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Abstract: Soft robotics is closely related to embodied intelligence in the joint exploration of the
means to achieve more natural and effective robotic behaviors via physical forms and intelligent
interactions. Embodied intelligence emphasizes that intelligence is affected by the synergy of the
brain, body, and environment, focusing on the interaction between agents and the environment.
Under this framework, the design and control strategies of soft robotics depend on their physical
forms and material properties, as well as algorithms and data processing, which enable them to
interact with the environment in a natural and adaptable manner. At present, embodied intelligence
has comprehensively integrated related research results on the evolution, learning, perception,
decision making in the field of intelligent algorithms, as well as on the behaviors and controls in
the field of robotics. From this perspective, the relevant branches of the embodied intelligence
in the context of soft robotics were studied, covering the computation of embodied morphology;
the evolution of embodied AI; and the perception, control, and decision making of soft robotics.
Moreover, on this basis, important research progress was summarized, and related scientific problems
were discussed. This study can provide a reference for the research of embodied intelligence in the
context of soft robotics.

Keywords: embodied intelligence; bio-inspired; soft robotics; reinforcement learning

1. Introduction

Over the recent 50 years, artificial intelligence has undergone tremendous changes,
transforming from a computational discipline into a highly interdisciplinary field encom-
passing many areas. In 1950, Alan Mathison Turing first proposed the concept of embodied
intelligence [1]. Since then, developing effective methods for creating systems with embod-
ied intelligence has been one of the primary goals of artificial intelligence. In the 1960s,
researchers began to explore the possibility of artificial intelligence embodiment. Philoso-
pher and neuroscientist Francisco Varela introduced the philosophy of the embodied mind,
suggesting that human cognitive intelligence should be understood from the perspective
of the human body and its interaction with the physical environment. In the 1970s, the
Stanford Research Institute in the United States developed the first mobile robot, Shakey,
capable of autonomously perceiving, modeling the environment, planning behavior, and
executing tasks. The most influential figure in developing embodied intelligence as a
method for designing intelligent robots is Rodney Brooks, who proposed designing intel-
ligent machines through perceptual and action-driven environmental interaction rather
than through predefined instruction codes [2]. Based on this theory, artificial intelligence
can be divided into non-embodied and embodied intelligence. Non-embodied intelligence,
also known as disembodied intelligence, typically refers to software programs, algorithms,
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and other digital entities that operate within computers and do not need to interact with
the external world through physical components. This type of non-embodied intelligence
has achieved great success, which was driven by the development of internet information
processing, big data, and GPU resources [3].

Embodied intelligence refers to artificial intelligence systems that possess a physical
presence, like robots, which can perceive the environment through sensors and directly
interact with the environment through physical means, such as actuators, thereby making
decisions and taking actions. Of course, embodied intelligence and non-embodied intelli-
gence are not mutually exclusive, especially regarding methods. Current techniques such
as machine learning, reinforcement learning, and transfer learning can all serve as tools for
studying embodied intelligence. Embodied intelligence is one of the critical lessons we can
learn from nature to improve the behavior of robots [4]. We observe in nature the smooth,
fast, and efficient actions of organisms in complex environments. In the field of soft robotics,
we are mimicking these organisms in nature to provide solutions for achieving embodied
intelligent robots. In the recent decade, soft robotics has experienced rapid development,
including advances in new control mechanisms [5], progress in kinematics and dynamics
modeling, and the utilization of innovative materials and designs (such as soft silicone,
hydrogels, shape memory alloys, liquid metals), enabling the production of flexible and
adaptable components with excellent performance. Soft robotics has broad application
prospects in reconnaissance, detection, rescue, and medical fields. These areas typically
require robots with adaptive capabilities to interact with constantly changing environments,
make autonomous decisions, and change shape. Their capability to solve unconventional
tasks is closely related to the goals of embodied intelligence research. The intersection
and fusion of embodied intelligence and soft robotics enable researchers to explore more
innovation and application areas.

The principles dictated by nature offer us lessons that we can learn. In the current
context of soft robotics, embodied intelligence encompasses the comprehensive integration
of principles from the field of biomimicry regarding morphology, structure, and control;
evolutionary insights from the field of computational intelligence; and relevant research
outcomes from machine learning concerning perception, learning, and decision making.
This amalgamation has formed a relatively complete, independent, and rapidly evolving
discipline branch. Although there have been some publications with “embodied intelli-
gence” as their central theme, their content mainly focused on the integration of perception
and behavior while neglecting the influence of physical morphology [6–8]. In embodied
intelligence, the relationship between the physical morphology of the agent and perception,
learning, and control plays a crucial role [9]. Embodied intelligence within the context of
soft robotics is a topic worthy of discussion. This article comprehensively analyzes and
summarizes significant research advancements related to this issue, aiming to provide
references for the development of this field.

