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Abstract: Post-stroke gait is characterized by slow and asymmetrical hemiparetic gait. This is
attributed to the paretic lower limb which has limited plantar propulsion. The most effective method
to restore paretic limb function is constraint-induced movement therapy (CIMT), which promotes the
usage of the paretic limb by restricting the movement of the unafflicted limb. However, due to the
necessity of both lower limbs to perform gait, CIMT methods could not be directly applied for gait
rehabilitation. In this study, we explore the feasibility of utilizing a knee scooter as a means to facilitate
CIMT gait training. We hypothesize that if lower limb kinematics and muscle activation patterns
during gait with a knee scooter match that of natural gait, the knee scooter could be utilized for CIMT
gait training. We measured the lower-limb joint angles, plantar force, EMG patterns, stride length,
and step times of 13 healthy subjects during gait with a knee scooter and natural gait. The results
suggest that the gait patterns while using the knee scooter closely resemble those of natural gait.

Keywords: biomechanics; gait; knee scooter; kinematics; electromyography; CIMT

1. Introduction

Bipedal gait, which is directly related with quality of life, is a key factor in achieving
independence [1-3]. It not only serves as a highly energy-efficient mode of ambulation but
also as a basis to carry out a diverse array of tasks in everyday activities [4-8]. However,
individuals who suffer from post-stroke hemiparesis are characterized by slow and asym-
metrical gait [9-14]. This is due to the impaired function of the paretic limb which limits
the propulsive force necessary for forward propulsion [15].

On a positive note, it has been reported that a paretic propulsive reserve exists in
chronic post-stroke patients [16-18]. Thus, rehabilitation schemes that aim to increase
paretic propulsion, which is mediated by the plantar flexor during the late stance phase, are
of growing interest. In order to increase plantar flexor functions, high-intensity training has
been shown to be effective. This was demonstrated by increasing the resistive force during
gait which elicited higher paretic propulsion when the resistive force was removed [16].
Also, incline gait on split belt treadmills has shown to increase paretic propulsion [17].
Swaminathan et al., demonstrated with an ankle targeted exosuit that resistance training
increases the plantar flexion torque during gait [18]. Furthermore, investigations with
exoskeletons have revealed some interesting results [19,20]. Together, these results suggest
high dosages of task-specific volitional training of the plantar flexors are vital for promoting
post-stroke gait rehabilitation.

A popular method for facilitating volitional movement in the paretic limb is constraint-
induced movement therapy (CIMT), which promotes the usage of the paretic limb by
restricting unafflicted limb movement [21,22]. This rehabilitation method has been shown
to be an effective means for the recovery of post-stroke motor functions and has been
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widely utilized for upper-limb rehabilitation [23-30]. While there have been studies that
investigate the effect of upper-limb CIMT on gait characteristics, to our knowledge, there
has yet to be a direct lower extremity CIMT (LE-CIMT) application for gait rehabilitation
because both limbs are necessary to perform gait.

In this study, we explore the feasibility of utilizing a knee scooter (Figure 1) as a
practical device for LE-CIMT gait training, with a primary emphasis on the ankle plantar
flexors that have a significant role in propulsive force. Conceptually, the unafflicted limb
(inactive) would be placed on the knee scooter and the afflicted limb (active) would be
used to propel the knee scooter forward. This would restrict the function of the inactive
limb while providing an environment where the active limb can focus more on forward
propulsion with less burden of weight support. We hypothesized that if the plantar force
is reduced while gait-specific lower limb patterns are elicited through the usage of a
knee scooter with able-bodied subjects, this method could be applied for LE-CIMT gait
rehabilitation of stroke patients. The active lower-limb joint angles, plantar force, EMG
patterns, stride length, and step time of movements with a knee scooter were compared
with those of the natural gait. The results, gathered from a study involving 13 healthy
subjects, show that the plantar force decreased and the gait patterns of the active limb using
the knee scooter closely resemble that of natural gait, with minimal compensation patterns.
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Figure 1. The knee scooter used in this study. (a) An illustration of gait using the knee scooter
according to gait phase. (b) The EMG and IMU sensor placement positions.
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2. Materials and Methods
2.1. Participants

