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Abstract: Fermented Chinese mustard greens are popular fermented vegetable foods in Guangdong
Province, China. In this study, the quality characteristics and microbial composition of fermented
Chinese mustard greens from different regions, including Shantou (ST), Meizhou (MZ), Yunfu (YF),
and Guangzhou (GZ), were evaluated. The colour and texture of fermented Chinese mustard greens
were significantly different from those of ST, MZ, YF, and GZ. L* values were 48.62, 42.30, 32.43,
and 34.02 in the stem parts of ST, MZ, YF, and GZ, respectively. The chewiness value was greater
in GZ (131.26 N) than in MZ (53.25 N), YF (39.99 N), and GZ (24.22 N) zones. The microbial com-
munity structure determined by high-throughput sequencing (HTS) demonstrated that Firmicutes,
Proteobacteria, and Campilobacterota were the predominant phyla. Lactobacillus was the most
predominant microorganism in the MZ and GZ samples and accounted for a greater proportion of
the microorganisms in the ST and YF samples. In addition to Lactobacillus, the relative abundances
of Cobetia and Weissella were greater in the ST group, while those of Halomonas and Pediococcus
were greater in the YF group. There was a significant correlation between the microbial composition
and quality indices (colour and texture) among the samples from the four regions. The quality of
the fermented Chinese mustard greens in MZ and GZ was significantly different from that of other
samples in ST and YF. The Lactobacillus genus (Lactobacillus plantarum and Lactobacillus selangorensis)
in MZ and GZ contributed to changes in colour (b*, C*, L*, a*) and texture (firmness and chewiness).
This study provided a comprehensive correlation between quality and microbial composition of
fermented Chinese mustard greens from different regions in Guangdong Province. The evaluation
and correlation between quality and microbiota are helpful for guiding future improvements in
fermentation processes and manufacturing high-quality fermented Chinese mustard greens.

Keywords: fermented Chinese mustard greens; microbial composition; colour; texture

1. Introduction

Fermented vegetables likely originated more than 2000 years ago in Asia. This fer-
mented material included fresh vegetables such as cabbages, turnips, radishes, carrots, and
other indigenous varieties [1]. Fermented vegetables are recognized as foods with high nu-
tritional value and good health benefits. They have the characteristics of simple processing
equipment, a simple production process, and a low cost of raw materials. The planting area
of vegetables exceeds 21 million hm2, and the production of vegetables is 769 million tons
in China. In 2018, the total output of Sichuan kimchi alone exceeded 5 million tons, with a
total output value of more than 42 billion yuan. In 2019, the output of fermented vegetables
reached 70 billion yuan and increased annually in China [2]. Chinese mustard greens
are the primary vegetable used in the preparation of fermented mustard in Guangdong
Province. Interestingly, despite their close geographic proximity, the quality and flavour of
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fermented Chinese mustard greens exhibit variations influenced by the traditional lifestyle
and preferences of the local populace. Mustard, scientifically known as Brassica juncea and
classified within the Brassica genus of the Cruciferae family, is recognized for its distinct
species groups: integrifolia, tsatsai, juncea, and napiformis [3,4]. Mustard greens are further
categorized into four major groups, namely, root mustard, stem mustard, leaf mustard,
and sedge mustard, encompassing a total of 16 varieties and several varietal types [5].
Notably, the predominant varieties used for salting, pickling, and fermentation include
Brassica juncea var. tsatsai Mao, Brassica juncea var. tumida Tsen & Lee, and Brassica juncea
var. multiceps [6–11]. Additionally, mustard greens have gained popularity in other Asian
countries and regions due to their appealing characteristics of crispness and flavour [12].
Chinese mustard greens are rich in nutrients, including carbohydrates, dietary fibre, trace
vitamins, essential minerals, and other beneficial nutrients. Furthermore, they contain a
diverse array of bioactive components, such as thioglucosides and their degradation prod-
ucts, flavonoids, and phenolic compounds [13,14]. Moreover, research has demonstrated
the positive health effects of fermented mustard extracts, including favourable antioxidant
properties and potential anticancer effects [15–17]. However, it is important to note that the
nutrient content of mustard changes during fermentation, particularly with respect to the
geographic position, temperature, and time of fermentation.