This article is structured as follows: Section 2 elaborates on the research methods.
Section 3 discusses the relationship between embodied intelligence and other intelligent
systems. Section 4 provides an overall introduction to the latest research advancements in
embodied intelligence within the field of soft robotics. Sections 4.1–4.3 provide detailed
reviews of advanced research in embodied morphological computation, embodied artificial
evolution, and the perception, control, and decision making in soft robots. Section 5
revisits the core insights of this literature review and delves into the potential trends and
opportunities for future research on embodied intelligence.

2. Methodology
2.1. Search Strategy

We performed a systematic search of the literature using online databases, includ-
ing Web of Science, Scopus, and IEEE Xplore, from inception to March 2024. The search
included the following keywords and phrases: (soft robot OR bionic robot) AND (embod-
ied intelligence OR physical intelligence OR computational intelligence OR perceptual
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intelligence OR morphological intelligence) AND (biological evolution OR environment
interactions OR autonomous decision-making OR control strategy). These keywords were
searched within the titles, abstracts, and keywords of the papers. The article selection pro-
cess, following PRISMA guidelines for systematic review updates, is depicted in Figure 1.
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2.2. Pre-Inclusion and Exclusion Criteria

We applied the following pre-inclusion and exclusion criteria:

1. The paper does not clearly discuss the application of artificial intelligence technologies
in soft robotics or how artificial intelligence extends to embodied intelligence.

2. The research focus deviates from soft robotics or embodied intelligence, such as
concentrating solely on rigid robots, or the study does not cover enhancing robot
intelligence through an interaction with the environment.

2.3. Screening and Selection Process

After the initial search, the papers were screened based on their titles and abstracts
to ensure they met the pre-inclusion criteria. The full text of the selected papers was then
assessed for eligibility based on the exclusion criteria.
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2.4. Data Extraction and Analysis

For each selected paper, we extracted information on embodied intelligence and bionic
soft robots. Then, we analyzed and categorized this information to summarize the current
state of research on embodied intelligence within the context of soft robotics and to identify
trends and gaps in the literature. Based on the number of papers that met the pre-inclusion
criteria, a total of 58 papers were selected, dating from 2017 to 2023. Overall, the number
of papers indicates that the field of embodied intelligence is still developing and has been
increasing annually. This trend is also supported by Figure 2.
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3. Embodied Intelligence and Its Relationship with Other Intelligences

Artificial intelligence (AI) is a broad concept that includes cognitive intelligence,
physical intelligence, perceptual intelligence, computational intelligence, and embodied
intelligence, as shown in Table 1.

Table 1. The definition of embodied intelligence compared to other forms of intelligence.

Noun Definition Emphasis

Computational Intelligence
A method imitating natural intelligence, including neural
networks, evolutionary algorithms, fuzzy systems, and machine
learning [11–13].

Solving complex
computational problems.

Physical Intelligence Encode sensing, actuation, control, logic, and computing
intelligence into the robot’s body [14].

Reduce costs.
Response speed.
Enhance robustness.

Perceptual Intelligence
Perceptual intelligence allows machines to sense and interpret
the environment, covering senses like sight, hearing, and
touch [15].

Accurate information
acquisition.

Cognitive Intelligence
The ability of machines to simulate or mimic human cognitive
behaviors, including understanding, thinking, and
reasoning [16,17].

Enabling machines to
understand and utilize
knowledge.

Morphological Intelligence An intelligent robot’s shape affects how it interacts with its
surroundings and its smart actions.

Used for simplifying control
and data processing.

Embodied Intelligence
Emphasizing the interaction with the environment, integrating
complex processes such as perception, learning, decision
making, and action, surpassing mere physical movements.

