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Abstract: Jatropha seed cake (JSC) derived from Jatropha curcas seeds is a by-product of biodiesel
production and, due to its high protein content, has been considered as a potential animal feed
ingredient. However, the presence of toxic compounds such as phorbol esters and other anti-
nutritional factors limits its use in animal feeding. Several detoxification approaches have been used
to tackle these constraints and this review aims to summarize the recent advances in JSC treatment
aiming to enhance its potential as an animal feedstuff. The review first provides an overview of the
structure and composition of phorbol esters and other anti-nutritional compounds, discussing its toxic
effects on different animal species. It then explores several detoxification methodologies giving special
emphasis to its effects on the nutritional composition of JSC and on the use of the treated substrate as a
feed ingredient in fish, poultry, pigs, and ruminants, highlighting their growth performance, nutrient
utilization, and animal health issues. Overall, the review concludes that these treatments hold great
potential for the detoxification and utilization of JSC as an animal feed ingredient. However, further
research is needed to optimize the treatment conditions, evaluate the economic feasibility, and assess
the long-term effects of treated JSC on animal health and product quality.

Keywords: Jatropha curcas; animal feed ingredient; anti-nutritional factors; detoxification methodologies

1. Introduction

Within the industry of biodiesel production, the utilization of the residual seed cakes
exists as a crucial aspect beyond mere oil extraction. Jatropha seed cake (JSC) is the main
by-product of the Jatropha curcas biodiesel industry [1], which holds potential value as
livestock feed [2,3]. Providing an added value to the defatted seed cake is essential to boost
the sustainability, feasibility, and widespread acceptance of biodiesel production among
both the scientific community and the general population [4]. Furthermore, viewing animal
feed as a link connecting biodiesel and animal production, incorporating this by-product
into animal feed has the capacity to enhance productivity within the biodiesel chain [5]
and substantially increase the value of the cultivation system [6]. This holds particular
significance considering that animal nutrition represents a considerable proportion of the
total costs in animal production.

Jatropha seed cake (Figure 1) is characterized by a crude protein content of up to
60% [7], making it a promising resource for livestock feed. However, the presence of
toxic compounds and anti-nutritional factors in Jatropha seeds [8–10] imposes cost-effective
detoxification processes to unlock its full potential as feed ingredient. Although in the
last three decades a large number of publications have been published, only few were
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conducted to explore the removal of toxic compounds and other anti-nutritional factors.
Various detoxification methodologies, including chemical, physical, and biological pro-
cesses, have thus emerged as a critical area of research aimed at mitigating these challenges
and unlocking the full potential of Jatropha seeds [7,11,12].
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Figure 1. Seeds of Jatropha curcas and its seed cake after oil extraction (source: the authors).

Chemical methods involve treatments with solvents to neutralize or remove toxic
compounds whereas physical processes, such as heat treatment or mechanical extraction,
aim to alter the structure of the seed to reduce toxicity. Biological approaches utilize mi-
croorganisms or enzymes to degrade toxic components. Despite the potential of these
methodologies, challenges persist in optimizing their effectiveness and scalability. Ameen
et al. [11] and Azzaz et al. [12] highlighted the need for further research to evaluate the
efficiency and practicality of detoxification techniques and Makkar [13] emphasized the
importance of continued exploration to refine and validate these methods for widespread
application. Moreover, the economic viability of detoxification processes must be consid-
ered, as they add additional costs to biodiesel production. Thus, cost-effective detoxification
strategies are needed to ensure the competitiveness of Jatropha-derived products in the
market [14]. In this way, the detoxification methodologies for JSC play a crucial role in
enhancing the sustainability and economic viability of biodiesel production. Continued
research and development efforts are essential for optimizing these techniques and ad-
dressing remaining challenges. By effectively detoxifying Jatropha products, its potential as
a valuable feed ingredient while ensuring the safety and quality of animal nutrition can
be maximized.

As several detoxification methodologies of Jatropha seeds have been described, either
in isolated or combined methodologies, this review describes the main processes reported
in the literature, giving special emphasis to the utilization of the detoxified products on
animal nutrition trials.

2. Toxicity

A diverse array of biologically active compounds is widely distributed throughout the
plant kingdom, particularly in species utilized as animal feed [15]. Among these plants,
Jatropha curcas stands out for its well-documented toxicological effects across various plant
tissues, with particular emphasis on its seeds as a focal point of research interest [16].
Within the possible toxic compounds present in Jatropha, trypsin inhibitors, lectins, phytate,
saponins, and phorbol esters have been referred as the most relevant, either in concentration
(Table 1) or toxic effects. The ingestion of whole Jatropha seeds has led to numerous cases of
intoxication in humans, as evidenced by reported incidents [17,18].
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Table 1. Anti-nutritional factors and toxic compounds of JSC.

Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5 Reference

15.10 25.60 9.20 2.20 0.020 [19]
22.69 0.05 8.63 2.18 0.027 [20]
0.16 0.43 0.52 0.03 0.199 [21]
3.15 3.43 10.04 2.67 2.880 [22]
0.20 0.52 0.82 0.10 0.959 [21]
34.00 0.71 8.55 2.55 3.850 [8]
0.21 0.34 9.10 2.47 0.013 [10]

1—Contents expressed as mg trypsin inhibited/g; 2—contents expressed as [1/(minimum amount of meal
in mg/mL assay which produced hemagglutination)]; 3—contents expressed as %; 4—contents expressed as
diosgenin equivalent; 5—contents expressed as phorbol-12-myristate 13-acetate equivalent (mg/g).