Next-generation sequencing (NGS) is a main technology that has gained prominence
during the rapid development of molecular biology. Nonculturable microorganisms can
be obtained using NGS technology with high-throughput sequencing. Furthermore, NGS
has contributed to evaluating the composition of microbial communities. In the context of
fermented vegetables, high-throughput sequencing based on NGS technology has been
employed to investigate the microbial community composition, taking into account fac-
tors such as geographic location and vegetable raw materials. Wang et al. conducted a
comprehensive analysis of the bacterial community composition in traditional fermented
sauerkraut from both northern and southern cities in China. Their findings revealed higher
abundances of Lactobacillus spp., Bacillus acetobacter spp., Lauteromyces spp., and Weis-
sella spp. in the fermented sauerkraut from the southern regions. Conversely, fermented
sauerkraut from the northern regions exhibited increased abundances of Bacillus octococcus
spp., Schizococcus spp., Morganella spp., Bacteroides oceanicus spp., Pseudomonas spp., and
Providencia spp. [18]. Another study by Yang employed high-throughput sequencing to
investigate the microbial composition and succession patterns in traditional sauerkraut
fermentation among different farmers in Northeast China. The results indicated that the
dominant genus in these sauerkraut samples was Weissella [19]. Furthermore, Peng et al.
conducted an analysis of the bacterial flora composition in fermented vegetables made from
Chinese cabbage, mung beans, bamboo shoots, and watermelon across different regions
of Hainan (east, central, and west). Their study revealed that Lactobacillus spp., Chlorella
spp., and Weissella spp. were the three dominant genera observed in the evolutionary
relationships of the flora across different regions [20].

Traditional Chinese fermented mustard greens are distributed in several main regions,
including Shantou (ST), Meizhou (MZ), Yunfu (YF), and Guangzhou (GZ), in Guangdong
Province. It is necessary to research the differences in the quality and microbial community
composition of Chinese fermented mustard greens. However, some studies have focused
on the metabolites and flavours of traditional fermented vegetables [21]. There are still
gaps in the knowledge on the colour and texture of fermented vegetables, particularly
regarding the differences in the bacterial communities of fermented Chinese mustard
greens from different regions. Additionally, the correlations between the quality and
microbial communities of fermented Chinese mustard greens remain unknown. In this
study, we used NGS technology to evaluate the microbial community composition of
traditional fermented Chinese mustard greens from four regions of Guangdong Province,
China. The relationships between quality (colour and texture) and microorganism diversity
were analysed.
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2. Materials and Methods
2.1. Sample Collection and Preparation

Chinese mustard greens should be exposed to sunlight for one day to increase their
degree of drying. Salt was added to the surface, and the Chinese mustard greens were
rubbed until they reached a wrinkled texture. The prepared mustard was placed in a
glass container arranged in a spiral pattern, ensuring that the container was filled to
approximately 70% of its capacity. A few Capsicum frutescens can be added for seasoning
purposes, accompanied by a small amount of salt. The container was sealed to initiate the
fermentation process, which required a minimum duration of 15 days. All samples were
collected from four households in Guangdong Province, China: Shantou (ST) (116◦43′ 36′′ E,
23◦17′9′′ N), Meizhou (MZ) (116◦7′1′′ E, 24◦18′36′′ N), Yunfu (YF) (112◦0′12′′ E, 23◦4′16′′

N), and Guangzhou (GZ) (113◦13′7′′ E, 23◦24′12′′ N). Sampling was carried out according
to previous methods [22]. The samples were collected from the pickle jar at the top, middle,
and bottom. The samples were mixed evenly and packed in sterile self-sealing bags. Twenty-
four samples from ST, MZ, YF, and GZ were obtained at the fermentation end of fermented
Chinese mustard greens and then transported to the laboratory for further analysis.

2.2. Evaluation of Colour and Texture

The colours of the stem parts and leaf parts of the fermented Chinese mustard greens
were measured. The colours, including L* (lightness), C* (chroma), a* (green chromaticity),
and b* (yellow chromaticity), were determined using a CR400/CR410 colourimeter (Minolta,
Tokyo, Japan) [23]. The firmness and chewiness of the samples were measured using a
TA. XT texture analyser (Stable Micro Systems Ltd., Go-dalming, UK). The stem part of
each leaf was used to evaluate the texture index. We measured the firmness and chewiness
based on the force (N) using a P5 compression probe [24]. Each experiment was carried out
three times.