Intelligent systems tightly
integrate with their physical
environment.
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In the development of artificial intelligence, different types of intelligence complement
each other, forming a progressive relationship from the bottom layer to the top layer. Their
relationship graph is illustrated in Figure 3. The foundation consists of computational
intelligence and physical intelligence, which provide basic algorithmic support and direct
interaction capabilities with the physical world. They focus on designing and implementing
algorithms for data processing (computational intelligence) and the physical interaction of
robots (physical intelligence). The middle layer, composed of perceptual intelligence and
cognitive intelligence, further enhances the system’s complexity. Perceptual intelligence
allows the system to sense the environment through sensors, while cognitive intelligence
emulates advanced human cognitive functions, such as understanding, thinking, and
reasoning. The main difference between them is that perceptual intelligence focuses on
the acquisition and processing of external information, whereas cognitive intelligence
focuses on internal processing and decision making. Morphological intelligence, as a key
aspect, focuses on how a robot’s physical form can achieve adaptive interaction with the
environment through a morphological computation and a simulation of biological evolu-
tion, highlighting the impact of robotic physical characteristics on perception abilities and
cognitive processing methods, as well as how to utilize biological evolutionary principles
to enhance robots’ adaptability and efficiency. The highest layer, embodied intelligence,
integrates all features of the lower and middle layers, combining computation, physical
interaction, perception, and cognition within a robot, aiming to achieve complex and dy-
namic interaction with the environment. The uniqueness of embodied intelligence lies in
not only combining the features of all other levels of intelligence but also emphasizing
a direct interaction between the robot’s physical form and the environment, thus achiev-
ing a more comprehensive and efficient intelligent performance. Compared to general
intelligence, features of embodied intelligence include proactivity, enabling intelligent
systems to become active participants rather than passive information-processing tools;
real-time responsiveness, allowing for immediate reactions to new information or environ-
ments; contextuality, akin to how humans adjust their behavior in real-time interaction
with their surroundings, and embodied intelligence should profoundly understand its
context through real-time learning and feedback and adjust its behavior accordingly; and
biomimicry, dynamically adjusting behavior and structure based on environmental changes
and interactions to develop higher levels of function and structure, thereby enhancing the
system’s robustness and adaptability.
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4. Research Progress on Embodied Intelligence in the Context of Soft Robotics

This section discusses the progress of research on embodied intelligence in soft robotics.
Compared to general artificial intelligence, embodied intelligence is required to cope with
complex environments and to coexist with the real world in a way closer to human cog-
nition. This makes it exhibit more biomimetic features. Through millions of years of
adaptations and co-evolution, organisms on Earth have developed nervous and muscu-
loskeletal systems to achieve efficient task performance. Mengaldo [18] believes that the
softness and compliance of organisms are key to their embodied intelligence. Similarly,
Leschi C [19] also believes that embodied intelligence relies on the physical body’s flexi-
bility, generating sensations and behaviors through an interaction with the environment.
This interaction adapts to external changes through the soft body while integrating with
the actions produced by actuators. This indicates that soft robots contribute to embodied
intelligence by enhancing adaptability and perception through their unique softness and
compliance. At the level of embodied physical intelligence, Sitti M [20] points out that
flexible systems can respond to environmental stimuli. Through this response, they can
perceive their own movements and states, such as detecting movements and positions of
various body parts, and then they can plan and execute subsequent actions based on these
perceptions. This means that embodied intelligence can not only perceive the environment
through flexible systems but can also autonomously act based on perception.

Not only are there theoretical hypotheses and reflections, but there have also been
various advancements in this research field, including embodied morphological computa-
tion; embodied artificial evolution; and perception, control, and decision making in soft
robotics. These studies aim to further enhance the adaptability, flexibility, and intelligence
of soft robots, making them better suited to complex and evolving environments while
also contributing to the refinement of the theoretical framework of embodied intelligence.
Here, within the context of soft robotics, we mainly discuss the following issues regarding
embodied intelligence:

• How to design computable body morphology: carry out research on how to achieve
intended computational functionalities through designing body structure and ma-
terials, including optimizing perception, decision making, and behavior generation
through morphological design.

• The co-evolution between body and control systems: carry out research on how to
co-evolve the body (morphology) and brain (control system) of robots and how these
interact to influence the overall performance and adaptability of the robot jointly.

• Exploring how soft robots utilize their flexible bodies and materials to perceive changes
in the external environment and how to use this perceptual information for real-time
decision making and control, driving the development of soft robotics towards higher
intelligence, autonomy, and practicality.

4.1. Bionic Soft Robots

Soft robots are considered ideal subjects for the study of embodied intelligence be-
cause they exhibit a range of unique characteristics and advantages that are closely related
to embodied intelligence: embodied intelligence emphasizes that agents interact with
the environment through their physical form, and the soft and flexible structure of soft
robots enables them to move and manipulate effectively in complex and irregular environ-
ments, mimicking the natural movement and adaptability of living organisms. An agent
is defined as a system or entity that interacts directly with its surrounding environment
through its physical embodiment to perform tasks and achieve objectives. For self-evolving
repair [21], soft robots might be the key to achieving this advanced skill, which can signifi-
cantly enhance the durability and adaptability of robots in terms of embodied intelligence.
For mimicking soft biological sensing mechanisms [22], organisms perceive the external
environment through organs like skin and tentacles, integrating pressure sensors and tem-
perature sensors to achieve multimodal sensing for a more comprehensive perception and
response to environmental changes. Control of highly integrated systems and execution
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of high-dimensional continuous action tasks: The control issue of soft robots reflects a
key challenge of embodied intelligence, which is how to effectively manipulate a complex
physical system in a continuous, dynamically changing environment. This involves a deep
understanding of the dynamics of both the physical world and the robot itself.