Furthermore, experimental studies have demonstrated adverse effects in rats follow-
ing seed consumption, highlighting the potential risks associated with exposure to this
plant species [17]. Similar detrimental outcomes have been observed in livestock such as
cattle, sheep, and goats, further emphasizing the broad impact of Jatropha toxicity [17,23].
Moreover, the adverse effects of Jatropha extend beyond direct seed consumption, with
negative repercussions observed in various animal species across different feeding regimes.
For instance, poultry exposed to Jatropha meal have exhibited signs of toxicity, as evidenced
by studies conducted on chickens [24]. Likewise, pigs fed with Jatropha-derived feed
have displayed unfavorable physiological responses, underscoring the potential hazards
associated with its use in animal husbandry practices [25]. Additionally, investigations
into the effects of Jatropha on aquatic organisms have revealed deleterious impacts on fish
populations, further highlighting the wide-ranging consequences of exposure to this plant
species [18]. In ruminants, as well as in additional studies involving rats, the ingestion of
Jatropha-derived products has been associated with adverse health outcomes, indicating a
consistent pattern of toxicity across different animal models [26]. In this way, elucidating
the mechanisms underlying Jatropha toxicity and its broader implications for animal health
and welfare still remains a critical area of research.

2.1. Trypsin Inhibitors

There is a wide variety of bioactive compounds responsible for these toxic effects.
Among the most relevant, Jatropha curcas L. is known to contain significant levels of trypsin
activity inhibitors [27,28]. According to Makkar and Becker [18], JSC has trypsin inhibitory
activity similar to that of soybean meal and is found in all parts of the kernel [29]. Trypsin
inhibitors have been linked to pancreatic hypertrophy and hyperplasia [30], disrupting
the digestive processes in monogastric animals and consequently stunting growth [8,31].
Ruminants are less sensitive to plant bioactive compounds than monogastric animals
because rumen bacteria can greatly break down lectins, phytate, and trypsin inhibitors [31].

2.2. Lectins

Lectins, which belong to another class of proteins found in Jatropha curcas named
phytohemagglutinin, have a strong anti-nutritional effect on animals due to their affinity
for binding to carbohydrate molecules without altering their structure [32,33]. According
to Xiao and Zhang [33], this binding ability damages the structure of the small intestine
and destroys the digestive organs, which frequently results in the inhibition of animal
growth [32]. While initially believed to be the primary toxic component in Jatropha, recent
research suggests that lectins might not play a central role in its toxicity [27,34]. However,
monogastric animals’ performance may be negatively impacted by underheated JSC, which
includes a significant amount of lectin [35].
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2.3. Phytate

Phytate (inositol-hexaphosphoric acid) is a cyclic molecule with six phosphate groups
that has been found to have anti-nutritional properties in cereals and legumes [32]. With
its twelve ionizable protons, phytate possesses a special structure that allows it to bind
proteins, minerals, and starch, creating complexes with proteins, starch, and chelates with
the minerals [36]. Because it can chelate food micronutrients, making them unabsorbable
and therefore having limited bioavailability, phytate is commonly referred to as an anti-
nutrient [36]. According to Makkar et al. [37], JSC from different J. curcas genotypes contains
phytates that can range from 7.2 to 10.1%, and as the digestive system of monogastric
animals cannot degrade phytates, phosphorus availability might be reduced. Additionally,
by forming complexes and interacting with enzymes like trypsin and pepsin, phytates have
been associated with a decrease in protein digestibility [38].

2.4. Saponins

Saponins are steroid or triterpene glycoside compounds present in a variety of plants
that due to their high surface-active qualities, which stem from the availability of both
polar and nonpolar groups, account for many of their physiological activities [38]. In plants,
saponins may serve as antifeedants or help in protecting the plant against microbes and
fungi. However, saponins are often bitter and astringent in taste, and thus, when present
in high concentrations, would reduce plant palatability for livestock [32]. As a defense
mechanism against viruses, pests, and predators, saponins execute their principal biological
effects through contact with membrane components. Characterized by their hemolytic
activity and foaming properties, saponins influence the permeability of the small cells of
the intestinal mucosa, thereby affecting the transport of active nutrients [31,32,39]. Since
Jatropha saponins are non-hemolytic and are present in both poisonous and non-toxic forms
of the plant at comparable concentrations, authors have suggested that they are relatively
innocuous [31,40].

2.5. Phorbol Esters

Phorbol esters, discovered primarily in plant species of the Euphorbiaceae family [41],
refer to a group of naturally occurring compounds, identified as the principal toxic agent in
Jatropha curcas seeds and its by-products after oil extraction [37]. These compounds belong
to the tigliane-type diterpenes family [32,42] and are categorized as tetracyclic diterpenoids,
possessing a tigliane skeleton structure, characterized by a polycyclic framework [41–45]. The
tigliane diterpenes consist of a 4-ring system labeled as A, B, C, and D [42–44]. Moreover,
adjacent carbon atoms within this structure feature two esterified hydroxyl groups with
fatty acids [43], and hydroxylation typically occurs at positions C12 and C13 of the tigliane
skeleton [45,46]. Although phorbol esters share a common alcohol moiety, they display
variations in their carboxylic acid components, primarily differing in substitutions at
positions on the C ring [41,42,44]. The inherent hydroxylation capability at various positions
in the fundamental structure, coupled with the potential for ester bonding to a range of
acid moieties, results in the formation of diverse phorbol ester compounds [42,43,46,47].

