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Abstract: Radiation treatment of cancers like prostate or cervix cancer requires considering nearby
bone structures like vertebrae. In this work, we present and validate a novel automated method for
the 3D segmentation of individual lumbar and thoracic vertebra in computed tomography (CT) scans.
It is based on a single, low-complexity convolutional neural network (CNN) architecture which works
well even if little application-specific training data are available. It is based on volume patch-based
processing, enabling the handling of arbitrary scan sizes. For each patch, it performs segmentation
and an estimation of up to three vertebrae center locations in one step, which enables utilizing an
advanced post-processing scheme to achieve high segmentation accuracy, as required for clinical
use. Overall, 1763 vertebrae were used for the performance assessment. On 26 CT scans acquired
for standard radiation treatment planning, a Dice coefficient of 0.921 ± 0.047 (mean ± standard
deviation) and a signed distance error of 0.271 ± 0.748 mm was achieved. On the large-sized publicly
available VerSe2020 data set with 129 CT scans depicting lumbar and thoracic vertebrae, the overall
Dice coefficient was 0.940 ± 0.065 and the signed distance error was 0.109 ± 0.301 mm. A comparison
to other methods that have been validated on VerSe data showed that our approach achieved a better
overall segmentation performance.

Keywords: vertebrae; localization; segmentation; CT

1. Introduction

The segmentation of vertebrae in CT scans is important for various clinical appli-
cations, including the identification and assessment of spine abnormalities, modeling of
biomechanics, or planning of spine interventions. In the context of bone marrow sparing
using intensity-modulated radiation therapy (BMS IMRT) and dose calculation from radio-
pharmaceutical therapy, the accurate segmentation of lumbar vertebrae and pelvic bone
structures in computed tomography (CT) scans can be used as a surrogate to define bone
marrow at risk for the purposes of radiation therapy planning and has been illustrated
using [F-18] fluorothymidine (FLT) positron emission tomography and computed tomogra-
phy (PET-CT) images [1]. However, manually delineating vertebrae is a time-consuming
(hours-long) task that is prone to inconsistencies. Therefore, developing automatic segmen-
tation methods will help to improve the efficiency and consistency of the segmentation
process needed for radiation dose calculations for the bone marrow.

1.1. Related Work

For the automated segmentation of vertebrae, several approaches have been proposed,
but most approaches consist of two main stages: the identification (sometimes split into
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localization and labeling) of vertebrae and segmentation of individual vertebra. The identi-
fication step can be performed by manually placing seeds within the vertebral body [2] or
drawing a bounding box to restrict the search volume [3]. Additional automated techniques
such as first extracting the spine curvature followed by detecting vertebrae by locating the
inter-vertebral disks [4,5] and utilizing unique characteristics of vertebrae like shape [6]
and symmetry [7] have also been proposed. Machine learning techniques such as random
forest [8,9] were also utilized and achieved promising results. Recently, more convolutional
neural network (CNN)-based methods were proposed. Sekuboyina et al. [10] proposed
to label maximum-intensity projections of the spine in sagittal and coronal planes. Their
approach utilizes an adversarial network training regime to encode an anatomical prior.
Mader et al. [11] used a 3D CNN to regress the heatmap responses of vertebrae locations
followed by fine-tuning using regression trees. McCoaut et al. [12] proposed an approach
for vertebrae detection and localization based on two-stage CNNs and dense annotations.
For segmentation, traditional methods such as region growing [13] and graph cut [14]
were utilized but suffered from leakage and holes because of ambiguous edges and the
poor regional homogeneity of vertebrae. Model-based methods involve fitting a shape
prior to a target region by deforming it based on local image features [15–17]. With the
emergence of deep learning in image analysis, more recent methods proposed deep CNNs
for vertebrae segmentation.

An overview of state-of-the-art vertebrae identification and segmentation methods can
be found in the VerSe’20 and VerSe’19 challenges summary paper by Sekuboyina et al. [18],
which provides a description and comparison of 24 approaches. Furthermore, these chal-
lenges resulted in a large and publicly available data collection for vertebrae segmentation
performance analysis and comparison. Other existing data collections that are frequently
utilized for this purpose include CSI-Seg 2014 [19,20] and xVertSeg [16], but they are of
limited relevance due to their small test data set size of ten and ten cases, respectively.
Furthermore, these data sets do not fully cover the age range of the (older) oncology-
relevant populations. Consequently, these data sets are not representative of the broad
clinical data spectrum and can result in performance estimation biases. Thus, VerSe data
sets currently represent the most relevant CT scan collection for estimating real-world
clinical performance. Out of the 24 methods described in the summary paper [18], 21 utilize
some form of a deep-learning-based approach. Furthermore, the majority of approaches
deploy at least two processing stages—one for localizing vertebrae and one for actual
vertebrae segmentation, and typically some form of CNN-based approach is utilized to
implement these processing stages. For more details regarding the pros and cons of the
24 methods as well as the implementation details, the reader is referred to [18]. The meth-
ods developed by Payer et al. [21], Chen D. et al. [18], and Lessmann et al. [22] stand out
as high-performing, based mostly on the segmentation performance analysis presented
in [18], and are discussed in more detail below.