A total of 13 healthy volunteers (5 females and 8 males, age: 24.9 & 4.9 years, height:
172.6 £ 9.0 cm, weight: 68.2 &= 9.5 kg) participated in this study. Those who had sustained
lower-limb injuries in the past 6 months, had severe medical conditions or a history of such
conditions, and individuals with cognitive impairments were not eligible to participate in
this study. Before the start of our experiments, all participants provided written informed
consent, and the research followed the ethical principles for human experiments as outlined
in the Declaration of Helsinki, with its protocols approved by the Institutional Review
Board of Korea University (IRB No. 2022-0399-01).

2.2. Experimental Setup

In order to assess the biomechanical effects of knee scooter during gait, participants
were asked to perform 8 m of overground walking. Prior to data collection, the participants
were given ample time to become familiarized with ambulation with the knee scooter.
Once the participants felt comfortable, a total of 8 data acquisition sessions, 4 trials for
2 overground gait conditions: without the knee scooter at a self-selected slow speed
(baseline) and with the knee scooter at a self-selected speed. Prior to the knee scooter
trials, all subjects were instructed to stand up straight with both hands on the handles and
with the right knee elevated on the knee scooter. Then, the height of the seat and handles
were adjusted so that the upper body was upright, and the height of both knees was level
(Figure 1b). The brake of the knee scooter was preset so that the wheels did not move
during the swing phase. During the experiments, the subjects were instructed to move the
knee scooter with the active leg as one would normally walk.

The joint angles, EMG activation patterns, plantar force, and stride lengths were ac-
quired via IMU sensors (Delsys Inc., Natick, MA, USA), EMG sensors, PedarX (Novel
GmbH, Munich, Germany), and Azure Kinect (Microsoft Inc., Redmond, WA, USA), respec-
tively. The EMG data were obtained from the gluteus maximus (Gmax), vastus medialis
(VM), tibialis anterior (TA), and soleus (SL) (Figure 1b). For all experiments the right limb
was placed on the knee scooter and the left limb was designated as the active limb.

2.3. Data Acquisition

We only analyzed the sagittal joint angles of the hip, knee, and ankle which were
estimated via 3D orientation data provided by the IMU sensors [31]. The relative orientation
of the sensors that were placed on the opposite side of the joint was used to estimate the
joint angle (Figure 1b).

Because direct comparison of the raw EMG signals is difficult, due to the high variabil-
ity, the EMG waveform length (WL) was used to compare muscle activation patterns. In
order to calculate the EMG WL, we first applied a band pass filter (4th order Butterworth;
20 to 500 Hz) to the raw EMG data, and then obtained the waveform length through
Equation (1):

EMGWL(n) =Y\ .,[EMG(i) — EMG(i —1)| (1)

where 7 is the current sample and N is the window size.

Facilitating appropriate plantar force sensitivity during task-specific training is vital
because it serves as direct biofeedback to the user and has been previously reported to be
closely associated with balance and the risk of falling [32-35]. Thus, it is imperative that
we compare the foot pressure patterns during walking with and without knee scooters.
The subject’s plantar force for the active limb was acquired using Pedar-X insoles (50 Hz),
which contain a matrix of 99 capacitive pressure sensors that span the entirety of the insole.
Furthermore, the anterior—posterior center of pressure (CoP,p) was evaluated, which is
provided by the Pedar-X insoles.