Phorbol esters, primarily located in the seed core, exhibit varying concentrations
dependent on the seed genotype [2]. According to Makkar [37], their concentration can
range from 0.87 to 3.32 mg/g. By contrast, samples from Paplanta, Mexico, did not show
detectable levels of phorbol esters [37]. In this way, the quantity of phorbol esters in J.
curcas seeds can be influenced by several factors, including the geographical region of
cultivation [27], soil composition, species variation, seed maturity, and in JSC, the method
of oil extraction [41,46].

These compounds manifest various adverse biological effects, including inflamma-
tion [48], along with symptoms such as dizziness, vomiting, and diarrhea [32]. Additionally,
several authors have reported other effects such as cell proliferation, platelet aggregation,
lymphocyte mitogenesis, and prostaglandin production [4,15,41,43,49]. Other authors have
also observed their tumor-promoting activity through the stimulation of protein kinase C
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(PKC), which is crucial in signal transduction and the regulation of cell growth and differen-
tiation [15,41]. Phorbol esters activate PKC by binding irreversibly to the protein, resulting
in cellular damage [41]. These esters hyper-activate PKC, leading to cell proliferation and
enhancing the effectiveness of carcinogens [15].

Various studies have highlighted the toxicity of phorbol esters found in the seeds and
seed cake of J. curcas, posing risks to humans, rodents (mice and rats), domestic animals
(sheep, goats, calves, chicks, and pigs), fish, and snails [13,27,28,41,50]. The symptoms of
intoxication in humans were described by Makkar et al. [37] and include burning and pain
in the mouth and throat, vomiting, delirium, muscle shock, decreased visual capacity, and
a rapid pulse. The toxic effects observed in animals fed J. curcas seed fractions, attributed
to phorbol esters, include reduced feed intake and weight gain, abdominal pain, diarrhea,
mucosal membrane erosions, gastrointestinal tract hemorrhages, anemia, dyspnea, nervous
imbalance, sunken eyes, acute necrotic liver lesions, proximal renal tubule cell damage,
congested cardiac blood vessels, and death [13,16,41]. Furthermore, the topical application
of isolated phorbol esters results in symptoms such as erythema, edema, necrosis, diarrhea,
scaling, and thickening of the skin [41].

These negative effects have been observed using different plant materials and animal
models indicating that phorbol esters may have a wide range of toxicological effects at
different levels of intake, the administration method, and that animal species may also
respond differently [16,41,51]. These parameters must be considered in order to implement
effective risk management strategies, so that we can safeguard animal health and mitigate
the adverse effects of exposure to toxic phorbol esters.

3. Detoxification Methodologies

Since the initial recognition of JSC as a potential feed ingredient, extensive research has
been dedicated to exploring the feasibility of its detoxification. Over the past few decades,
various detoxification techniques have been examined for the removal of anti-nutritional
and/or toxic compounds. However, some of these methods may not be economically
feasible, or may only address a portion of the issue, failing to fully degrade all these
compounds. These methodologies encompass a spectrum of physical, chemical, biological,
and combined approaches.

3.1. Physical and Chemical Treatments

Physical detoxification methods (Table 2) involve reducing toxicity through processes
like heat treatment, irradiation, or deodorization. Trypsin inhibitors are deactivated by
physical treatments, and its sensitivity to heat makes exposure to high temperatures nec-
essary to partially or completely denature these compounds [8,30,32,35,38]. Nevertheless,
the lipid content of JSC should be taken into account as lipids may protect trypsin in-
hibitors from heat inactivation [27]. From the presented results, it is also clear that phytic
acid and saponins cannot be eliminated by heat treatments. Saponins are particularly
heat-stable, and their biological activity cannot be diminished by typical cooking heat
treatments [21,27,33]. The efficiency of heat treatments in the phorbol esters’ concentrations
(Table 1) is quite variable and most heat treatments show low levels of reduction on its
concentrations, with studies demonstrating that roasting and other cooking treatments
did not significantly affect phorbol esters’ levels [19,20]. Nevertheless, when increased
temperature and pressure are both applied, the increased degradation of phorbol esters is
described [52].
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Table 2. Physical methods utilized in JSC detoxification.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Heat
Dry heat [19] 14.60 ND 25.60 12.80 9.30 10.70 2.30 1.90 ND ND
Dry heat [19] 15.10 ND 25.60 12.80 9.20 9.60 2.20 2.30 0.020 0.010
Dry heat [20] 22.69 0.65 0.05 ND 8.63 2.46 2.18 1.74 0.027 0.013
Dry heat [20] 22.69 0.00 0.05 ND 8.63 1.84 2.18 1.24 0.027 0.010
Dry heat [53] - - - - - - - - 0.350 0.068

Moist heat [54] - - 102 1.17 - - - - 1.780 1.780
Moist heat [12] 18.89 0.65 - - - - 3.50 3.33 - -

Heat + Pressure
3 mbar [55] - - - - - - - - 3.770 ND

1.91 × 105 mbar [52] - - - - - - - - 0.378 ND

Ionizing radiation
50 kGy [56] - - - - - - - - 0.377 0.269
50 kGy [47] - - - - - - - - 0.290 0.041
125 kGy [47] - - - - - - - - 0.290 0.011

UV radiation [21] 0.16 0.14 0.43 0.26 0.52 0.05 0.03 0.02 0.199 0.016
UV radiation [57] - - - - - - - - 3.090 2.180
Microwave [58] - - - - - - - - 7.660 1.050
Ultrasonic [58] - - - - - - - - 7.660 0.950

Microwave and ultrasonic [58] - - - - - - - - 7.660 0.890

1—Contents expressed as mg trypsin inhibited/g; 2—contents expressed as [1/(minimum amount of meal
in mg/mL assay which produced hemagglutination)]; 3—contents expressed as %; 4—contents expressed as
diosgenin equivalent; 5—contents expressed as phorbol-12-myristate 13-acetate equivalent (mg/g); BT—before
treatment; AT—after treatment; ND—not detected.