Payer et al. [21] proposed a multi-stage approach. First, a 3D U-Net is utilized to
generate a heatmap of the spinal centerline. Second, individual vertebrae are localized and
identified by using a SpatialConfig-Net. Third, all vertebrae are segmented individually.
Note that in a second version of their approach, they added a Markov Random field to post-
process the output of the vertebrae localization stage. Chen D. et al. also utilize a multi-stage
approach [18]. First, a 3D U-Net is utilized to coarsely localize the spine. Second, a U-Net
performs a patch-wise binary segmentation of vertebrae. Third, a 3D ResNet model is used
to label vertebrae based on the segmentation result as well as CT image data, and a Deep
Reasoning Network [23] is utilized to impose the anatomical correctness of the sequence
of vertebrae. Lessmann et al. [22] proposed a single-stage approach for segmentation in
which volume patches are being processed to generate vertebrae segmentation. For this
purpose, a CNN is used to iteratively identify and segment vertebrae in patches. This
process is started from the bottom of the CT scan and iteratively follows the spine structure.
Subsequently, an additional network is utilized to detect the first cervical and thoracic
vertebrae [18].
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Some recently published methods that were not part of a VerSe challenge are dis-
cussed in the following paragraph. Cheng et al. [24] propose a two-stage approach. First,
a Dense-U-Net is utilized to process slabs of two cross-sectional CT images to localize
vertebrae. Second, a 3D-Dense-U-Net is used to segment individual vertebrae. The authors
claim that their method is fully automated. However, because the Dense-U-Net in the first
stage expects cross-sectional images of 128 × 128 × 9 voxels, it is unclear how their method
can automatically process volumes of different sizes. For lumbar vertebrae segmentation,
Lu et al. [25] utilize a two-stage approach. First, a U-Net-based approach is utilized to locate
the region of the lumbar spine. Second, a 3D XUNet is applied to segment lumbar vertebrae.
Note that the first processing stage expects a fixed-sized input volume. Thus, this is an issue
when processing arbitrarily sized scans. Wu et al. [26] also report a method for lumbar ver-
tebrae segmentation. Their approach is based on utilizing the fusion envelope of 2D hybrid
visual projection images to locate lumbar vertebrae. Once located, a 3D U-Net is utilized for
segmentation of the vertebrae. Because their approach was not assessed on a large, diverse,
and publicly available data set like VerSe, it is unclear how their approach would compare
to other methods on relevant image data. Qadri et al. [27] propose an approach where
axial CT slices are processed by dividing them into overlapping image patches, which
are then fed into a classifier to determine whether a given patch represents a vertebra or
not. For this purpose, a stacked sparse autoencoder in combination with a random under-
sampling module is utilized. The use of 32 × 32 image (2D) patches might be a limiting
factor, as the full 3D context provided by volumetric scans is not utilized. Furthermore,
vertebrae are not segmented and labeled individually. Thus, individual vertebrae might be
fused. The work published by Meng et al. [28] is focused on improving the performance of
transitional vertebrae identification. For this purpose, they propose an iterative approach
in which in each cycle, individual vertebrae are localized, segmented, and identified using
deep networks in combination with statistical priors to enforce consistency. A potential
advantage of their approach is that if the anatomic consistency criteria were not met in a
local region, it is reported, which is helpful for manual quality control. Recently, vision
transformers (ViTs) have shown good performance on computer vision applications [29],
and You et al. [30] propose a single-staged ViT-based model for vertebrae segmentation in
CT scans. It utilizes a U-Net-like structure with an embedded ViT component, which is
enhanced by edge detection and a global information extraction block. While proposing an
interesting network architecture, its performance on VerSe’20 and VerSe’19 challenge data
remains below the top-performing multiple-stage approaches [18]. Because of the use of a
ViT, it seems likely that a substantially larger training data set will be needed to show a
comparable performance.

In summary, most better-performing methods use a multiple-stage approach that
is implemented by multiple network structures. CT volumes of varied sizes can be an
issue for some approaches because the utilized CNNs expect an input of a fixed size (e.g.,
Cheng et al. [24]), and some manual intervention (cropping or resampling) will be needed.
Most methods deploy a 3D CNN for segmenting individual vertebrae after localization,
which provides one subvolume per vertebrae. While this approach works fine for most
cases, low contrast and/or vertebrae in close proximity due to degeneration, typical of older
cancer patients, can cause segmentation errors that need manual correction. However, more
elaborate strategies to correct segmentation errors of the network are typically not explored.

1.2. Contribution

The motivation behind the presented work is to facilitate two applications: (a) BMS
IMRT in the context of treating pelvic tumors like prostate and cervix tumors and
(b) marrow-specific radiation dosimetry, enabling advanced treatment methods in radio-
pharmaceutical therapy. Consequently, bone structures like the pelvis as well as lumbar
and thoracic vertebrae are of special interest. In addition, focus has been put on the ease of
integration into clinical workflow. Therefore, the combination of several key characteristics
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distinguishes our approach from existing methods and makes it especially well-suited for
our application domain. Specifically, our main contributions include:

(i) the use of a single, low-complexity network with no “duplicate” network compo-
nents, thereby avoiding a multiple CNN approach where location and segmentation
networks are required to learn object appearance separately;

(ii) the ability to process arbitrary-sized CT volumes by processing small, overlapping vol-
ume patches;

(iii) center location awareness of vertebrae within the processed volume patch, enabling
advanced post-processing strategies needed to achieve high accuracy and, thus,
clinical utility;

(iv) the demonstration of the separate segmentation of vertebrae boundary and body (i.e.,
to facilitate the accurate calculation of bone marrow dose in radiopharmaceutical therapy);

(v) achieving excellent performance (a Dice coefficient larger than 0.9) with even small
training data sets, which is important for research applications with specialized
imaging protocols and a limited number of scans available.

Note that, while achieving characteristics (ii) and (iii) at the same time seems to
be counter-intuitive due to the limited field of view, the presented work successfully
demonstrates the feasibility of this task. Furthermore, this work is a first step toward
developing a volume patch-based center-location-aware multi-organ segmentation method
(i.e., multiple different objects). Thus, our approach has promise beyond the studied
application domain.

We assess the performance of our approach on two data sets. The first is a small-sized
data set that is directly representative of image data used in the context of BMS IMRT
(Section 3.1.1), and it consists of consistently obtained radiation treatment simulation CT
images. In contrast, the second data set is based on a large-sized, diverse, and multi-
institutional image data set that was utilized as a part of the VerSe’20 challenge and
enables comparing our approach with other vertebrae segmentation methods (Section 3.1.2).
By using a multi-institutional data set, it validates the robustness of the approach across a
range of image acquisition parameters and imaging devices.

2. Methods

Figure 1 provides an overview of our method. Our novel approach uses a single
CNN. This is in contrast to the currently top-performing approaches, which are based on
utilizing multiple networks, as discussed in Section 1.1. The advantages of using a single
network include the avoidance of redundancy leading to reduced network complexity,
reduced training times, and achieving a satisfactory performance even with smaller training
data sets. We note that these characteristics are achieved without a compromise in the
segmentation performance when compared to multi-network approaches. Our network has
two outputs and processes volume patches of the input CT scan. It is used to (a) segment
all partially or completely visible vertebrae present in the patch and (b) estimate up to
three associated vertebrae center locations (Figure 1). Both results are accumulated and
analyzed to (a) find the number and location of individual vertebrae as well as (b) post-
process segmentations to produce more robust segmentations of individual vertebrae. Our
patch-based approach addresses the issue of processing vastly different image volumes.

The utilized CNN structure builds on our previous work on the combined localization
and segmentation of the pelvis [31] (i.e., a single structure). In this context, a key challenge
is that within a volume patch, none, one, two, or several vertebrae can be visible, compared
to the single structure case described in [31]. Voting for the center location of just one of the
visible vertebra structures (i.e., the largest vertebrae part visible in the volume path) has the
disadvantage of reduced robustness because individual vertebrae might be only covered
by a small number of volume patches. In this work, we address this issue by predicting
three vertebrae locations per volume patch. In addition, we introduce a confidence value
for each of the predictions, enabling the correct modeling of situations where only one or
two vertebrae are visible. Once all volume patches of interest are processed, the predicted
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centers with associated confidence values are accumulated, resulting in a more robust
localization of vertebrae, which is important for enabling segmentation post-processing.
Thus, in this work, we successfully demonstrate how to extend the combined localization
and segmentation approach from one unique object (pelvis) to multiple similar objects
(vertebrae) and describe advanced post-processing steps that are enabled by the gained
information about neighboring vertebrae.