2.3. DNA Extraction and PCR Amplification

The genomic DNA of microbes was extracted from different samples, including the ST,
MZ, YF, and GZ regions, using a DNA kit (Omega Biotek, Norcross, GA, USA) according
to the manufacturer’s instructions. The integrity, concentration, and purity of the genomic
DNA were determined using 1% agarose gel electrophoresis and a NanoDrop 2000 UV–vis
spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The primer pairs 515F (5′-
GTGYCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACNVGGGTWTCTAA-3′) were
used to amplify the hypervariable region V3-V4 of the bacterial 16S rRNA gene via an
ABI GeneAmp® 9700 PCR thermocycler (ABI, Los Angeles, CA, USA) [25]. The PCR
amplification conditions were 95 ◦C for 3 min; 27 cycles of 95 ◦C for 30 s, 55 ◦C for
30 s and 72 ◦C for 10 min; and 72 ◦C for 10 min. The mixtures included 4 µL of buffer
(5 × TransStart FastPfu), 2 µL of dNTPs (2.5 mM), 0.8 µL of primer (5 µM), 0.4 µL of DNA
polymerase (TransStart FastPfu), 10 ng of genomic DNA, and ddH2O (20 µL). The amplified
DNA was detected by 2% agarose gel electrophoresis followed by purification with an
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) according to
the manufacturer’s instructions.

2.4. Illumina MiSeq Sequencing and Processing

The purified amplicons were pooled in equimolar amounts and paired-end sequenced
(2 × 300) using Illumina MiSeq sequencing (Illumina, San Diego, CA, USA) at Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China).

2.5. Statistical Analysis

All the experiments were conducted in triplicate as independent experiments. The data
were analysed using SPSS software (version 14.0; SPSS, Chicago, IL, USA). The significance
of differences between the variables was tested using one-way ANOVA. The means were
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compared using Duncan’s multiple range test. Statistical significance was determined at
p < 0.05.

3. Results
3.1. Evaluation of Colour in Fermented Chinese Mustard Greens

The colour of fermented Chinese mustard greens plays a significant role in determining
its acceptability by consumers. The colour of the fermented Chinese mustard greens was
represented with L*, C*, a*, and b* in different regions (ST, MZ, YF, and GZ) (Figure 1). The
colours of the stem and leaf parts of the fermented mustard greens significantly differed.
The L* values of the stem parts from the ST, MZ, YF, and GZ samples were greater than that
of the leaf parts (p < 0.05) (Figure 1A). The L* values of the stem parts of the ST, MZ, GZ,
and YF samples were 48.62, 42.30, 34.02, and 32.43, respectively. The L* of ST also showed
the highest value (32.40) in the leaf part among all samples. The enzymatic browning
reaction caused by polyphenol oxidase (PPO) and phenolic compounds happen during the
fermentation period. This may be due to the higher PPO activity in leaf part, producing
lower L* values. The C* and b* values of the stem part were greater than those of the
leaf part in the ST, YF, and GZ samples (Figure 1B,D). The C* value (40.67) and b* value
(40.02) of the stem part from the GZ sample were greater than those of the other samples
(Figure 1B,D). The C* value (35.35), a* value (8.17), and b* value (34.48) of the leaf part from
the MZ sample were greater than those of the other samples (Figure 1B–D). Interestingly, C*
and b* values did not significantly differ between the stem and leaf parts in the MZ samples.
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Figure 1. The colour of the stem and leaf parts of fermented Chinese mustard greens. (A) L*, (B) C*, 
(C) a*, (D) b*. ST is Shantou, MZ is Meizhou, YF is Yunfu, and GZ is Guangzhou. Means designated Figure 1. The colour of the stem and leaf parts of fermented Chinese mustard greens. (A) L*, (B) C*,
(C) a*, (D) b*. ST is Shantou, MZ is Meizhou, YF is Yunfu, and GZ is Guangzhou. Means designated
by the same letters (uppercase, among different samples; lowercase, among stem parts and leaf parts)
are significantly different according to Duncan’s test. Bars represent the means ± SD (n = 3, p < 0.05).