Soft robotics is a multidisciplinary field encompassing branches such as mechanical
engineering, biology, electronics, and more, specialized in creating and designing robots.
The drawbacks of traditional robots, such as rigidity, complexity, and poor flexibility, have
prompted researchers to draw inspiration from nature, delve into biomimetic mechanisms,
and develop various types of soft robots [23]. From a biomimetic perspective, the design
and implementation of soft robots are inspired by the structures and functions of biological
organisms found in nature [24–29]. Researchers have designed various types of soft
robots, as shown in Figure 4. Many natural organisms, such as octopuses and jellyfish,
exhibit remarkable flexibility and adaptability. Soft robots mimic these organisms, enabling
effective movement and operation in complex and crowded environments, which are
characteristics that embody the essence of embodied intelligence. Moreover, their soft body
structures enable energy storage and conversion for efficient movement and long-term
task execution [30]. Microelectronic morphogenesis technology and bio-inspired dynamic
morphing technology have provided soft robots with the ability to self-organize and self-
repair, enhancing their capability to adapt to complex environments [31,32]. By integrating
novel sensors and actuators, soft robots have shown significant application potential in the
medical and biomedical fields, especially in the precise delivery of cellular cargo, paving the
way for new research directions [33]. These advancements not only drive the development
of soft robotics technology but also offer important perspectives and tools for a deeper
understanding and realization of embodied intelligence.

Biomimetics 2024, 9, 248 7 of 17 
 

 

mechanisms, and develop various types of soft robots [23]. From a biomimetic perspec-
tive, the design and implementation of soft robots are inspired by the structures and func-
tions of biological organisms found in nature [24–29]. Researchers have designed various 
types of soft robots, as shown in Figure 4. Many natural organisms, such as octopuses and 
jellyfish, exhibit remarkable flexibility and adaptability. Soft robots mimic these organ-
isms, enabling effective movement and operation in complex and crowded environments, 
which are characteristics that embody the essence of embodied intelligence. Moreover, 
their soft body structures enable energy storage and conversion for efficient movement 
and long-term task execution [30]. Microelectronic morphogenesis technology and bio-
inspired dynamic morphing technology have provided soft robots with the ability to self-
organize and self-repair, enhancing their capability to adapt to complex environments 
[31,32]. By integrating novel sensors and actuators, soft robots have shown significant ap-
plication potential in the medical and biomedical fields, especially in the precise delivery 
of cellular cargo, paving the way for new research directions [33]. These advancements 
not only drive the development of soft robotics technology but also offer important per-
spectives and tools for a deeper understanding and realization of embodied intelligence. 

 
Figure 4. (a) Aurelia-inspired robot based on SMA artificial muscle [24]. (b) Sea turtle-inspired 
swimming robot [25]. (c) Bionic soft robotic fish investigates deep-sea environments [26]; repro-
duced with permission from ref. [26], copyright 2023, Springer Nature. 

4.2. Embodied Morphological Computing 
By employing soft and intelligent materials, soft robotics extends traditional robotic 

techniques, enabling robots to work with humans and handle delicate objects. However, 
this potential comes at a cost. Soft robots often exhibit complex dynamics that are chal-
lenging to model, making them difficult to control. Interestingly, natural soft-bodied or-
ganisms, such as octopuses, have evolved over millions of years to develop efficient meth-
ods for utilizing their complex morphological features for perception, control, and com-
putation. This natural strategy has sparked research in morphological computation, a field 
that explores how to translate this capability observed in biological organisms into robot-
ics technology. 

In artificial intelligence and machine learning, reservoir computing (RC) is gradually 
becoming a topic of great interest. As a unique computing framework, it demonstrates 
tremendous potential in handling complex time-series data. It is a neural network-based 
computing approach, with its core being a fixed and randomly generated large-scale neu-
ral network known as the “reservoir” [34]. Unlike traditional neural networks, this net-
work does not require comprehensive training but rather maintains its initial random con-
nectivity state, as depicted in Figure 5a. This framework is considered as an extension of 
neural networks and comprises three main components: The input layer, which can be 
composed of one or multiple nodes and belongs to the feed-forward neural network 

Figure 4. (a) Aurelia-inspired robot based on SMA artificial muscle [24]. (b) Sea turtle-inspired
swimming robot [25]. (c) Bionic soft robotic fish investigates deep-sea environments [26]; reproduced
with permission from ref. [26], copyright 2023, Springer Nature.

4.2. Embodied Morphological Computing

By employing soft and intelligent materials, soft robotics extends traditional robotic
techniques, enabling robots to work with humans and handle delicate objects. However, this
potential comes at a cost. Soft robots often exhibit complex dynamics that are challenging to
model, making them difficult to control. Interestingly, natural soft-bodied organisms, such
as octopuses, have evolved over millions of years to develop efficient methods for utilizing
their complex morphological features for perception, control, and computation. This
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natural strategy has sparked research in morphological computation, a field that explores
how to translate this capability observed in biological organisms into robotics technology.