Figure 1. Method overview.

In the following Sections 2.1–2.3, the utilized network as well as its training and
application are described. The model-based determination of vertebrae centers is dis-
cussed in Section 2.4. Subsequently, the approach for identifying individual vertebrae and
segmentation post-processing is presented in Section 2.5.

2.1. Combined Localization and Segmentation Network for Multiple Objects

Our approach to vertebrae segmentation assumes that the pelvis was already located
by utilizing our method presented in [31]. This enables us to specify a rough volume of
interest (VOI) for lumbar and thoracic vertebrae. Subsequently, the task is to individually
localize and segment all vertebrae inside the VOI. For this purpose, we use volume patch-
based processing with a CNN, consisting of a localization and segmentation component.
The rationale behind this approach is as follows. If trained correctly, the segmentation
CNN is already quite selective. Thus, if several voxels of a processed volume patch are
labeled as the target structure (vertebrae), then we can utilize the patch to predict their
location. Note that a volume patch can contain several instances or parts of different
vertebrae. Therefore, multiple location predictions are typically needed. Once all volume
patches have been processed, a refined prediction about the center location of individual
vertebrae can be made, which is helpful for separating neighboring vertebrae that can be
hard to differentiate.

The utilized network consists of two main components: (a) a CNN-based component
for segmentation (parts A and B in Figure 2) and (b) a regression component for localization
(parts A and C in Figure 2). Note that part A is shared by both network components be-
cause learning object appearance is important for segmentation and localization. Therefore,
our network structure is more efficient compared to approaches employing two or more
separate networks. Both network components are further discussed below.
(a) Segmentation component We utilize a 3D U-Net [32] for the intrinsic vertebrae
segmentation with two modifications to improve performance: the ReLU activation has
been replaced by Leaky ReLU and batch normalization by an instance normalization [33].
Note that for our approach, other network variants with a contracting path followed by an
expanding path are also suitable candidates. Thus, if a better-performing network variant
becomes available, it can be used to replace the utilized CNN.

The used network has four tiers. Furthermore, one problem with vertebrae segmenta-
tion is leakage between individual vertebra segmentations, resulting in label maps with
partially connected neighboring vertebrae, especially nearby spinal processes. This hap-
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pens more frequently for upper thoracic vertebrae as they tend to be significantly smaller
and located closer to each other (Figure 3). To solve this problem, we use three labels
to represent a segmentation result: the inner body of vertebra, vertebra boundary, and
background. An example is shown in Figure 4.

Figure 2. The network structure consists of (a) a segmentation component (parts A and B) and (b) a
regression component for localization (parts A and C).

(a) (b)

Figure 3. Two examples of segmented upper thoracic vertebrae when some vertebrae are con-
nected (red circles). (a) Some processes are connected. (b) Some vertebral bodies and processes
have connections.

Figure 4. The three-label segmentation containing the inner body of vertebra (green), the vertebra
boundary (yellow), and the background (black).

(b) Localization component For the localization component (Figure 2), we use a convo-
lutional regression network that takes the CNN bottleneck data as input. It contains one
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1× 1× 1 convolutional layer followed by four fully connected layers. A Leaky ReLU is used
as the activation function, and batch normalization is applied in each layer. The network
output is a 1 × 12 vector because the localization component is designed to localize three
objects. In addition, a localization confidence score is introduced for each object. To be
specific, given an input volume patch, it can contain from one to more than three vertebrae.
To be able to use the same localization output vector size, we choose to always predict
the locations of three consecutive vertebrae using three 1 × 3 vectors, pointing from the
volume patch center to the center of mass of each vertebral body, which is generated by
applying morphological opening operations on a ground truth vertebra mask to remove
the processes. The three centers are referred to as top-center, mid-center, and bottom-center,
and each center is associated with a confidence score. Combined, the three 1 × 3 vectors
and the three confidence scores form the 1 × 12 output vector. Details about how the three
target vertebrae are chosen based on the number of visible vertebrae inside the volume
patch are explained in Section 2.2.

2.2. Network Training

For the two data sets, there is a difference between the cross-validation setup used for
training and performance evaluation. For the Iowa data, the 26 planning CT scans with
ground truth label maps are split into three folds with roughly the same number of scans so
that three independent experiments can be implemented. In each experiment, two folds are
used for training and the other fold as the independent testing data. For the two training
folds, a 5-fold cross-validation approach is used, where approximately 4/5 of the data are
used for training and the left out 1/5 as validation set. Therefore, five networks can be
trained in each experiment. In the case of the VerSe2020 image data, a dedicated training
data set is provided (Section 3.1.2). Thus, a 5-fold cross-validation approach is utilized for
the training data, then the five trained models are applied on two independent test sets
(Section 3.1.2) for the performance assessment.

Network training is volume-patch-based, and the soft Dice coefficient loss is used
as a loss function. Furthermore, network weights are initialized using the Kaiming ini-
tialization with normal distribution. To increase the training set size, several patch-based
augmentations are applied, including random rotation (range: ±15 degrees per axis) and
random scaling (range: ±25%). One important extra step is that all multi-label ground truth
segmentations (i.e., one label per vertebra) are transformed into three labels per vertebra
to provide body, boundary, and background information for segmentation CNN training.
The extracted CT volume patches are of 32 × 48 × 48 voxels with a 50% overlap in all
three directions. For training of the segmentation component, a batch size of 32 was used.
This selection is optimized for the available memory of the graphics processing unit (GPU;
GeForce GTX 1080 Ti with 11 GB memory, NVIDIA Corp., Santa Clara, CA, USA). A smaller
batch size showed a negligible difference in performance but will result in a longer training
time. In each batch, at least half of the volume patches are chosen to include a part of the
lumbar vertebrae while the other half is randomly selected. The motivation is to create
a balanced representation of patches with and without vertebrae voxels, which leads to
improved convergence in network training.