In order to analyze the EMG WL, lower limb joint angles, and plantar force data
according to the stance and swing phase, we first need to synchronize the data. The EMG



J. Funct. Morphol. Kinesiol. 2024, 9, 45 40f10

WL and lower limb joint angles are already synchronized because they are acquired from
the same sensors and the plantar force data are synchronized by applying an impact force
to the bottom of the foot which is simultaneously detected by the foot pressure insole and
the IMU sensors placed on the SL. Then, epochs such as heel contact and toe-off need to be
identified which was executed by applying a simple threshold on the plantar force. The
synchronized data were then segmented into gait cycles via the heel contact events and the
segments were further divided into stance and swing phases using the toe-off events.

To acquire the stride length, we analyzed the video acquired from an RGB camera
and applied an algorithm that is similar to that of Kentaro et al. [36]. This method consists
of two steps: first, estimating the homography matrix to map the images to the ground
plane; second, manually finding the frame number at heel contact and toe off so that we
can estimate the stride length and step time (Figure 2). The ratio of the stance and swing
phase within the gait cycle was measured using plantar force data.

- @ Stridelength ©
s

Figure 2. Input image and top-view image of the floor generated by homography matrix.

2.4. Data Processing

We would like to present the common characteristics that were observed across the
participant group; thus, we performed a group analysis of all participants. A means to
normalize the individual’s EMG WL patterns and data is needed. Because raw EMG data
acquired from different subjects cannot be directly compared, we normalized the EMG WL
signal to the peak EMG WL value observed during natural gait. The plantar force data
were normalized for each subject by representing the data in percentages of bodyweight.
And the CoP,p was normalized to the length of the insole. Once the data were normalized,
the median data for each subject was acquired and the group data were presented as the
median, 25th, and 75th percentile. A custom MATLAB (Mathworks Inc, Natick, MA, USA)
script was used to perform all data processing.

3. Results
3.1. Joint Angles

In order to assess whether the kinematic patterns of the lower-limb match that of
natural gait well, we analyzed the hip, knee, and ankle joint angles according to the gait
phases (Figure 3). While there were some differences, we found that the overall joint angle
patterns during gait using a knee scooter were similar to that of natural gait. In detail, there
is less hip flexion throughout the gait cycle, less knee flexion during the swing phase, and
more ankle plantar flexion during the late stance to early swing phase. These observations
can be seen in the joint angle traces shown in Figure 3.
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Figure 3. Joint angle data. (a) The hip, knee, and ankle joint angles during the gait phases, the baseline
(gray lines) and with the knee scooter (red lines) are shown. (b) The ROM of each joint during the
gait cycle. The lines are represented as medians, and lower and upper bounds of the shaded areas
represent 25th and 75th percentiles, respectively. The asterisk (*) means p < 0.05, assessed using the
Wilcoxon's signed-rank test.

3.2. EMG

In order to promote functional recovery, it is vital for the muscle activation patterns
of the task-specific training to match that of natural gait. This implies that not only each
joint motion but also the muscle EMG patterns of gait with the knee scooter need to agree
well with the baseline. Figure 4 shows that the Gmax, TA, VM, and SL EMG activation
patterns of the active limb align well with that of natural gait. These muscles are reported
to be responsible for the hip, knee, and ankle joint movements. It is also observed that TA
activation in the early stance phase is prolonged and there is a delay in SL activation.
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Figure 4. EMG activation patterns of Gmax, VM, TA, and SL. The EMG WL time traces are shown
while gait without (black lines) and with (red lines) a knee scooter. The lines are represented as
medians, and lower and upper bounds of the shaded areas represent 25th and 75th percentiles.

3.3. Plantar Force and Spatio-Temporal Data

We next investigated the plantar force and CoP,;, of the active limb. During natural
gait, the stance phase is initiated via heel contact and progresses through flat-foot and then
toe off. Thus, CoP,p, starts from the heel and moves forward towards the toes. This is
vital to facilitate the heel, ankle, and forefoot rocker functions. Thus, the training of these
patterns is crucial and the importance is moreover emphasized because the foot is the only
part of the body that comes in contact with the ground and provides direct feedback to
the patient via plantar force sensitivity. The results show that this pattern is also observed
in the active lower limb when riding a knee scooter (Figure 5). Moreover, we observe
~20% decrease in peak plantar force which alleviates the burden for weight support so that
training can be focused on the generation of forward propulsion.