In artificial intelligence and machine learning, reservoir computing (RC) is gradually
becoming a topic of great interest. As a unique computing framework, it demonstrates
tremendous potential in handling complex time-series data. It is a neural network-based
computing approach, with its core being a fixed and randomly generated large-scale neural
network known as the “reservoir” [34]. Unlike traditional neural networks, this network
does not require comprehensive training but rather maintains its initial random connectivity
state, as depicted in Figure 5a. This framework is considered as an extension of neural
networks and comprises three main components: The input layer, which can be composed
of one or multiple nodes and belongs to the feed-forward neural network category. The
middle layer, consisting of multiple nodes and belonging to the recurrent neural network
category. The output layer, which is a weighted summer. The reservoir’s function is to
transform input data into higher-dimensional dynamic representations, thereby enhancing
the data’s nonlinear characteristics and complexity. The only part that needs to be trained
is the output section of the network, which significantly simplifies the training process and
reduces the demand for computational resources.
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Figure 5. (a) General reservoir computing, also known as an echo state network, is considered as an
extension framework of neural networks. It shares the same three-layer structure. (b) Mass-spring
networks are a biomimetic computing model. (c) Sampled modular pneumatic soft arm as an energy
storage reservoir.

Research by Helmut Hauser and colleagues demonstrates how introducing feedback
mechanisms into the design of flexible robots enables the autonomous generation of adap-
tive motion patterns without relying on complex control algorithms [35]. The feasibility of
this theory has been validated through computer simulations of mass-spring networks, as
depicted in Figure 5b, which simulate the mass and connectivity relationships of objects to
form complex network structures. In this simulation, particles represent parts of objects,
and springs represent the connections between objects or the constraints between compo-
nents. By adjusting the parameters of particles and springs, different shapes, structures,
and dynamic behaviors of objects can be simulated. This work expands the application of
morphological computation in robotics and provides a new perspective for understanding
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the control principles of biological organisms. Nakajima introduces an innovative con-
cept by using soft structures mimicking octopus tentacles as reservoir computing devices,
enabling complex nonlinear behavior simulation without external controllers [36]. This
approach utilizes the physical dynamics of soft tentacles to simulate information processing
through intrinsic physical responses, achieving the capability of closed-loop control.

Further research indicates that morphological computation can extend to environmen-
tal perception and localization. Eder M’s study demonstrates the potential of soft robotics
in simulating and learning complex dynamic control processes through pneumatic-driven
modular manipulator arms [37], as shown in Figure 5c. This approach, which utilizes
the structural and dynamic properties of soft robots for learning and control, not only en-
hances the flexibility and accuracy of robot operations but also demonstrates the possibility
of achieving computation and control through physical morphology. Research by Judd
et al. utilizes the body dynamics of soft robots to predict the position of objects in water,
showcasing the potential of morphological computation in perception and interaction [38].
This body-dynamics-based perception method not only reduces dependence on traditional
sensors but also enhances the adaptability and responsiveness of robots to the environment.

These research findings collectively point to a consensus: the integration of soft
robotics and morphological computation provides a new direction for developing highly
adaptive and intelligent robotic systems. This direction not only challenges traditional
paradigms of robot design and control but also offers valuable insights for understanding
biological intelligence mechanisms and developing a new generation of bio-inspired robots.
The morphological computation methods and design concepts discussed in this section
are innovative, but they are difficult to form relatively systematic design schemes and lack
the ability to quantitatively evaluate the role of morphological computation. If they can
be integrated with other disciplines to form better design solutions and applied to soft
robotics or medical fields, this will be a very promising research direction.