Horticulturae 2024, 10, 399 5 of 17

3.2. Analysis of Textures in Fermented Chinese Mustard Greens

The composition and structure of the cell walls determine the firmness of Chinese
mustard greens. Disassembly of the middle lamella and primary cell wall structures results
in softening. The firmness and chewiness of the fermented Chinese mustard greens were
evaluated, as shown in Figure 2. The firmness of the GZ samples was 30.37, which was
the highest value, followed by those of the ST samples (23.49), MZ samples (10.80), and
YF samples (8.20). The chewiness of the GZ samples is also significantly greater than
that of the ST, MZ, and YF samples. This is due to the longer fermentation time of the
GZ samples than that of others. Another study reported that the chewiness of fermented
radish displayed a significant increase in different containers (glass jars, porcelain jars,
and plastic jars) during the fermentation period [2]. The pectin in the cell wall of Chinese
mustard greens gradually hydrolyses under acidic conditions. Some pectinases secreted by
fermented microorganisms can also hydrolyse pectin. Therefore, differences in firmness
and chewiness might largely depend on the microbial community.
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3.3. Comparison of the Diversity Indices of Fermented Chinese Mustard Greens

ST, MZ, YF, and GZ are traditional fermented Chinese mustard greens from four
different regions in Guangdong Province. We compared the differences in the diversity
indices of fermented Chinese mustard greens from different regions. The indices of alpha
diversity, including the sequence data and OTU numbers, are shown in Table 1. The mean
OTUs of the ST, MZ, YF, and GZ samples were 105, 101, 449, and 65, respectively. The
convergence of rarefaction curves among the 24 samples continued to stabilize (Figure 3A),
and the coverage indices ranged from 0.996 to 1 (Figure 3B), indicating that the depth of
sequencing was sufficient to analyse the microbial community among all samples. The
Shannon, Chao, Ace, and Simpson indices differed among the fermented Chinese mustard
greens from the four regions. The YF samples had significantly greater Shannon, Chao, and
Ace index values than the ST, MZ, and GZ samples did (Figure 3C–E). In the GZ sample,
the Shannon index was the lowest, and the Simpson index was the highest (Figure 3C,F).
In contrast to the other three groups, the YF sample showed significantly greater bacterial
richness and bacterial community diversity.



Horticulturae 2024, 10, 399 6 of 17

Table 1. Diversity indices of fermented Chinese mustard green from four regions in Guang-
dong Province.

Sample
Name Seq_Num Average

Length (bp) OUT Shannon Simpson Ace Chao Coverage

ST

C1 36108 429 110 1.419 0.335 142.906 143.214 0.999
C2 29802 429 112 1.477 0.324 147.435 143.059 0.999
C3 30169 429 97 1.455 0.322 124.651 136.000 0.999
C4 33044 429 99 1.425 0.335 159.028 126.188 0.999
C5 36898 429 107 1.394 0.350 128.868 127.313 0.999
C6 38158 429 104 1.422 0.338 168.485 139.429 0.999

MZ

E1 69701 429 106 1.295 0.415 126.277 121.789 1
E2 51736 429 106 1.317 0.409 145.387 151 0.999
E3 152149 429 121 1.148 0.468 140.437 133.5 1
E4 34585 429 83 1.329 0.393 102.897 97.882 0.999
E5 59649 429 103 1.215 0.447 174.507 132.526 0.999
E6 119244 429 87 1.112 0.482 133.938 114 1

YF

H1 29989 424 390 2.811 0.132 511.462 486.397 0.996
H2 84887 424 569 2.749 0.143 645.960 614.124 0.999
H3 41615 423 439 2.784 0.139 512.510 492.647 0.998
H4 41674 424 415 2.797 0.137 543.110 546.483 0.997
H5 46715 424 420 2.754 0.143 552.843 589.333 0.997
H6 49099 424 458 2.786 0.138 559.101 555.225 0.998

GZ

J1 33784 429 51 0.147 0.956 120.774 99.333 0.999
J2 39876 429 57 0.187 0.940 149.415 105.333 0.999
J3 83583 429 72 0.147 0.955 110.231 114.273 1.000
J4 32054 429 69 0.179 0.948 201.595 136.364 0.999
J5 43058 429 82 0.315 0.886 216.753 168.000 0.999
J6 90210 429 60 0.123 0.962 91.875 87.083 1.000
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3.4. Microbial Community Comparisons