As mentioned in part (b) of Section 2.1, the output of the localization component is
a 1 × 12 vector. Thus, a 1 × 12 ground truth vector is required for each volume patch,
including three 1 × 3 vectors pointing from the patch center to three consecutive vertebra
centers and three corresponding confidence scores. The motivation for this design choice
is as follows. While the output vector of the localization network must be of a fixed size,
the number of vertebrae (partially) visible can vary from one to five for the selected size of
the volume patch. However, in most cases, three vertebrae will be visible. This number
can be less at the transition from L5 to the pelvis or at the superior start of the CT scan.
To account for such situations, a plausible vertebrae location is assumed based on the
visible middle and adjacent vertebrae. In addition, the corresponding confidence value will
be set to zero. In the case of four or five visible vertebrae parts, the focus is on the vertebrae
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located most prominently in the center of the volume patch. Some examples of the volume
patches with corresponding location vectors are shown in Figure 5. The approach for
selecting the center vertebrae based on the visibility of vertebrae is as follows.

(i) One vertebra in patch: The center of the single vertebra is regarded as the mid-center.
(ii) Two vertebrae in patch: The center of the lower vertebra is regarded as the mid-center.
(iii) Three vertebrae in patch: The center of the middle vertebra is regarded as the mid-center.
(iv) More than three vertebrae in patch: First, the confidence score of all vertebrae partially

inside the volume patch is sorted, and the one with the lowest score is excluded. This
process is repeated until only three with the largest confidence scores are left. Then,
the center of the middle vertebra of the three remaining is regarded as the mid-center.

An example where the top arrow is pointing to a calculated center instead of a real one is
given in Figure 5a.

(a) (b) (c)

Figure 5. Examples of volume patches with corresponding localization vectors (red arrows). (a) Three
vertebrae are visible in the patch, and each is indicated by a vector. (b) Five vertebrae are visible in
the patch and only the middle three are indicated by vectors. (c) Only two vertebrae are visible in the
patch, but an additional calculated (low confidence) center at the bottom is also indicated by a vector.

The confidence score is defined by the percentage of each vertebra inside the volume
patch. For example, if a volume patch contains L1 to L3 with each having 15%, 25%,
and 10%, respectively, of their total volume inside the volume patch, the three vectors
will receive a confidence score of 0.15, 0.25, and 0.1, respectively. When the vertebra
being pointed to is not in the volume patch (e.g., the number of vertebrae in a patch ≤ 2),
the corresponding confidence score is set to 0.

For training the localization component, each of the five trained segmentation com-
ponents in each experiment is first applied to CT scans of the corresponding training and
validation folds to generate bottleneck data. However, only when a segmented volume
patch has ≥15% of the typical (average) vertebra volume will its corresponding bottleneck
data be used for the training and validation of the localization component. The selected
level of 15% is a trade-off between the relevance of the volume patch for the localization
and number of volume patches available for network training. A constant learning rate of
1 × 10−4 is used, and the epoch number is set to 400, which is sufficient for proper network
convergence. A smaller number of iterations may not result in convergence, while a larger
number will increase training time without a meaningful performance gain. Network
weights are initialized using the Kaiming uniform distribution, and the loss function is a
mean square error loss.

2.3. Network Application

The approach to utilizing the network is described in detail below and illustrated in
Figure 6.
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(a) (b) (c) (d) (e)

Figure 6. Workflow of the combined localization and segmentation network for a scan from the Iowa
data set (see Sections 2.3 and 2.5 for details).

2.3.1. VOI Generation

Our pelvis segmentation approach [31] is applied to all CT scans. For the Iowa data
set (Section 3.1.1), all details regarding network training and application are as described
in [31] (approach “single”). In the case of the VerSe2020 data (Section 3.1.2), the trained
model as described in [31] (the “single” approach model with the lowest error score) was
applied, because no pelvis reference segmentation is available for VerSe2020 CT scans.

After the pelvis is segmented, the VOI of vertebrae is straightforward to define
(Figure 6a). Specifically, the center of mass of the segmented pelvis is used as the bot-
tom center, based on which a VOI is cropped for vertebrae segmentation (the yellow
rectangle in Figure 6a). The VOI size is different for the two data sets as the segmentation
targets are different. Specifically, the crop size is 256 × 256 × 128 voxels for the Iowa data
set. For the VerSe2020 data, the crop size is 320 × 320 voxels in the axial plane and the
vertical size is dependent on the location of T1 if T1 is included in the scan; otherwise, it
is dependent on the top voxel of the scan. Note that the axial crop size for the VerSe2020
data set is larger than the Iowa data set to cover the extra spine curvature when thoracic
vertebrae are included. Both sizes are chosen so that all vertebrae to be segmented are
covered. If the cropped VOI is outside the scan, the portions outside the scan are ignored.

In some cases, the CT scans in VerSe2020 do not or only partially show the pelvis,
because this was not relevant for the vertebrae segmentation challenge. Also, for some
VerSe2020 CT scans that fully depict the pelvis, the segmentation failed, because the CT
scan is too large for the available GPU memory after resampling (Figure 7a) or because the
appearance is altered by an implant (Figure 7b). However, there are also cases where the
reason for failure is not obvious (Figure 7c). A potential explanation is that the pelvis model
was trained on CT scans that are different from VerSe2020 images. Table 1 summarizes
the frequency of cases with issues. For those cases, the following steps were performed,
because the focus is on assessing the vertebrae segmentation performance. If there was
no pelvis visible in a scan, cropping started from the bottom center of the scan instead of
the pelvis center of mass. For cases with a partially imaged pelvis or pelvis segmentation
failure (e.g., due to implants), the same procedure was applied, but additionally, an axial
plane was identified manually to specify the lower boundary of the VOI. Furthermore,
for the performance analysis, the results will be reported in two categories: (A) cases where
the pelvis segmentation succeeded and (B) cases where the pelvis segmentation failed
combined with cases where the pelvis is only partially or not imaged.

Table 1. Summary of pelvis segmentation on VerSe2020 image data.

Validation Test

Full pelvis, segmentation succeeded 57 45
Full pelvis, segmentation failed 3 2
Partial or no pelvis 10 12

Total 70 59
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(a) (b) (c)

Figure 7. Examples of failed cases. (a) A scan with 512 × 512 × 1923 voxel that is too large to fit into
GPU RAM. (b) Pelvis with an implant. (c) A scan with no obvious reason for failure.

2.3.2. Vertebrae Segmentation

Vertebrae are segmented inside the VOI by utilizing the segmentation component of
the network in a patch-based fashion with a 50 % overlap in each direction. Subsequently,
all segmentation results are combined to form the vertebrae segmentation. An example is
shown in Figure 6b, where the yellow label represents the boundary and the green label
represents the inner body.