4.3. Embodied Artificial Evolution

From the perspective of biological evolution, all organisms interact with their sur-
rounding environment(s) through their physiological characteristics, achieving lifelong
learning and continuous evolution. Evolution is a long-term process based on adaptive
selection in the environment [39]. The research of translating natural evolution into ar-
tificial evolutionary algorithms has made significant progress. Taking it a step further,
extending the artificial evolution process from digital space to physical space is referred to
as “embodied artificial evolution” [40]. Feng et al. [41] defined the “genes” of machines
as “learning genes” and proposed genetic reinforcement learning (GRL), simulating the
evolution of organisms in physical space. They utilize learning genes to train and evolve
intelligent agents, which demonstrate superior performance in various tasks and scenar-
ios, showing higher efficiency and effectiveness. In 2021, the team led by Fei-Fei Li [42]
developed an embodied intelligence computing framework (DERL) by combining evolu-
tionary algorithms with deep reinforcement learning. The aim was to evolve diverse agent
morphologies capable of learning complex locomotion and manipulation tasks in different
environments (Figure 6a). This study also demonstrated the Baldwin effect for the first time,
which suggests that behaviors learned by individuals in the early stages of evolution may
gradually become instinctive and even be passed on to offspring. Similarly, Saito, Takumi
et al. [43] confirmed the influence of body movements on the evolution of body shape
using two-dimensional soft robots. They found that body morphology significantly affects
the learning of movement, which is consistent with the theory of embodied intelligence.
Research on embodied intelligence focuses on the brain controlling the interaction between
the body and the environment and involves collaboration between the brain and the body.
Luo J [44] studied the integration of learning into morphological evolution in robot systems.
They utilized central pattern generators (CPGs) to control modular robots and employed
evolutionary algorithms to search for robots with better fitness (as shown in Figure 6b).
This approach enabled the simultaneous evolution of the robot’s morphology (body) and
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controller (brain), incorporating a learning phase to optimize the inherited brain for better
control of the robot’s body. In this process, the changes in the body affect the learning and
adaptation of the brain, thereby indirectly influencing the evolution of the brain. In another
related study, Pathak D [45] used graph dynamic networks to encode modular robots,
defining a morphological search as a reinforcement learning Markov process. Trained
agents can assemble their limbs and obtain morphologies adapted to specific environments
(such as underwater environments or stair-like terrain) through a morphological search.
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nology. Especially known as multi-robot organisms, these are defined as large-scale col-
lectives of robots that can dock with each other within a single “artificial life form” and 
symbiotically share energy and computational resources. Doing so is advantageous, as 
these robots can dynamically aggregate and self-assemble into one or multiple symbiotic 
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Figure 6. (a) Evolution of intelligent agents in different terrains. Reproduced with permission from
ref. [42], copyright 2021, Springer Nature. (b) Each row depicts a different evolved robot moving
from left to right. Voxels in the figure are colored based on the amount of subsequent morphological
development remaining in that cell: blue indicates shrinking voxels, red indicates growing voxels,
and green indicates minimal change. The first row features an evolved soft quadrupedal robot trotting
with a two-beat gait synchronizing diagonal pairs of legs. The second row shows an adult robot
galloping at full speed (fully airborne mid-gait). The third row depicts a juvenile robot galloping at
full speed, evolving into an adult form capable of rolling. The fourth row showcases a rolling robot.
Reproduced with permission from ref. [44], copyright 2018, Springer Nature.

Through evolutionary algorithms and reinforcement learning, researchers can simulate
and explore how different body shapes affect the learning and behavior of intelligent agents
and how these body shapes further adapt to the environment, deepening our understand-
ing of the theory of embodied intelligence. The core idea of embodied intelligence is that
intelligence arises from the dynamic interaction between organisms and their environment,
meaning that intelligence is not confined solely to the brain or control systems but is the
result of the entire body’s interaction with the environment. In a natural evolution process,
organisms’ morphology and behavioral control co-evolve and interact. By combining evo-
lutionary algorithms and reinforcement learning, it is possible to simultaneously optimize
the design of a robot’s morphology and control strategies, enabling them to work together
more effectively and improve the overall performance and adaptability of the robot.
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In the biological realm, the evolution of self-organizing multicellular organisms repre-
sents a remarkable transition from single-celled to multicellular life. Multicellular organ-
isms provide inspiration for the adaptation and evolution principles in robotics technology.
Especially known as multi-robot organisms, these are defined as large-scale collectives of
robots that can dock with each other within a single “artificial life form” and symbiotically
share energy and computational resources. Doing so is advantageous, as these robots can
dynamically aggregate and self-assemble into one or multiple symbiotic organisms, en-
abling them to interact collaboratively with the physical world through various sensors and
actuators. Artificial multi-robot organisms represent research into adaptive, reconfigurable,
and collective robotic systems. Inspired by biology, examples of such systems can be found
in nature, with one of the most famous being Dictyostelium—social amoebae, which also
known as cellular slime molds [46]; these soil-living unicellular amoebae feed on bacteria.
When food resources are depleted, the amoebae produce and release signaling molecules
called cAMPs. This chemotactic mechanism creates a gradient field towards an aggregation
point, causing up to 100,000 cells to aggregate into a multicellular organism, forming a
fruiting body, as shown in Figure 7a. In this process, the amoebae undergo various devel-
opmental stages such as cell differentiation, morphogenesis, growth, self-protection, and
sexual and asexual reproduction. The principles underlying self-motion, aggregation, and
emergent macroscopic functionality can also be demonstrated through artificial systems,
particularly swarm robotics. Like amoebae, swarm robots can emit aggregation signals and
assemble into artificial organisms [47], as shown in Figure 7b.
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Figure 7. (a) Dictyostelium discoideum, commonly referred to as slime mold, capable of a transition
from a collection of unicellular amoebae into a multicellular organism [46]; (b) modular reconfigurable
robots [47]. Reproduced with permission from ref. [47], copyright 2022, Springer Nature.