The microbial composition of the fermented Chinese mustard greens was compared
via principal coordinate analysis (PCoA) and nonmetric multidimensional scaling (NMDS).
The microbial communities in both the YF and GZ samples were significantly different from
those in the other regions according to the PCoA results (Figure 4A). The NMDS analysis
was consistent with the PCoA results. There was an apparent separation between the YF
sample and the other samples and between the GZ sample and the other samples. There
was obvious overlap between the ST samples and MZ samples. The bacterial composition of
the YF and GZ samples differed significantly from that of the other two regions (Figure 4B).
A Venn diagram of the OTUs and genera from the four regions of the samples is shown in
Figure 4C,D. The intersection region among the four regions of samples showed 11 OTUs
at the OUT level. The 466 OTUs from the YF samples differed from those from the other
three regions (Figure 4C). At the genus level, the YF sample showed that 173 genera were
different from those in the other region samples (Figure 4D), implying that the microbial
community of the YF sample was most different from that of the other region samples.
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3.5. Bacterial Profiles of Fermented Chinese Mustard Greens

The bacterial community compositions of the samples from the four regions are
shown in Figure 5. Firmicutes and Proteobacteria were the main phyla in the ST samples;
Firmicutes were the main phyla in the MZ and GZ samples; and Firmicutes, Proteobacteria,
and Campilobacterota were the main phyla in the YF samples, accounting for more than
90% of the annotated reads at the phylum level (Figure 5A). The abundance of Firmicutes
was relatively greater in the MZ (99.86%) and GZ (99.6%) zones, followed by the ST
(61.54%) and YF (35.14%) zones. Proteobacteria, the second most predominant phylum,
accounted for 38.31% and 47.06% of the total bacteria in the ST and YF samples, respectively.
Campilobacterota was observed only in the YF samples, accounting for 16.16%.
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Lactobacillus, Cobetia, Halomonas, Weissella, Pediococcus, Malaciobacter, and Psychrobacter
were the most represented genera in all the samples (Figure 5B). Lactobacillus is a key and
dominant bacterial genus in fermented vegetables. Notably, Lactobacillus was the dominant
genus in the MZ (98.02%) and GZ (99.56%) zones. Lactobacillus (42.14%), Cobetia (37.22%),
and Weissella (16.98%) were highly abundant in the ST samples. However, Lactobacillus
accounted for 13.37% of the YF samples, while Halomonas (28.71%), Pediococcus (17.55%),
Malaciobacter (16.16%), Psychrobacter (3.47%), Vibrio (2.96), Idiomarina (2.62%), Methylobac-
terium (2.0%), Weissella (1.96%), and Cobetia (1.14%) were observed in the YF samples.

Lactiplantibacillus plantarum, Lactobacillus selangorensis, Cobetia marina, Pediococcus pen-
tosaceus, Malaciobacter marinus, Weissella paramesenteroides, Lentilactobacillus buchneri, and
Levilactobacillus brevis were the most representative species in all the samples at the species
level (Figure 5C). Lactobacillus plantarum (41.75%), Cobetia marina (37%), and Weissella parame-
senteroides (13.08%) were abundant in the ST samples. Lactobacillus plantarum (62.98%) was
most abundant in the MZ samples, followed by Lactobacillus buchneri (14.03%) and Lacto-
bacillus brevis (10.31%). Notably, Lactobacillus selangorensis (96.97%) was dominant in the
GZ samples. However, Lactiplantibacillus plantarum accounted for only 7.79% of the YF
samples, while Pediococcus pentosaceus (17.5%), Malaciobacter marinus (16.14%), Weissella
paramesenteroides (1.55%), and Cobetia marina (1.13%) were abundant in the YF samples.

