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Finally, to show the better performance of ATT-DenseNet in a more vivid way, Figure 8
presents a comparison of the accuracy curves over 1000 epochs. As we can see from the
figure, it outsmarts the baselines by significant margins, achieving an average accuracy of
0.954 (95.4 in percentage).
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4.3. CT Scan Images

As mentioned in previous sections, the CT scan images used for cancer detection have
four classes. The confusion matrix for the classification using ATT-DenseNet is presented
in Figure 9. We do not extensively present the confusion matrices as we did before for
histopathological images in order to avoid repetition. Furthermore, Figure 10 presents an
accuracy curve comparison.

We can see from Figure 10 that the proposed ATT-DenseNet achieves higher accuracy
compared to all the baselines by achieving 94% average accuracy on the test set of the data.
Similarly, as presented in terms of histopathological images, the F1-score of ATT-DenseNet
is found to be higher than all the other baselines for CT scan images. Finally, we compare
the proposed method with RestNet in terms of accuracy and the F1-score and see that the
proposed method performs better as well.
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The proposed ATT-DenseNet mechanism adaptively recalibrates feature responses by
explicitly modeling interdependencies between channels. This means that the method can
dynamically emphasize informative features while suppressing irrelevant ones. By contrast,
DenseNet without attention, SqueezeNet, and AlexNet lack such mechanisms to focus on
the most relevant features, potentially leading to suboptimal feature utilization. Further-
more, the proposed ATT-DenseNet facilitates better discrimination of features by learning
channel-wise relationships. By selectively emphasizing important features, the method
can potentially enhance the discriminative power of the network, leading to improved
classification performance. DenseNet without attention, SqueezeNet, and AlexNet do not
have the capability to learn such discriminative features effectively. The adaptive nature of
ATT-DenseNet allows the method to dynamically adjust feature importance based on the
input, leading to improved generalization across the datasets and scenarios. This adaptabil-
ity enables our model to capture complex patterns in the data more effectively compared
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to the fixed feature mappings of DenseNet without attention, SqueezeNet, and AlexNet.
DenseNet’s dense connectivity pattern enables feature reuse throughout the network, lead-
ing to parameter efficiency. This means DenseNet requires fewer parameters compared to
ResNet or traditional architectures to achieve similar or better performance. With fewer
parameters, DenseNet models can be trained faster and require less memory. DenseNet’s
dense connections facilitate a direct gradient flow from the later layers to the earlier layers
during backpropagation. This helps alleviate the vanishing gradient problem, making it
easier to train very deep networks. That is why, as presented in Figures 8, 10 and 11, we
achieved better accuracy for the proposed ATT-DenseNet.
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4.4. Computational Complexity and Reproducibility

DenseNet typically has a higher computational cost compared to SqueezeNet due to its
larger number of parameters, with DenseNet often ranging from 20–30 million parameters,
SqueezeNet usually having around 0.7–1.3 million parameters, and AlexNet falling in
between, with approximately 60–70 million parameters. This higher parameter count in
DenseNet leads to increased memory usage during training and inference, as well as longer
training times, especially on datasets with a large number of samples. However, DenseNet’s
parameter efficiency and dense connectivity may offer better feature reuse and representa-
tion learning, potentially leading to higher accuracy and more robust models, particularly
in scenarios with abundant computational resources. This is particularly beneficial in
medical applications such as lung cancer classification, where accuracy is paramount and
where even marginal improvements can have significant clinical implications. The intricate
and nuanced patterns present in medical images require models capable of capturing fine-
grained details, which DenseNet’s dense connectivity facilitates. While the computational
cost may be higher, the potential for improved accuracy and better performance in medical
diagnosis justifies the investment in computational resources. Therefore, despite the higher
computational cost, DenseNet is preferred for medical applications where accuracy and
reliability are critical, even if it requires more computational resources compared to alterna-
tive architectures like SqueezeNet. The results in this section support this statement since
ATT-DenseNet, the proposed method, outperforms the other two baselines with higher
rates of accuracy.

We tested the reproducibility of the results multiple times with different sets of input
extracted from the dataset. In particular, there were 15,000 images in total in the dataset.
We took different batches of 750 images to perform the classification to see whether we
obtained similar results.
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4.5. Clinical Implications and Limitations

The ATT-DenseNet model, designed for lung cancer detection using CT and histopatho-
logical images, has significant clinical implications and potential impacts on patient diag-
nosis and treatment. The model’s innovative approach, which emphasizes relevant image
regions and utilizes advanced data preprocessing techniques, sets a new standard in the
field. By achieving impressive average accuracies of 95.4% for histopathological images and
94% for CT scan images, ATT-DenseNet not only demonstrates superiority over traditional
models like DenseNet, AlexNet, and SqueezeNet but also highlights its potential as a trans-
formative tool in medical diagnostics. This enhanced accuracy and precision in detecting
lung cancer could lead to earlier and more accurate diagnoses, enabling timely and person-
alized treatment plans for patients. Early detection is critical in improving survival rates
for lung cancer patients, as it allows for interventions at a stage when the disease is more
treatable. Furthermore, the ability of ATT-DenseNet to precisely identify cancerous tissues
within images can assist in planning targeted therapies, reducing the need for invasive
diagnostic procedures, and ultimately contributing to better patient outcomes. The model’s
emphasis on relevant regions within the images ensures that clinicians receive focused and
significant diagnostic information, potentially streamlining the decision-making process in
clinical settings and improving the efficiency of lung cancer screening programs.

The proposed method showcases significant improvements in detection metrics. How-
ever, it faces limitations in generalizability and class imbalance. The model’s performance
on diverse datasets is uncertain due to variations in imaging protocols and patient de-
mographics, highlighting the need for models that adapt to different data characteristics.
Additionally, the prevalent issue of class imbalance, where non-cancerous images outnum-
ber cancerous ones, can skew the model towards predicting the majority class, potentially
reducing its sensitivity to cancerous cases. Addressing these challenges requires further
research into robust model design, advanced data augmentation, and balancing techniques
to ensure the model’s effectiveness across varied datasets and improved detection of can-
cerous images. We also want to include some formal methods for AI-based technique
verification [34,35].

5. Conclusions

In this paper, we successfully developed the ATT-DenseNet model, which notably
improved the accuracy, precision, recall, and the F1-score for lung cancer detection using
CT and histopathological images. This model’s innovative approach, which emphasizes
relevant image regions and utilizes advanced data preprocessing techniques, sets a new
standard in the field. The results, with an impressive average accuracy of 95.4% for
histopathological images and 94% for CT scan images, not only demonstrate the superiority
of ATT-DenseNet over traditional models like DenseNet, AlexNet, and SqueezeNet but
also highlight its potential as a transformative tool in medical diagnostics, offering new
possibilities for the early and accurate detection of lung cancer. Future research directions
could explore further enhancements to the ATT-DenseNet model for even greater rates
of accuracy and efficiency in lung cancer detection. Further research could also focus on
reducing the model’s computational requirements to facilitate its deployment in resource-
limited settings, ensuring wider accessibility and use.
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