According to the concept of developmental plasticity, organisms can self-assemble and
self-disassemble. Specifically, this implies that artificial organisms have two main distinct
states—collective mode and organism mode—and undergo several stages including collec-
tive behavior, self-assembly, homeostasis regulation, and macroscopic coordination. In the
future, robots are sure to cooperate with other robots just like these intelligent organisms.

4.4. Perception, Control, and Decision Making
4.4.1. Multimodal Perception

Cewu Lu mentioned at the Valse2022 conference that embodied intelligence is not
a computer in the traditional sense, it is a multimodal intelligent system. Of course,
achieving better physical interactions requires more comprehensive perception technologies.
Currently, flexible multimodal sensing technology is a key innovation closely linked to the
concept of embodied intelligence. This technology is dedicated to enhancing the perceptual
capabilities of robots in their interactions with the environment. Liu, W [48] and colleagues,
based on the principles of triboelectric nanogenerators and the piezoresistive effect of
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liquid metals, have proposed a flexible bimodal smart sensor (FBSS) capable of real-time
sensing of both non-contact and contact signals. The FBSS can differentiate between tactile
(physical contact) and non-tactile (proximity) interactions. Researchers have demonstrated
the capability to remotely instruct a soft robotic arm to complete operational tasks without
touching it and without wearing any devices, achieving this through air-gesture teaching.
Building on this, Ham, J also developed a sensor (BSFS) that operates in both non-contact
and tactile modes for a soft robotic arm, based on triboelectric nanogenerators and the
giant magneto strictive effect [49]. This dual-mode sensor is used to detect the physical
characteristics of target objects, such as shape, material, and surface roughness. Using
machine learning methods, specifically convolutional neural networks, the system achieves
up to 97% accuracy in identifying the attributes of objects. Finally, the characteristics of
the objects are succinctly described through natural language information transmitted via
screens and speakers. Furthermore, the field of soft robotics has explored biological sensing
mechanisms to better understand the interaction with external physical information during
morphological changes. This includes flexible pressure sensors [50], flexible temperature
sensors, and flexible tactile sensors.

4.4.2. Control Strategies

Embodied intelligence robots emphasize the need to design more powerful and flexible
controllers to better facilitate the autonomous operation and adaptability of soft robots. The
dynamic modeling and solving for soft robots are typically complex computational tasks,
particularly in scenarios with a high degree of freedom (DoF) and complex morphologies.
This complexity arises because soft robots, unlike their rigid counterparts, can deform in
infinite ways, which requires sophisticated models to predict their behavior accurately
and control strategies that can adapt to a wide range of conditions and tasks. Model-
free control methods, such as deep reinforcement learning, enable learning through real-
time interactions with the environment. These methods can optimize the morphology
of soft robots, making them better suited to specific task requirements, such as changing
shape to grasp or envelop objects. Currently, many standard control approaches are
open-loop control. Centurelli A et al. proposed a neural network-based closed-loop
controller trained using a deep reinforcement learning algorithm called Trust Region
Policy Optimization (TRPO) [51]. They conducted experiments on a soft robotic arm,
preliminarily confirming the feasibility of using deep reinforcement learning for controlling
soft robotic arms. After completing the first step of closed-loop control, Agabiti, Camilla
A et al. [52] devised a grasping strategy based on identifying contact points on objects
to force the arm to bend and induce wrapping around the object. They verified in a
simulated environment that a reinforcement learning strategy fused with an finite element
simulation can induce deformation of the soft robotic arm to wrap around objects and
perform grasping. Soft robots have more passive degree of freedom than rigid robots,
posing challenges for controller design. Ryota Morimoto [53] proposed an integrated
lightweight model-free reinforcement learning network called ELFNet. ELFNet utilizes
N Q-networks and target networks, as well as M policy networks, which help to mitigate
overestimation and underestimation in reinforcement learning, enabling a more accurate
estimation of action values. Experiments involving continuous manipulation of a robot
arm’s end effector to find a target position confirmed that this model-free algorithm is
more suitable for controlling soft robotic manipulators than other reinforcement learning
algorithms. For more complex control tasks, Youssef, S.M. utilized a fin-ray tail structure
driven by servo motors to mimic the undulating swimming motion of fish [54]. They
employed reinforcement learning as a model-free control strategy, enabling the robotic
fish to swim effectively and reach specified targets, demonstrating the robot’s learning
ability to perform required tasks in an aquatic environment, as shown in Figure 8. To
investigate morphological learning control, many researchers have proposed simulation
environments tailored for reinforcement learning of soft robots based on existing robotics
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learning environments. Examples include SofaGym [55], Elastica [56], SoMoGym [57],
Evolution Gym [58], SoftCon [59], and others.
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Figure 8. (a) Soft-bodied biomimetic robotic fish. (b) A schematic diagram of reinforcement learning-
based control. The environment frames captured by the camera at a speed of 60 fps are sent to
DeepLabCut for pose estimation to obtain the precise position and posture of the robotic fish. This
precise position and posture information is then used as input for the reinforcement learning al-
gorithm to train the soft-bodied biomimetic robotic fish to reach the target [54]; reproduced with
permission from ref. [54], copyright 2023, Springer Nature.