3.6. Differential Bacteria in the Fermented Chinese Mustard Greens

The microbial communities in different groups were analysed according to the rela-
tive abundance of the microbial composition via linear discriminant analysis effect size
(LEfSe) (Figure 6). Cobetia, Weissella, Lactobacillaceae, Staphylococcus, Lactobacillales,
and Leuconostoc were enriched in the ST samples. Bacillus, Bacilli, Romboutsia, and
Achromobacter were enriched in the MZ samples. Twenty-seven genera were enriched in
the YF samples. Only Lactobacillus was enriched in the GZ samples.
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3.7. Correlation of Bacterial Communities and the Quality Indices of Fermented Chinese
Mustard Greens

The results of the redundancy analysis (RDA) suggested that there was a strong
correlation between quality (colour and texture) and the microbial communities (Figure 7).
The horizontal axis was positively related to the contents of chewiness, rirmness, L*, a*, b*,
and C*. The a* values of the colour of the Chinese mustard greens had the greatest impact
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on the bacterial communities, followed by the L*, C*, b* values, firmness, and chewiness.
According to the Mantel test analysis, a* (r = 0.9291, p = 0.001) had the strongest correlation
with microbial abundance, followed by L* (r = 0.7725, p = 0.001), C* (r = 0.4813, p = 0.001),
b* (r = 0.4719, p = 0.001), firmness (r = 0.4199, p = 0.006), and chewiness (r = 0.382, p = 0.008).
The colour indices (C* and b*) and texture (chewiness) were more strongly correlated with
the MZ and GZ samples. L* values are more strongly correlated with the ST samples. For
the YF samples, the correlation between the quality indices (colour and texture) and YF
samples was not greater than that for the other samples. Furthermore, both RDA1 and
RDA2 had an explanatory power of 98.46%, but further research is needed to investigate
the relationships between species and quality indicators.
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Figure 7. Redundancy analysis (RDA) of bacterial communities among fermented Chinese mustard
greens. ST is Shantou, MZ is Meizhou, YF is Yunfu, and GZ is Guangzhou.

As shown in Figure 8, the colour quality indices (L*, C*, a*, and b*) and texture quality
indices (firmness and chewiness) were correlated with the main bacterial community of the
traditional Chinese mustard greens. L. plantarum was significantly positively correlated
with L*. L. selangorensis was positively correlated with C*, b*, firmness, and chewiness.
Lactobacillus buchneri was significantly positively correlated with a*. Cobetia marina was
negatively significantly correlated with C*, a*, and b*, and Pediococcus pentosaceus was
negatively significantly correlated with L*. Malacibacter marinus was significantly correlated
with L*, C*, b*, firmness, and chewiness. Weissella paramesenteroides was significantly
negatively correlated with C*, a*, and b*. Lactobacillus brecis was significantly negatively
correlated with b*, firmness, and chewiness.
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3.8. Predicted Functions of Microbial Communities

A PICRUSt model was applied to four regions of fermented Chinese mustard greens
to predict their microbial community functions (Figure 9). Bacterial-related genes involved
in metabolism, genetic information processing, environmental information processing,
human diseases, cellular processes, and organism systems were detected in all the groups.
Microbial communities are characterized by metabolism-related genes, which suggests
that metabolism plays a major role. In all groups, the metabolic pathway with the greatest
enrichment was at level 3, followed by biosynthesis of secondary metabolites, microbial
metabolism in diverse environments, biosynthesis of amino acids, ABC transporters, carbon
metabolism, two-component system, ribosome, purine metabolism, and quorum sensing,
which showed significant differences among all groups. The ability of the MZ samples to
predict metabolic pathways was the highest among all the samples.
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4. Discussion

Our study employed high-throughput sequencing technology to investigate and
compare the quality and bacterial communities of the ST, MZ, YF, and GZ samples. The
relationship between quality (sensory and texture) and bacterial profiles was analysed
among fermented Chinese mustard greens from different regions. There may be substantial
differences among the microbial communities in the ST, MZ, YF, and GZ samples due to
the different regions and fermentation processes. Lactobacillus was the most dominant
genus in the MZ and GZ samples. Some studies have also shown that Lactobacillus is
the main genus in fermented vegetables [26–30]. However, Lactobacillus, Cobetia, and
Weissella were the predominant genera in the ST samples. This difference might be due
to various influencing factors, including the process, temperature and time, equipment,
and geography [31]. Some studies also show that Weissella was also highly abundant
in fermented vegetables [32,33]. Another study reported that Cobetia was also the most
abundant genus in fermented radish brine [34]. In addition to Lactobacillus, Halomonas,
Prediococcus, Malaciobacter, and other genera were observed to be prevalent in the YF
samples. These results for fermented vegetables are quite different from those of previous
studies. The study reported that Halomonas has been isolated from seafood in Japan but
is rarely isolated from fermented vegetables [35]. YF samples were found to contain high
levels of Malaciobacter. These results also indicate that the microbial bacterial communities
in the YF samples are distinct from those in the other regions. Malaciobacter can be isolated
from fermented cheese in other studies [36]. These differences in the bacterial community
might result from region, temperature, humidity, and fermentation processing. The salinity
of fermented processing also significantly affects microorganism diversity and the final
quality of fermented vegetables [37].