2.3.3. Vertebra Center Prediction

Each volume patch inside the VOI with more than 15% of vertebra voxels is further
analyzed by feeding the corresponding segmentation CNN bottleneck data into the localiza-
tion component of the network (Figure 2). Subsequently, each patch that meets this criterion
is used to generate the location vector for three vertebrae combined with corresponding
confidence scores (predicted vertebra centers are shown as blue points in Figure 6c).

2.4. Model-Based Determination of Vertebrae Centers

Using the accumulated center predictions as points and confidence scores as corre-
sponding weights, a weighted k-means clustering algorithm is then applied to calculate
final vertebra centers. Note that all the predicted centers inside the segmented pelvis are
considered outliers and excluded before the k-means clustering. Because there can be
different numbers of vertebrae in the VOI, a value kopti has to be found for the k-means
algorithm to produce the correct number of center predictions. Thus, an objective function
has to be defined to select kopti, given a range of k values. For this purpose, the available
VerSe2020 training data set was utilized because it includes lumbar and thoracic vertebrae.

For objective function design, we observed that the distance between each pair of
neighboring lumbar vertebra centers projected on the z-axis roughly follows a Gaussian
distribution (Figure 8). However, this is not the case when considering lumbar and thoracic
vertebrae due to changing vertebrae size and proximity differences (Figure 9). Consequently,
we propose to utilize multiple Gaussian functions. First, a Gaussian is fit to the distance
between each individual pair of vertebral centers by using a maximum likelihood estimation
(MLE). Specifically, a dedicated Gaussian function is fit to each of the 17 distributions in
the boxplot shown in Figure 10, resulting in a total of 17 Gaussian functions to represent
the entire distance distribution. To make the objective function more robust, the difference
in the distance between each pair of neighboring vertebral centers projected on the z-axis
is also utilized. As shown in Figure 11, the difference in each neighboring center distance
roughly follows a Gaussian distribution, which is in contrast to the neighboring vertebral
center distance in Figure 9. Therefore, the objective function is focused on more local
properties. Specifically, we focus on every three consecutive vertebral centers to formulate
the objective function. For the three consecutive centers, there are two distances between
the two pairs of centers and one difference between the two distances. When weighted
by their corresponding Gaussian functions, a larger value indicates a better match to the
expected distribution. Thus, the three Gaussian function values are multiplied, resulting
in an objective function value for each k. While the products of all possible options of
consecutive three centers form a set, we only utilize the consecutive part of the set which
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has the minimum product value because it represents the worst match of the set. Finally,
kopti is chosen to have the maximum clustering score (CS):

kopti = arg max
k∈[3,19]

{CS(k)} (1)

where CS(k) = min
i=1...k−2

{Gdst
i (Di)Gdst

i+1(Di+1)Gdi f f (Di+1 − Di)} represents the objective

function, Di is the distance between the i-th pair of predicted neighboring centers projected
on the z-axis, Gdst

i () is the Gaussian weight for Di, and Gdi f f () is the Gaussian weight for
the difference in neighboring distances Di+1 − Di. Two examples of objective function
evaluation are given in Figure 12, and one can observe that the objective function is
quite selective.

Neighboring center distance on z−axis (mm)

F
re

qu
en

cy
 (

−
)

20 25 30 35 40 45

0.
00

0.
04

0.
08

0.
12

Figure 8. A Gaussian distribution (red curve) fitted to the histogram of the distance between each
pair of neighboring vertebral centers projected on the z-axis across the training data set. Only lumbar
vertebrae were considered.
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Figure 9. The histogram of the distance between each pair of neighboring vertebral centers projected
on the z-axis across the training data set. Both lumbar and thoracic vertebrae were included.

0
10

20
30

40

Numbering of neighboring vertebrae pairs

N
ei

gh
bo

rin
g 

ve
rt

eb
ra

l c
en

te
r 

di
st

an
ce

 in
 z

−
ax

is
 (

m
m

)

1 2 3 4 5 6 7 8 9 1011121314151617

Figure 10. Boxplot of the distance between each individual pair of neighboring vertebral centers
projected on the z-axis. Both lumbar and thoracic vertebrae are included. The number 1 on the x-axis
represents the distance between the lowest two vertebrae (e.g., L5 and L4), the number increases for
upper vertebrae, and the number 17 indicates the distance between the upper-most two vertebrae
(e.g., T1 and T2).
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Figure 11. The histogram of the difference in the distance between each pair of neighboring vertebral
centers projected on the z-axis across the training data set. Both lumbar and thoracic vertebrae
are included.
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Figure 12. Two examples (a,b) of selecting the optimal value for k using the proposed objective function.

2.5. Identifying Individual Vertebrae and Segmentation Post-Processing

To separate connected vertebrae, the following processing steps are performed. Once
the kopti vertebra centers are generated, a signed distance transform is computed only on
the body label map to generate a distance map where its magnitude represents the distance
from the segmentation boundaries and its sign indicates whether a voxel is inside or outside
the segmentation, whereby the inside values are set to be negative. Then, each center is
shifted to its local minimum on the distance map with a kernel size of 5× 5× 5 to refine the
center locations (Figure 6d). Finally, a seeded watershed algorithm using the kopti center
points as markers is applied on the distance map to split the segmentation into regions
with different labels. A morphological dilation is performed after the seeded watershed
for each labeled vertebra to recover the boundaries. Moreover, to prevent over-dilation, all
labeled voxels that are not in the original body-boundary label map are excluded. These
segmented regions are then relabeled from bottom to top (Figure 6e).

When looking at the output of the localization and segmentation method, we some-
times observe that some upper thoracic vertebrae are missing. This is either because (a)
the smaller sizes of upper thoracic vertebrae produce a smaller number of localization
votes, compared to lumbar or lower thoracic vertebrae with larger sizes, which results
in less-accurate cluster centers, or (b) vertebrae are deformed/collapsed, resulting in the
predicted center being located outside the vertebral body. To solve these two problems,
we introduce a post-processing algorithm for recovering missed vertebrae. The algorithm
consists of the following steps.

1. To identify only unlabeled vertebrae, the current labeled segmentation (with k labeled
vertebrae) is applied as a mask to the three-label segmentation CNN output.

2. A connected component labeling algorithm is applied to the unlabeled parts, and the
components are sorted.

3. Each connected component from step (2) is processed from largest to smallest as
follows. First, the center coordinate of the component (C) is found. Second, the coordi-
nate C together with the centers of all currently segmented vertebrae are assessed by
utilizing Equation (1). If CS(k + 1) >= CS(k), the component is added to the current
segmentation, and k is updated as k = k + 1.

4. Step (3) is repeated until either of the two following conditions are met: (a) the
total number of labeled vertebrae (k) is larger than 18, which is the maximum num-
ber of vertebrae that are considered, or (b) all connected components from step (2)
are processed.
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5. All vertebrae in the current segmentation are relabeled from bottom to top to form the
final labeled segmentation.