4.4.3. Autonomous Decision Making

Autonomy is crucial for robots in applications such as search and rescue, surveillance,
and patrol missions. It is also one of the goals in the future of embodied intelligence,
where robots are capable of making autonomous decisions akin to human cognition. To
achieve this goal, researchers are actively exploring integrating artificial neural networks
with soft robotics. In autonomous decision making and navigation, S. Bai et al. achieved
autonomous exploration and mapping of mobile robots through deep neural networks [60].
In autonomous operation, Jitosho R implemented real-time agile operations autonomously
on pneumatic actuator soft arms using deep reinforcement learning algorithms [61]. In
more complex dynamic scenarios, Zhang R proposed a behavior intention recognition
network based on a self-attention mechanism. The self-attention mechanism weights the
input features to highlight important information, thereby improving the accuracy and
efficiency of the recognition process. Furthermore, to enable robots to better adapt to
changes in human–robot interaction environments, reinforcement learning algorithms were



Biomimetics 2024, 9, 248 14 of 17

introduced into the robot’s control system. By continuously learning from environmental
feedback, the robot can autonomously optimize its decision-making process, achieving
efficient adaptive control in complex dynamic scenarios [62].

To enable robots to make rapid and accurate decisions in continuously changing
environments presents a significant challenge. A centralized evaluation of decisions be-
comes crucial yet complex in this process. Currently, several approaches address this
challenge. Firstly, through reinforcement learning and simulation training, robots can be
trained in simulated environments, allowing them to explore various strategies in a safe
virtual setting and optimize decision-making processes through reinforcement learning
algorithms. For instance, the soft actor-critic algorithm employs gradient-based methods to
update its parameters, enabling robots to make optimal decisions in diverse scenarios [63].
Secondly, utilizing decision trees and path planning algorithms assists robots in evaluating
different decision paths and selecting the most optimal route to reach objectives [64]. Deci-
sion trees form tree structures by analyzing problems and abstractly describing datasets
through entropy reduction and inferring strategies. Furthermore, modularizing complex
decision-making processes into manageable modules and ensuring their effective inte-
gration and collaboration enhances overall system efficiency and effectiveness. Lastly,
multi-sensor data fusion integrates inputs from various sensors such as cameras, radars,
and laser rangefinders, providing robots with a comprehensive understanding of their
environment for improved decision making. Fusion technologies like Kalman filters and
particle filters play pivotal roles in this process. Thus, integrating these methods and strate-
gies is essential to enhance robot autonomy and decision-making capabilities in dynamic
environments [65].

5. Summary and Future Challenges

We explore the field of embodied intelligence in soft robotics, analyzing typical cases
and summarizing research progress across different branches. Significant progress was
made in three main areas: embodied morphological computation, embodied artificial
evolution, and soft robotics in perception, control, and decision making. It is important
to emphasize that exploring how to achieve more natural and effective robotic behav-
ior through physical forms and intelligent interaction represents the state-of-the-art of
embodied intelligence research. From the perspectives of morphological computations,
interactions with the environment, and the integration of perception, control, and decision
making, soft robots offer an excellent platform for research in embodied intelligence.

However, there are still many challenges in these areas. Firstly, a morphological
computation must consider not only physical and mechanical properties but also their
alignment with task requirements. Secondly, it must consider how to maximize computa-
tional capacity, sensory capabilities, and energy efficiency through morphological design.
Finally, deploying these capabilities in a completely soft robot capable of independently
completing tasks requires interdisciplinary collaboration and innovative design methods.
The co-evolution of soft robotic morphologies (bodies) and controllers (brains) presents
an even more complex challenge. This necessitates designing physical forms adaptable
to diverse environments and tasks and developing algorithms and control strategies that
can effectively manage these forms. Progress in experimental validation and simulation
technology is also needed. Emphasizing the direct interaction with the environment within
the framework of embodied intelligence, soft robots require deep integration of perception,
control, and decision making, making full use of reinforcement learning tools and their
capabilities for model-free control and interactions with the environment. Addressing the
multifaceted challenges of soft robotics and embodied intelligence also demands close
cooperation among fields such as robotics, material science, biology, computer science,
and ethics.
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