In general, even though some heat-based methodologies showed a decrease in phorbol
esters’ levels, it can be inferred that heat treatments alone may not be sufficient to significantly
reduce their concentration. This aligns with earlier reports by Makkar et al. [19,26] that heat
treatment alone may not effectively deactivate phorbol esters. Nevertheless, treatments using
a combination of heat and pressure [52,55] were able to degrade the totality of phorbol esters.
Levels of reduction of up to 96% are also reported for ionizing radiation methodologies.

Chemical treatments involve the digestion of JSC with organic solvents or short-
chain alcohols like ethanol or methanol, and over the past few decades, several chemical
methods have been explored for JSC’s detoxification (Table 3). Treatments’ efficiency in
decreasing trypsin inhibitors is quite low with some effects detected with the utilization of
alkaline hydrolysis at high temperatures [12] or alkaline hydrolysis combined with ethanol
extraction [8]. For lectins, phytic acid and saponins, ethanol extractions seem to reduce its
concentrations in variable proportions depending on the treatments.

Table 3. Chemical methods utilized in JSC detoxification.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Methanol
50% [59] - - - - - - - - 0.210 0.080
70% [59] - - - - - - - - 0.210 0.270
90% [59] - - - - - - - - 0.210 0.360
90% [22] 3.15 3.09 3.43 1.46 10.04 7.28 2.67 1.58 2.880 0.980

99.5% [59] - - - - - - - - 0.210 0.470

Ethanol
50% [59] - - - - - - - - 0.210 0.090
70% [59] - - - - - - - - 0.210 0.200
85% [58] - - - - - - - - 7.660 0.140
90% [59] - - - - - - - - 0.210 0.430
90% [22] 3.15 3.12 3.43 1.62 10.04 8.83 2.67 1.46 2.880 1.160
92% [60] - - - - - - - - 1.010 0.860
95% [59] - - - - - - - - 0.210 0.350

Ethanol [61] - - - - - - - - 0.656 0.023
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Table 3. Cont.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Methanol/ethanol
(50:50) [58] - - - - - - - - 7.660 0.350
(50:50) [62] - - - - - - - - 3.600 0.100

Alkaline treatments
NaHCO3 [63] - - 70 ND - - - - 1.290 0.956
Ca(OH)3 [63] - - 70 ND - - - - 1.290 1.285
NaOH [63] - - 70 ND - - - - 1.290 1.065
NaOH [64] - - ND ND - - - - 0.449 0.145
Urea [63] - - 70 ND - - - - 1.290 1.249

Alkaline hydrolysis + ethanol [60] - - - - - - - - 1.010 0.020

Mix treatments
Methanol + NaOH [21] 0.20 0.10 0.52 0.90 0.82 0.84 0.10 0.10 0.959 0.860
Methanol + NaOH [12] 18.89 0.82 - - 11.25 11.24 3.50 3.04 - -
NaOH + methanol [58] - - - - - - - - 7.660 0.150
Hexane + methanol [65] - - - - - - - - 6.050 2.100

Combined methods
Methanol + dry heat [54] - - 102 ND - - - - 1.780 0.090

Methanol + NaOH + dry heat [66] ND ND ND ND - - - - 1.800 ND
Methanol + NaOH + dry heat [67] ND ND ND ND - - - - 1.800 ND
Ethanol + NaHCO3 + dry heat [8] 34.00 0.57 0.71 0.04 8.55 12.00 2.55 1.07 3.850 0.080

Methanol + NaOH + moist heat [68] - - - - - - - - 0.980 ND
Hexane + ethanol + moist heat [69] 0.22 ND - - - - - - 0.700 0.800
Hexane + ethanol + moist heat [70] - - - - - - - - 0.580 0.023

NaOH + dry heat [12] 18.89 0.75 - - 11.25 10.56 3.50 3.15 - -
NaHCO3 + dry heat [8] 34.00 0.66 0.71 0.09 8.55 8.92 2.85 3.00 3.850 0.950

NaHCO3 + moist heat [12] 11.89 1.33 - - 11.25 11.25 3.50 1.75 - -
NaHCO3 + 10 kGy [8] 34.00 34.30 0.71 1.15 8.55 6.04 2.85 1.72 3.850 3.160

NaHCO3 + air bubbling [56] - - - - - - - - 0.377 0.081

1—Contents expressed as mg trypsin inhibited/g; 2—contents expressed as [1/(minimum amount of meal
in mg/mL assay which produced hemagglutination)]; 3—contents expressed as %; 4—contents expressed as
diosgenin equivalent; 5—contents expressed as phorbol-12-myristate 13-acetate equivalent (mg/g); BT—before
treatment; AT—after treatment; ND—not detected.

Phorbol esters are moderately polar, and both ethanol and methanol have a strong
affinity for them. The results presented in Table 2 show that its reduction after applying
methanol or ethanol varies between a medium value of around 60% [59] for methanol, from
15% [60] up to 97% [61] for ethanol, and 96% for a mixture of these two solvents [58,62].
It should be noted that these differences should be attributed to different solvent concen-
trations and different incubation procedures, such as time and temperature of extraction.
Nevertheless, both treatments are quite effective in the breakdown and degradation of
phorbol esters.