An example case with a collapsed vertebra that shows the effect of the post-processing
algorithm can be found in Figure 13. As can be seen, the missing collapsed vertebra is
recovered. In addition, for each individual vertebra label, another post-processing step
is applied to remove potential islands and holes. First, a connected component labeling
algorithm is applied to the segmentation output, and all components except the largest
are removed. Then, the resulting label map is inverted, and the two previous steps are
repeated on the inverted label map. Finally, the resulting label map is inverted again to
produce the final segmentation label map.

(a) (b)

Figure 13. An example showing the segmentation results before (a) and after (b) the post-processing
step, where the missing collapsed vertebra (marked by red oval) is recovered.

3. Experimental Setup
3.1. Image Data

Two diverse types of image data are used in our experiments. The Iowa image data are
representative of our target application—BMS IMRT. To assess the robustness and enable
a comparison with other methods published, we also utilize VerSe2020 image data. Both
image data sets are described in detail below.

3.1.1. Iowa Data

The Iowa image data represent the subset of CT scans used for our pelvis segmentation
experiments described in [31], for which a reference vertebrae segmentation is available.
The segmentations were produced following current clinical practice. First, global thresh-
olding was applied. Second, manual editing was performed to correct major errors. Overall,
26 planning CT scans with reference segmentations of lumbar vertebrae (L1–L5) are utilized.
Combined, the CT scans include 129 vertebrae. The 26 planning CT scans had voxel sizes
ranging from 0.977 × 0.977 × 2 mm to 1.367 × 1.367 × 2 mm, and the volume (matrix)
size ranged from 512 × 512 × 174 to 512 × 512 × 353 voxels. All CT scans with a different
voxel size than the median (0.977 × 0.977 × 2) were resampled to match the median size
to avoid unnecessary blurring due to interpolation. Then, the scans were cropped from
the axial center to maintain the 512 × 512 axial matrix size, followed by clipping to the
[0.5, 99.5] percentiles of the HU value range of the entire data set to avoid extreme values.
Finally, a Z-score normalization using the mean and standard deviation of the entire data
set is implemented.
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3.1.2. Verse2020 Data

The VerSe2020 subject-based data structure [34] is a publicly available vertebra data
collection that was used in conjunction with the VerSe’20 segmentation challenge [18,35,36].
Specifically, the VerSe2020 data set [34] contains 214 CT scans that were utilized to expand
the VerSe’19 challenge data collection. It contains CT scans produced with several different
scanners and includes varying image qualities as well as a wide range of data and voxel
sizes. Thus, it is more diverse compared to Iowa image data (Section 3.1.1). Vertebra
segmentation was performed by using a human–hybrid approach [18]. Note that we
resampled all scans to the same voxel size of 0.977 × 0.977 × 2 mm to match the size of
the voxels of the Iowa scans. Furthermore, each scan of VerSe2020 was clipped to the
[0.05, 99.5] percentiles of the HU value range of the dedicated training data set, followed
by a Z-score normalization using the mean and standard deviation of the training data set
as well.

The data curators of the VerSe2020 data split them into training (n = 61), validation
(n = 80), and test (n = 73) sets. In conjunction with the VerSe’20 segmentation challenge,
the validation set was used as public and the test set as hidden test data. We follow this
schema and utilize the hidden test data the same way as the validation data set, namely
as an additional set of independent data for performance assessments. Furthermore,
the VerSe2020 data set contains CT scans of the entire spine or portions thereof. However,
our focus is on oncology applications in the pelvic region with a focus on lumbar and
(lower) thoracic vertebrae. Consequently, some scans were excluded because most of the
vertebrae shown are cervical vertebrae (validation set: 10 scans and test set: 14 scans). Thus,
the available number of scans for the validation and test set were 70 and 59, respectively.
The number of vertebrae in these sets was 873 and 761, respectively. Thus, these two sets
include 1634 vertebrae.

3.2. Reference Segmentation

Both data sets utilized include a segmentation of vertebrae (i.e., one mask label per
vertebra). To generate the three segmentation structures (the inner body of vertebra, verte-
bra boundary, and background) required for training, a morphological erosion operation
using a spherical kernel with a radius of one was applied to the original label maps. The
remainder of the erosion was used to generate the inner body label, while the eroded
portion was assigned the boundary label.

3.3. Performance Metrics

The main motivation behind our approach is to facilitate the radiation oncology
treatment of cancers in the pelvic region. For this application, an accurate segmentation of
individual lumbar and thoracic vertebrae is desirable. Thus, to assess the segmentation
performance, the Dice coefficient (Dice) [37] as well as signed (ds) and unsigned (du)
distance errors [38] were utilized on a per vertebrae basis. Note that for calculating
ds, segmentation surface points inside the reference were assigned a negative distance.
In addition, the Hausdorff distance (HD) [38] is utilized.

Because the anatomical labeling of individual vertebrae (e.g., L5, . . . , L1, T12, . . . ) is
not a major objective of the presented work, a simple numbering scheme, starting with the
vertebrae next to the pelvis (VerSe2020 alternative if the pelvis is not imaged: the lowest
vertebra imaged), is sufficient to differentiate between vertebrae. Because the VerSe2020 CT
scans can completely, partially, or not at all depict the pelvis, a correspondence between the
segmented and reference segmentation vertebrae needs to be established before assessing
the segmentation performance. For this purpose, the overlap between the segmentation
result and reference is calculated on a vertebrae basis. Subsequently, an assignment is made
based on maximum overlap. To account for missing vertebrae (a false negative, FN) or
erroneously segmented other structures (a false positive, FP), the number of false negatives
and positives is reported for the VerSe2020 data, in combination with the number of true
positive (TP) cases. In addition, the resulting F1-scores ( 2TP

(2TP+FP+FN ) are reported.
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4. Results
4.1. Iowa Data

For the Iowa data set, five segmentation–localization models were trained in each
of the three independent experiments, and the best-performing model out of each five-
fold cross-validation setups (Section 2.2) is utilized. Table 2 summarizes the resulting
performance metrics. We note that ds is significantly larger than 0 (p < 0.05), meaning there
is a positive bias and segmentation results tend to be larger than the ground truth.