Furthermore, the species compositions of the four different regions were also signifi-
cantly different. Lactiplantibacillus plantarum was the predominant bacteria in the ST and
MZ samples. The abundance of Lentilacillus buchneri was also high in the MZ samples. The
relative abundance of Lactobacillus selangorensis was much greater in the GZ samples than in
the other four Chinese mustard greens from different regions. Another study showed that
L. plantarum was the most abundant species in pickled vegetables [38]. Cobetia marina and
W. paramesenteroides were significantly abundant in the ST samples, and C. marina was also
found in the meat source food [39]. Nevertheless, the Lactobacillus species was relatively
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less abundant in the YF samples, and P. pentosaceus, M. marinus, and other species were
more abundant. Therefore, these bacterial species may play an important role in the quality
of YF samples. The samples were collected from different regions, including the ST, MZ, YF,
and GZ samples in this study. Therefore, fermentation processing and region might be the
reasons for the differences in the bacterial composition of these four fermented vegetables.

Colour and texture are important quality factors that influence consumer choice. There
was a positive correlation between quality and the bacterial community based on the RDA
results. This is the first study to report that the structure of bacterial communities affects
colour and texture in traditional Chinese mustard greens from different regions. The
results suggested that the colour indices (a*, b*, and c*) and chewiness were positively
correlated with the bacterial communities of the MZ and GZ samples. This might be
because Lactobacillus accounted for the highest proportion of the bacterial communities
in the MZ and GZ samples. The L* values of the colour index and firmness index are
also positively correlated with those of the ST samples. Further studies conclusively
showed that Lactobacillus is also the main microorganism in ST samples. In addition,
Lactobacillus accounted for a lower proportion of the bacteria in the YF samples, which
was less strongly correlated with colour and texture. Therefore, among all microorganism
genera, Lactobacillus might play a key role in colour and texture quality. Some studies have
reported that the textural properties of fermented cheese vary considerably depending on
the strain of Lactobacillus lactis used in its manufacture. This might be due to the increased
protein hydration of fermented cheese [40]. Furthermore, other studies report that the
seaweed species and the amount of kelp can affect the colour of the seaweed sauerkraut.
An increase in the level of species results in a lower L* value and a higher a* value. A
lighter colour is considered desirable in conventional seaweed sauerkraut [41]. Texture is a
major index for evaluating sensory properties of fermented onion samples (white onion,
red onion, and scallion) [42].

5. Conclusions

This study presented a detailed analysis and comparison of the quality and microbial
community in traditional fermented Chinese mustard greens from four regions (ST, MZ,
YF, and GZ) in Guangdong, China. The colour and texture of fermented Chinese mustard
greens showed significant differences in different regions. The quality of fermented Chinese
mustard greens in the GZ region was significantly greater than that in other regions
according to the C*, b*, firmness, and chewiness values. Microbial community including
Lactobacillus, Cobetia, Halomonas, Weissella, Pediococcus, Malaciobacter, and Psychrobacter
were the more represented genera in some samples. Among those, Lactobacillus was the
most predominate microorganism in the MZ and GZ regions and accounted for a greater
proportion of the microorganisms in the ST and YF regions. Furthermore, there was a
significant correlation between the microbial communities and quality indices (colour and
texture) among the samples from the four regions. The Lactobacillus genus (L. plantarum,
L. selangorensis) contributed to changes in colour (b*, C*, L*, a*) and texture (firmness
and chewiness). There was also a microbial safety risk in traditional fermented Chinese
mustard greens. Thus, future studies should focus on screening strains and optimising the
fermentation process.
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