Other chemical treatments, such as alkaline hydrolysis or a combination of alka-
line/methanol or ethanol treatments with or without moist heat treatments, also point
to efficiencies in the removal of phorbol esters of up to 98% [60]. According to Gomes
et al. [43], although these physical and chemical treatments show a highly efficient removal
of phorbol esters in some cases, the majority of them are considered to be aggressive to the
substrates, being responsible for the degradation of proteins and functional amino acids
and thus decreasing the nutritional qualities of JSC. According to the same authors [43],
chemical detoxification methods with organic solvents and alkaline solutions could also
alter the odor of feeds and, consequently, decrease its consumption by animals. Further-
more, methanol residual toxic components might also be present in treated substrates, thus
inhibiting its utilization as an animal feed.

According to Martínez-Herrera et al. [8], due to its relatively low toxicity, ethanol
offers an advantage over methanol, as any residues left in the treated meal, although
improbable due to its higher volatility, are unlikely to adversely affect animals consuming
it. Furthermore, while chemical treatments can rapidly degrade phorbol esters, various
factors, such as the operational complexity, specialized equipment requirements, proper
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disposal of solvent residues, and limitations in detoxification efficiency, all hinder the
widespread adoption of such methods [43].

3.2. Biological Treatments

Biological detoxification offers a promising opportunity for converting agro-industrial
waste and by-products into valuable raw materials utilizing various strains of fungi and
bacteria to produce enzymes, metabolites, and other edible products, thereby providing an
alternative to physical and chemical treatments. In the Kingdom of fungi, divisions such
as Zygomycota, Basidiomycota, and Ascomycota are commonly employed for biological
detoxification processes. The data presented in Tables 4–6 show that biodetoxification can
be used to reduce potential toxic compound levels in JSC, although its contents may remain
relatively high in some cases.

Trypsin inhibitors were reduced from values ranging from 60% [7] incubating with
Rhizopus oligosporus up to 99% [71] by incubating with Bacillus licheniformis, respectively.
Fungal treatments were able to reduce lectins by around 60% [7] when using Trichoderma
strains, and by up to 80% [7] for Aspergillus niger, respectively. However, bacterial treat-
ments were the most effective in lectin removal, attaining reduction values of up to 87% [72]
using Lactobacillus acidophilus. For phytic acid, biological treatments using fungi showed
a medium removal proportion of around 50%, with the exception of Aspergillus strains
that were able to remove it to values of up to 93% [28]. Medium degradation values of
saponins of 80% were obtained for fungal treatments with the highest removal proportion
(95%) being attained for Aspergillus niger incubations [7,11]. While Zygomycota strains
were able to reduce phorbol esters up to 75% [28], strains from Basydomycota reduced the
concentrations by up to almost 100% [73], with medium removal values of around 80% for
fungal and bacterial treatments.

Table 4. Biological methods utilized in JSC detoxification using Zygomycota and Basydomycota strains.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Fungi—Zygomycota
R. olisgosporus [7] 0.21 0.08 - - 9.10 4.18 2.47 0.33 0.013 0.012
R. olisgosporus [70] 33.50 20.15 - - 8.90 5.27 2.50 1.30 3.650 3.050

R. nigricans [7] 0.21 0.08 - - 9.10 3.88 2.47 0.22 0.013 0.010
R. oryzae [28] - - - - 6.08 0.61 - - 0.830 0.310

C. echimulata [28] - - - - 6.08 0.42 - - 0.830 0.210
M. mucedo [11] - - - - 6.68 6.26 2.13 0.35 - -

Fungi—Basydomycota
B. adusta [74] - - - - - - - - 0.820 0.070

P. rufa [74] - - - - - - - - 0.820 0.020
G. resinaceum [74] - - - - - - - - 0.820 0.656

G. lucidum (SmF) [46] - - - - - - - - 1.072 0.075
G. lucidum (SSF) [46] - - - - - - - - 1.072 0.043

G. lucidum [75] - - - - - - - - 1.072 ND
P. chrysosporium [75] - - - - - - - - 1.072 0.591

T. hirsute [75] - - - - - - - - 1.072 0.197
T. zonata [75] - - - - - - - - 1.072 ND
T. gibbosa [75] - - - - - - - - 1.072 0.089

T. versicolor [75] - - - - - - - - 1.072 0.118
T. versicolor (SmF) [46] - - - - - - - - 1.072 0.214
T. versicolor (SSF) [46] - - - - - - - - 1.072 0.257

Pleurotus sp. (SmF) [46] - - - - - - - - 1.072 0.104
Pleurotus sp. (SSF) [46] - - - - - - - - 1.072 0.341
P. ostreatus (SmF) [46] - - - - - - - - 1.072 0.058
P. ostreatus (SSF) [46] - - - - - - - - 1.072 0.375
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Table 4. Cont.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Fungi—Basydomycota
P. ostreatus (SmF) [46] - - - - - - - - 1.072 0.100
P. ostreatus (SSF) [46] - - - - - - - - 1.072 0.176

1—Contents expressed as mg trypsin inhibited/g; 2—contents expressed as [1/(minimum amount of meal in
mg/mL assay which produced hemagglutination)]; 3—contents expressed as %; 4—contents expressed as diosgenin
equivalent; 5—contents expressed as phorbol-12-myristate 13-acetate equivalent (mg/g); BT—before treatment;
AT—after treatment; ND—not detected; SmF—submerged fermentation; SSF—solid-state fermentation.