Typical examples of our method trained on and applied to Iowa CT images are
depicted in the middle column of Figure 14. For comparison, the reference segmentation
is provided in the first column of Figure 14. As can be seen, the reference segmentation,
which was produced by using the currently clinically utilized approach of thresholding
and manual editing, can be locally inaccurate. In contrast, the network produces a more
visually appealing result. For comparison, we trained our approach on VerSe2020 training
data and applied it to the same scans (the last column in Figure 14), resulting in better
segmentations with less local errors. Thus, we conclude that the reference segmentations
provided for VerSe2020 are of higher quality than for the Iowa data set. The results in
Figure 14 demonstrate that (a) the network generalizes well even if a limited training set is
available and (b) it scales in segmentation performance with reference data size and quality.

Table 2. Summary of segmentation performance metrics on the Iowa data set.

Error Metric Mean ± Std Median

Dice (-) 0.921 ± 0.047 0.936
ds (mm) 0.271 ± 0.748 0.067
du (mm) 0.564 ± 0.757 0.337
HD (mm) 8.731 ± 7.410 6.035

Reference Trained on Iowa data Trained on VerSe2020 data
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Figure 14. Examples of sagittal slices of the Iowa data set ground truth and corresponding segmenta-
tion output from models trained on Iowa and VerSe2020 data, respectively.

4.2. VerSe2020 Data

As mentioned in Section 2.2, both VerSe2020 validation and test sets are regarded as
independent sets for performance analysis. Similar to the analysis of Iowa data, we selected
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the best-performing model out of the five-fold cross-validation setup. Furthermore, the
results are reported for both categories: (A) cases where the pelvis segmentation succeeded
and (B) cases where the pelvis segmentation failed, or the pelvis is only partially or not
imaged. Table 3 provides a summary of all the assessed segmentation error metrics. Note
that the value of ds for both the “validation” and “test” sets are significantly larger than 0
(p < 0.05), meaning there is a positive bias and segmentation results tend to be larger than
the ground truth. Table 4 provides TP, FP, and FN numbers and the resulting F1-scores of
the segmentation results.

Table 3. Summary of segmentation results on VerSe2020 data for both categories.

Category (A)

Validation Set Test Set
Error Metric Mean ± Std Median Mean ± Std Median

Dice (-) 0.936 ± 0.082 0.953 0.946 ± 0.039 0.955
ds (mm) 0.118 ± 0.375 0.047 0.070 ± 0.168 0.045
du (mm) 0.134 ± 0.377 0.055 0.086 ± 0.143 0.055
HD (mm) 6.171 ± 7.067 3.906 4.851 ± 4.876 3.410

Category (B)

Validation Set Test Set
Error Metric Mean ± Std Median Mean ± Std Median

Dice (-) 0.928 ± 0.070 0.946 0.945 ± 0.046 0.954
ds (mm) 0.203 ± 0.411 0.109 0.110 ± 0.095 0.089
du (mm) 0.398 ± 0.745 0.188 0.263 ± 0.489 0.163
HD (mm) 6.108 ± 6.200 4.000 4.212 ± 3.782 3.088

Table 4. Summary of true positive (TP), false positive (FP), and false negative (FN) numbers as well
as F1-scores achieved on VerSe2020 data for both categories.

Category (A)

Validation Set (n = 696) Test Set (n = 588)

Number of TP 684 577
Number of FP 7 10
Number of FN 5 1

F1-score 0.991 0.991

Category (B)

Validation Set (n = 177) Test Set (n = 173)

Number of TP 167 165
Number of FP 7 4
Number of FN 3 4

F1-score 0.971 0.976

When combining validation and test sets as well as both categories (i.e., 129 CT
scans showing 1634 vertebrae), the following results were obtained: Dice = 0.940 ± 0.065,
du = 0.159 ± 0.407 mm, ds = 0.109 ± 0.301 mm, and HD = 5.482 ± 6.001 mm. If the bone
density is quite low, neighboring vertebrae can be fused (Case 1 in Figure 15) or a vertebra
can get split into two or more parts (Case 2 in Figure 15). However, these cases are
quite infrequent.

Our method utilizes three labels (boundary, inner body, and background) to segment
and separate individual vertebrae. In this context, the Dice coefficient for the inner vertebra
body was 0.96, and for the vertebra boundary, 0.80. Given a pelvis segmentation (average
computing time: 250 s), our approach takes between 35 and 110 s to locate and segment
vertebrae, depending on the data set size.
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Figure 15. Examples of infrequent segmentation issues caused by low bone density. See text in
Section 4.2 for details.

Overall, the number of FPs was 28 (1.714%) and the number of FNs was 13 (0.796%).
In this context, we note that FPs are simpler to correct (i.e., delete) than FNs. Examples
showing a visual comparison between ground truth and automated segmentation results
for category (A) are shown in Figure 16. Examples of category (B) results are provided
in Figure 17. In this context, it is known that the VerSe’20 challenge data have an over-
representation of “rare anatomical anomalies in the form of transitional vertebrae” like
T13 and L6 [18]. Compared to VerSe’19, the predecessor of VerSe’20, this was achieved
by adding VerSe2020 data. In our experiments, we observed only one FN related to a
missing L6 segmentation. Furthermore, most of the FN cases stem from missing T1 and T2
(Figure 16b). The vast majority of FP cases can be explained as follows. Compared to the
Iowa data, VerSe2020 is more diverse in terms of patients’ age, including more younger
patients. For these patients, sacral S1 can appear with strong, well-separated boundaries.
Our review of FP cases showed that most FP cases represent S1, which are not part of the
VerSe2020 reference segmentation. An example of such a case is given in Figure 16c. Thus,
we speculate that a more diverse training set for the pelvis CNN will address this issue.
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Reference Segmentation

(a)

(b)

(c)

Figure 16. Comparison of ground truth vs. automated segmentation results of category (A) VerSe2020
data. (a) All vertebrae are successfully segmented. (b) T1 and T2 (red arrow) are missing in the
automated segmentation result. (c) S1 (red arrow) is included in the automated segmentation result.
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Reference Segmentation

(a)

(b)

Figure 17. Comparison of ground truth vs. automated segmentation results of category (B) VerSe2020
data. (a) The pelvis is partially imaged. (b) The pelvis is not imaged.

5. Discussion
5.1. Segmentation Performance

Our method was trained and tested on two different data sets, achieving average Dice
coefficients of 0.921 on the small-sized Iowa and 0.940 on the large-sized VerSe2020 data
set. Similar trends were observable for the distance-based error measures. However, we
note that even on the small-sized Iowa data set, the signed and unsigned distance errors
are already well below the size of a voxel. Furthermore, the average Hausdorff distance of
8.731 mm can be explained as follows. The ground truth segmentations provided for the
Iowa data set were produced following the same procedure as used in physician clinical
practice and did show local segmentation inaccuracies. Despite this issue, our approach
has demonstrated its ability to generalize and produce better-matching vertebrae contours
compared to the reference (Figure 14). Thus, one advantage of our approach is that it
showed capacity to work well when trained on a small, imperfect data set (Iowa) and a
large data set (VerSe2020). Specifically, the performance on the Iowa data was quite good
and scaled with the availability of more training data of VerSe2020 accordingly.