We also evaluated the stride length, stride time, and stance phase ratio via RGB camera
analysis and plantar force data (Figure 6). The stride length was reduced compared to
that of natural gait while the step time as well as the relative time spent in the stance
phase was increased (Figure 5). This suggests that more emphasis is given towards stance
phase-specific tasks.
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Figure 5. Plantar force patterns. (a) The plantar force during the stance phase of gait without (grey
lines) and with (red lines) a knee scooter. (b) The maximum plantar force during the stance phase.
The data are represented as medians, and 25th and 75th percentiles, respectively. The asterisk (*)
means p < 0.05, assessed using the Wilcoxon’s signed-rank test. (c) The trajectories of CoPqp for gait
with and without the knee scooter are shown.
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Figure 6. The stride length, stride time, and stance phase ratio are shown in (a—c), respectively. Data
are shown as the median, and 25th and 75th percentiles, respectively. The asterisk (*) means p < 0.05,
assessed using the Wilcoxon'’s signed-rank test.

4. Discussion

In this work, with able-bodied participants, the feasibility of a potential LE-CIMT
method for post-stroke gait rehabilitation was tested. We found that the lower extremity
kinematics elicited while using the knee scooter match that of natural gait well. Moreover,
the EMG patterns suggest that the lower-limb muscles are activated according to the gait
phase while plantar forces were reduced throughout the stance phase. This suggests that,
for the active limb, gait-specific tasks can be trained with a lower burden of supporting
weight. Altogether, these preliminary observations demonstrate the viability of our prosed
gait rehabilitation method for hemiplegic gait.

We did observe some differences between gait with the knee scooter and that of
the baseline. For example, the ROM for the hip and knee decreased while there was an
increase in ankle ROM. Also, a delayed and increased activation of the SL was observed.
Furthermore, not only the duration of the stance phase increased but also the stance-to-
swing ratio. While it has not been tested with actual patients, these differences might
actually be beneficial for LE-CIMT gait training because forward propulsion using a knee
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scooter is facilitated more by the ankle compared to that of natural gait. Also, the increased
stance time would allow the user to prepare and facilitate plantar flexor activity.

Previous studies have shown that resistive training can bring about the underused
propulsive reserve in the paretic limb. According to these studies, post-stroke patients
possess a latent propulsion reserve and increasing the demand levels during training can
elicit positive rehabilitative outcomes [16,37,38]. Evidence has shown that participants
indeed possessed a sufficient reserve to generate more propulsion than what was initially
observed with unrestricted gait. While it was not implemented, our LE-CIMT gait training
method can easily adopt variable resistive forces by adjusting the friction of the wheels via
a simple variable braking system. This would allow appropriate demand accommodations
for not only various patients, but also throughout rehabilitative progressions.

In regard to forward propulsion, one must consider the trail limb angle (TLA). If ankle
plantar flexion occurs too early, when the foot is either directly below or more forward than
the pelvis, there would be no net forward propulsion. Thus, it is critical for plantar flexion
to occur in the late stance phase. Thus, the delayed activation of the SL and plantar force,
compared to that of natural gait, can be considered to be a desirable reaction when using
the knee scooter as a post-stroke rehabilitation device. Furthermore, the knee scooter could
be utilized for the training of post ankle surgery patients.

While this work showed promising results, we note that there exists a critical limitation,
as only able-bodied subjects participated in this study. Also, one concern is that the new
task of creating propulsive forces via the active limb, paretic in cases of patients, could
be redistributed across the limb rather than targeting the ankle. Nevertheless, this study
presents itself as a proof-of-concept which is necessary prior to further research with
actual patients. These findings may have important implications for a new method of gait
rehabilitation as CIMT can be applied to functional gait recovery.
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