The data presented for the various biological treatments show that the removal of
phorbol esters is within the values reported for chemical treatments. Nevertheless, it seems
that certain fungal strains have the potential to completely degrade these compounds. As
the incubation procedures are quite variable among the reported data (Table 4), specific
methodologies should be analyzed in order to evaluate possible selection of fermentation
techniques. In fact, differences within the reported values might be allocated not only
to the different fungal strains used and the diverse synergism between its enzymatic
complexes, but may also be due to the time of fermentation and the composition of the
medium of incubation. Additionally, the combination of fungi in solid-state and submerged
fermentation has been explored, with submerged fermentation generally proving to be
more efficient in degrading phorbol esters [46].

Table 5. Biological methods utilized in JSC detoxification using Basydomycota and Ascomycota strains.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Fungi—Basydomycota
P. florida (SmF) [46] - - - - - - - - 1.072 0.163
P. florida (SSF) [46] - - - - - - - - 1.072 0.157

P. florida [75] - - - - - - - - 1.072 0.344
P. sapidus (SmF) [46] - - - - - - - - 1.072 0.150
P. sapidus (SSF) [46] - - - - - - - - 1.072 0.281

P. sapidus [75] - - - - - - - - 1.072 0.257
P. pulmonaris (SmF) [46] - - - - - - - - 1.072 ND
P. pulmonaris (SSF) [46] - - - - - - - - 1.072 0.262

P. eryngii (SSF) [46] - - - - - - - - 1.072 0.123
P. ostreatus [14] - - - - - - - - 1.090 0.002
P. ostreatus [75] - - - - - - - - 1.072 0.295
P. ostreatus [73] - - - - 3.06 0.77 - - 1.080 ND
P. sajor-caju [75] - - - - - - - - 1.072 0.344

P. pulmonaris [72] - - - - - - - - 2.170 0.060
P. lecomtei (SmF) [46] - - - - - - - - 1.072 0.125
P. lecomtei (SSF) [46] - - - - - - - - 1.072 0.115
F. hepatica (SmF) [46] - - - - - - - - 1.072 0.043
F. hepatica (SSF) [46] 1.072 0.021
Coriolopsis sp. [76] 1.072 0.023

Fungi—Ascomycota
T. longibrachitum [7] 0.21 0.08 0.34 0.14 9.10 4.12 2.47 0.43 0.013 0.011

T. harzianum [77] - - - - - - - - 2.780 0.060
T. harzianum [77] - - - - - - - - 2.780 0.110

P. sinensis [77] - - - - - - - - 2.780 0.160
C. cladosporioides [77] - - - - - - - - 2.780 0.220

F. chlamydosporum [77] - - - - - - - - 2.780 0.280
F. chlamydosporum [77] - - - - - - - - 2.780 0.300
F. chlamydosporum [77] - - - - - - - - 2.780 0.390

1—Contents expressed as mg trypsin inhibited/g; 2—contents expressed as [1/(minimum amount of meal in
mg/mL assay which produced hemagglutination)]; 3—contents expressed as %; 4—contents expressed as dios-
genin equivalent; 5—contents expressed as phorbol-12-myristate 13-acetate equivalent (mg/g); BT—before treat-
ment; AT—after treatment; ND—not detected; SmF—submerged fermentation; SSF—solid-state fermentation.
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4. Utilization of Detoxified JSC in Animal Feeding

Variable detoxification efficiencies are presented in Tables 2–6 for different types of
treatments. Although there are methodologies that can remove the toxic compounds of
J. curcas at high proportions, the utilization of detoxified substrates should be carefully
evaluated as the presence of some of these toxic compounds might still lead to negative
results in terms of animal productivity. In fact, in the case of phorbol esters, a concentration
as low as 0.021 mg/g of diet has produced lower body weights and reduced food intakes in
rats [13]. Although Aregheore et al. [54] have considered a threshold of 0.09 mg of phorbol
esters/g of substrate as a limit to the safe use of JSC as an animal feed, the results analyzing
its incorporation in different animal species are quite variable.

Table 6. Biological methods utilized in JSC detoxification using Ascomycota and and bacteria strains.

Treatment
Trypsin Inhibitors 1 Lectins 2 Phytate 3 Saponins 4 Phorbol Esters 5

BT AT BT AT BT AT BT AT BT AT

Fungi—Ascomycota
Penicillium sp. [7] 0.21 0.08 0.34 0.15 9.10 4.32 2.47 0.53 0.013 0.011
P. micynskii [28] - - - - 6.08 0.91 - - 0.830 0.380
P. micynskii [28] - - - - 6.08 0.62 - - 0.830 0.360
S. cerevisiae [28] - - - - 6.08 0.53 - - 0.830 0.300

A. niger [78] - - - - - - - - 1.400 ND
A. niger [7] 0.21 0.07 0.34 0.08 9.10 2.70 2.47 0.13 0.013 0.003

A. niger [11] - - - - 6.67 5.92 2.13 0.48 - -
A. niger [28] - - - - 6.08 0.21 - - 0.830 0.250

A. versicolor [28] - - - - 6.08 2.15 - - 0.830 0.260
A. versicolor [28,79] 0.70 0.01 0.31 0.03 6.08 1.70 - - 0.832 0.158

A. oryzae [28] - - - - 6.08 0.43 - - 0.830 0.350
A. terreus [28] - - - - 6.08 0.48 - - 0.830 0.350

A. niger+N. sitophila [80] - - - - - - - - 0.007 0.002

Bacteria
P. aeruginosa [21] 0.11 0.05 - - 0.07 0.29 0.10 0.10 0.887 0.796
L. acidophilus [72] 23.30 4.20 55.41 7.35 6.50 2.75 4.50 2.40 - -
Bacillus sp. [81] 1.47 0.41 - - 8.80 0.39 - - - -
Bacillus sp. [81] 1.47 0.16 - - 8.80 0.09 - - - -