On VerSe2020 data, the performance achieved in category (A) (cases where the pelvis
segmentation succeeded) and category (B) (cases where the pelvis segmentation has failed)
data is quite similar. This is expected because of the selective response of the developed
network (Figure 2) to vertebra structures. In this context, we note that the use of pelvis
segmentation to generate a VOI for subsequent processing is mainly motivated by achieving
a reduction in computing time.

A comparison of our approach to other methods that were evaluated on VerSe data
sets is provided in Table 5. The best-performing method of the VerSe’20 challenge had a
Dice coefficient of 0.9172 and 0.9123 on the validation and test sets, respectively [18]. We
note that our approach shows a better performance on both data sets utilized in our work.
However, this is only a rough comparison, because we are only segmenting lumbar and
thoracic vertebrae, not including cervical vertebrae. Similarly, when comparing our results
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to the results of methods that were published after the VerSe’20 challenge and used VerSe
data, our approach performed more favorably. We attribute this to (a) using segmentation
results from all volume patches processed and (b) utilizing a post-processing method.

Furthermore, we note that the recently introduced ViT-based single-network approach
proposed by You et al. [30] had a quite low Dice coefficient when compared to our single-
network method as well as other top-performing multi-network methods listed in Table 5.
Again, this demonstrates the advantage of our approach, consisting of a balanced combina-
tion of deep learning and traditional computer vision methods for post-processing.

Table 5. Performance comparison of vertebrae segmentation methods that have used VerSe image
data. † Notes that You et al. report HD95% instead of the standard HD to alleviate the effect of
outliers [30].

Validation Set (“Public”) Test Set (“Hidden”)
Approach Dice (-) HD (mm) Dice (-) HD (mm) Notes/Comments

(a) Participants VerSe’19 challenge (see Sekuboyina et al. [18] for details)
Payer C. 0.9090 6.35 0.8980 7.08
Lessmann N. 0.8508 8.58 0.8576 8.20
Chen M. 0.9301 6.39 0.8256 9.98
Amiranashvili T. 0.6702 17.35 0.6896 17.81
Dong Y. 0.7674 14.09 0.6751 26.46
Angermann C. 0.4314 44.27 0.4640 41.64
Kirszenberg A. 0.1371 77.48 0.3564 65.51
Jiang T. 0.8270 11.22 - -
Wang X. 0.7188 24.59 - -
Brown K. 0.6269 35.90 - -
Hu Y. 0.8407 12.79 0.8182 29.94
Sekuboyina A. 0.8306 12.11 0.8318 9.94

(b) Participants VerSe’20 challenge (see Sekuboyina et al. [18] for details)
Chen D. 0.9172 6.14 0.9123 7.15
Payer C. 0.9165 5.80 0.8971 6.06
Zhang A. 0.8882 7.62 0.8936 7.92
Yeah T. 0.8888 9.57 0.8791 8.41
Xiangshang Z. 0.8358 15.19 0.8507 12.99
Hou F. 0.8399 8.10 0.8492 8.08
Zeng C. 0.8399 9.58 0.8439 8.73
Huang Z. 0.8075 34.06 0.8169 15.75
Netherton T. 0.7516 13.56 0.7826 14.06
Huynh L. 0.6248 20.29 0.6523 20.35
Jakubicek R. 0.7317 17.26 0.5297 20.30
Mulay S. 0.5818 99.75 - -
Paetzold J. 0.1060 166.55 0.2549 240.61
Sekuboyina A. 0.7805 10.99 0.7952 11.61

(c) Recently published papers that use VerSe data sets for performance evaluation
Lu et al. [25] Dice: 0.904 HD: - Based on 156 CT scans of VerSe 2020 data set,

did not specify public/hidden,
used lumbar vertebrae only,
mean of results reported for L1 to L5 is shown

Meng et al. [28] 0.9253 7.03 0.9111 6.69 Based on 200 VerSe’20 CT scans
Qadri et al. [27] Dice: 90.2 HD: - VerSe data subset mixed with other data sets
You et al. [30] 0.8639 3.41 † 0.8654 3.66 † Based on VerSe’19 data set
You et al. [30] 0.8453 6.34 † 0.8686 4.60 † Based on VerSe’20 data set

(d) Our approach
Category (A) 0.936 6.171 0.946 4.851 See Section 3.1.2 for details
Category (B) 0.928 6.108 0.945 4.212 See Section 3.1.2 for details
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5.2. Current Limitations and Future Work

The focus of the presented work was on accurately segmenting lumbar and neigh-
boring thoracic vertebrae. If needed, cervical vertebrae can be easily integrated into our
vertebrae center localization approach, which models the characteristics of vertebrae indi-
vidually. In addition, relevant training data for cervical vertebrae will be required.

A precise labeling of each individual vertebra was not crucial for our application in
radiation oncology. Thus, the focus of our method was to accurately locate and segment
each individual vertebra, and a simple labeling of each vertebra from bottom to top was
utilized. If needed, a more refined vertebrae labeling can be applied after utilizing our
segmentation algorithm. Such an algorithm will require global information of the entire
CT scan to accurately assign vertebrae labels (e.g., T12, T13, or L1). Furthermore, in our
application, a pelvis segmentation is required, which was used to define a VOI for locating
individual vertebrae. For this purpose, we utilized our single-object combined localiza-
tion and segmentation approach in combination with a random sampling strategy [31].
If needed, similar ideas as discussed in Xiong et al. [31] can be adapted to localize and
segment vertebrae without a preceding pelvis segmentation. In future work, we plan to
generalize our approach to handle multiple different objects like vertebrae, ribs, clavicle,
and other bone structures.

6. Conclusions

We presented a novel approach for the segmentation of individual lumbar and tho-
racic vertebra in CT scans. Our method utilizes a multi-object combined localization and
segmentation approach. The segmentation results showed superior performance in individ-
ually segmenting lumbar and thoracic vertebrae. This was achieved in a diverse imaging
data set with a variety of scanners and acquisition parameters. The proposed approach
has several clinically relevant applications, including facilitating bone-marrow-preserving
adaptive radiation therapy and bone marrow dose calculation for radiopharmaceutical
therapy. Given the performance of the three-label (boundary, inner body, and background)
approach to segment vertebra, our method has the potential to facilitate applications re-
quiring segmenting vertebral spongiosa from the cortical bone, which could be even more
useful for radiopharmaceutical dosimetry.
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