B. subtilis (SmF) [82] - - - - - - - - 0.600 0.087
B. subtilis (SSF) [82] - - - - - - - - 0.600 0.180
B. licheniformis [71] 23.30 0.30 - - 16.10 9.20 - - 0.120 0.002
B. licheniformis [82] - - - - - - - - 0.600 0.232
B. smithii (SmF) [82] - - - - - - - - 0.600 0.252
B. smithii (SSF) [82] - - - - - - - - 0.600 0.075

B. sonorensis (SmF) [82] - - - - - - - - 0.600 0.245
B. sonorensis (SSF) [82] - - - - - - - - 0.600 0.150
B. coagulans (SmF) [82] - - - - - - - - 0.600 0.086

M. morganii [50] - - - - - - - - 7.530 1.210
M. morganii [50] - - - - - - - - 1.720 0.190
M. morganii [50] - - - - - - - - 7.750 0.560

Enterobacter sp. [83] 0.08 0.01 0.31 0.03 6.08 1.06 - - 1.220 0.590

1—Contents expressed as mg trypsin inhibited/g; 2—contents expressed as [1/(minimum amount of meal in
mg/mL assay which produced hemagglutination)]; 3—contents expressed as %; 4—contents expressed as dios-
genin equivalent; 5—contents expressed as phorbol-12-myristate 13-acetate equivalent (mg/g); BT—before treat-
ment; AT—after treatment; ND—not detected; SmF—submerged fermentation; SSF—solid-state fermentation.

As mentioned before, Makkar et al. [19] considered that heat treatments used for the
detoxification of J. curcas seeds did not have the expected effect on the concentration of
phorbol esters. The results reported by Agboola [84] showed that JSC inclusion in the diet
of Japanese quails, obtained after roasting and the heat moisture extraction of oil, induced
high mortality levels for an inclusion level above 10%, reaching 100% mortality at 20%
incorporation. More recently Attia et al. [85] reported that an increase in the time period
heat treatments applied to JSC can reduce the negative effects of its inclusion at 3.5% in
the diet of Japanese quails, with final phorbol esters’ concentrations of 0.068 mg/g of JSC.
Nevertheless, animal performance parameters were still negatively influenced using this
inclusion level. Similar results were obtained by El-Hack et al. [86] and Farag et al. [53],
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also working with the same inclusion level in diets for Japanese quails, indicating that
although the heat treatment might decrease the toxic level of JSC, some negative effects
were still detected in animal performance parameters. These data indicate that the tendency
to decrease JSC inclusion in the diet aiming to reduce concentrations of phorbol esters,
although reducing severe effects such as animal mortality, still induce negative results on
animals’ performance. Another issue that should be highlighted is the duration of some of
the trials, as short rearing periods may not be appropriate for measuring beneficial effects
on animal health and production performances.

With respect to the implications of the inclusion of chemical-treated JSC in animals’
diets, the data point to some contradicting results. A chemical treatment with 3% sodium
bicarbonate was utilized in a feed trial with lambs aged between 4 to 6 months, in which
JSC (containing 1.3 mg/g of phorbol esters) was included at a rate of 25% of the total
diet [63]. As expected, due to the high concentrations of phorbol esters, mortality rates were
high and animals’ performance was negatively affected. On the other hand, petroleum
benzene extraction for 60 min of JSC promoted its inclusion in carps’ diets up to 25%,
without adverse effects on growth and digestibility parameters [87]. According to these
authors [87], the chemical treatment completely removed phorbol esters from the seed
cake, that initially presented with values of 1.8 mg/g in the defatted substrate. More
recently, Souza et al. [64] studied the application of an alkaline treatment using NaOH,
achieving a 68% degradation of phorbol ester content up to a concentration of 0.145 mg/kg.
The treated JSC was integrated into concentrate supplements for grazing dairy cows in
three proportions of 10, 20, and 30% that corresponded to 0.0145, 0.029, and 0.04435 mg
of phorbol esters/kg DM of diet. These inclusion levels led to a reduction in supplement
intake, total-tract digestibility of nutrients, and the performance of the dairy cows. Nesseim
et al. [88] employed a method of chemical extraction using petroleum ether to obtain JSC.
The inclusion of the cake at 4 and 8% levels in broiler diets reduced animal performance
parameters such as average daily weight gain and feed conversion ratio and the overall
mortality rate showed an increase according to the levels of JSC in the diets.

Combinations of chemical and physical methods have also been studied with contrast-
ing outcomes. Wang et al. [68], in a trial conducted with growing pigs demonstrated that
JSC (containing 0.90 g/kg of phorbol esters), treated with 90% methanol-sodium hydroxide
followed by a steam treatment (no phorbol esters detected after the treatment), included in
diets at 25 and 50%, had no effects on animals’ weight gain and feed conversion ratio. Li
et al. [89] applied a method consisting of ethanol extraction and steam treatment to JSC,
aiming to reduce phorbol ester contents to 0.11 mg/g. Using five inclusion levels up to 75%
of soybean meal replacement in the diets of fattening pigs, these authors [90] verified that
only until the 30% replacement level (corresponding to a final concentration of 5.50 mg/kg
diet) no negative effects were detected. After this level, animals showed a lower average
daily weight gain, average daily feed intake, and feed conversion ratio. More recently,
Flora et al. [91] in a feeding trial using tilapia reported that JSC treated with chemical and
extrusion techniques when included at levels up to 12% in the total diet reduced the growth
performances of fish and high mortality rates were detected. In this study, the concentration
of phorbol esters in the treated cake attained 0.023 mg/g and it reached 2.76 mg/kg of diet
at the highest inclusion level.

Biological treatments using different strains of fungi and bacteria have been utilized
as a promising strategy to degrade toxic constituents from JSC. According to Gomes
et al. [43,92], these biodetoxification methods present several advantages over the other
methodologies such as their potential higher efficiency, lower costs, as well as the possibility
of obtaining fermented products with improved nutritive value due to the activity of certain
specific enzymes during the incubation periods.

Belewu et al. [93], when evaluating the efficiency of A. niger and T. longibrachitum on
the detoxification of JSC for its inclusion in goat’s diets at 2 and 4%, verified that the lowest
level of incorporation of JSC treated with A. niger could be regarded as safe, indicating that
this strain is quite effective on the detoxification of the substrates. Nevertheless, the results
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obtained for the highest level of inclusion and the data obtained for the diets including
JSC treated with T. longibrachitum did not reveal such a promising outcome due to the
hematological results of the animals subjected to these diets and the mortality rate that
was recorded. In another study, Belewu et al. [94] demonstrated that a combination of A.
niger-, P. chrysogenum-, and T. harzanium-treated JSC can replace 50% of the soybean cake in
the diets of West African dwarf goats without any adverse effects. However, the specific
phorbol ester levels in both the untreated and treated kernel meal were not reported. In a
study conducted by Kasuya et al. [14], JSC treated with P. ostreatus for 45 days showed a
decrease in the phorbol ester content of 99% to a concentration of 0.002 mg/g dry matter.
The inclusion of the treated JSC on diets for goats at a rate up to 20% of incorporation for
a period of 72 days showed no effects on animal performance parameters as well as on
measured hematological and clinical chemistry parameters. On the other hand, studies
reported by Okukpe et al. [95] showed that goats fed on diets with the inclusion of JSC
treated with T. ghanense and T. asperellum, at up to 4% of the total diet, were severely affected
as determined by the measured parameters for animal growth and high mortality levels
after five weeks of trial. It should be noted that no data are presented for the phorbol ester
concentrations of the treated JSC.

More recently, Ojediran et al. [96] evaluated the performance of Marshal strain broiler
chicks fed on diets containing 10% of JSC treated with A. niger. Before the fermentation
procedure, JSC was subjected to five different processing methods. The final concentration
of phorbol esters varied between 0.550 and 0.942 mg/100 g of substrate. The data reported
by these authors suggest that animals were adversely affected with the inclusion of treated
JSC due to the negative effects on animals’ performance as well as due to the high mortality
levels. In contrast, Nesseim et al. [97] evaluated intake and growth performance of broiler
chicks subjected to diets including up to 8% of JSC treated with A. niger, and observed no
differences within the measured parameters, and even positive effects were detected in
animals fed the treated JSC, for which the average daily weight gain and live weight were
higher. It should be pointed that no data on phorbol ester concentration were presented. In
a study evaluating the effects of hydrothermal processing and fermentation using Bacillus
sp. and Staphylococcus spp. on the nutritive value of JSC, Okomoda et al. [81] verified that
there was an improvement in feed conversion ratio as well as in general growth parameters
of African catfish fed on diets containing approximately 30% of the treated substrates.
Although these authors showed a general decrease in several anti-nutritional factors after
treatments, no data were presented for the phorbol esters of JSC.

5. Conclusions

Although the detoxification treatments used on JSC to remove, degrade, or inacti-
vate different anti-nutritional compounds present different efficiencies, depending on the
methodologies used, recent approaches have pointed out the advantages of combining
treatments in order to enhance their effectiveness and overcome possible limitations. In
fact, although physical treatments have low implementation costs, they are less effective
in reducing the content of phorbol esters and together with chemical treatments they are
considered to be aggressive and may cause the degradation of other compounds such as
proteins and amino acids. Some chemical methods are efficient in the removal of toxic
compounds, including phorbol esters, but present the drawbacks of environmental dis-
posal, of changing the palatability of the substrates, and the high cost of chemical reagents.
However, it should be stressed that nowadays physical and chemical treatments are still
considered the most adequate to process large amounts of substrates in a short period
of time. Alternatively, although time consuming, the utilization of biological treatments
should be considered a viable approach. On top of being environmentally friendly, they
are lower in cost and possess high efficiency in the removal of toxic compounds. As biode-
grading microorganisms have multifaceted enzymatic complexes that are able to reduce
or eliminate anti-nutritional compounds, they are also capable of promoting changes in



Fermentation 2024, 10, 256 13 of 17

their lignin structure and facilitate access to structural polysaccharides, so they are a viable
assay in bioremediation.

Phorbol esters are the most impactful toxic compound in JSC and their degradation is
most effective when using chemical and biological treatments. Nevertheless, animal trials
have demonstrated that JSC should only be included in diets if these compounds have been
completely removed.

In this way, the reported data underscore the potential of biological detoxification
methods to significantly reduce phorbol esters in JSC, thereby making it a viable option for
producing value-added products from agro-industrial waste and by-products. However, it
is imperative to note that further research is needed to optimize the conditions and strains
for achieving maximum detoxification efficiency. Through continued investigation and
refinement, biological detoxification methods hold the promise of not only mitigating the
toxicity of J. curcas but also unlocking its potential as a sustainable and valuable resource in
the agricultural and industrial sectors.
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