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Abstract: A new equation of state for argon was developed with the view of extending the range of
validity of the equation of state previously proposed by Tegeler et al. and obtaining a better phys‑
ical description of the experimental thermodynamic data for the whole fluid region (single‑phase,
metastable, and saturation states). As proposed by Tegeler et al., this equation is also based on a
functional form of the residual part of the reduced Helmholtz free energy. However, in this work,
the fundamental equation for Helmholtz free energywas derived from themeasured quantitiesCV(ρ,
T) and P(ρ, T). The empirical description of the isochoric heat capacity CV(ρ, T) was based on an
original empirical description explicitly containing the metastable states. The thermodynamic prop‑
erties (internal energy, entropy, and free energy) were then obtained by combining the integration
of CV(ρ, T). The arbitrary functions introduced by the integration process were deduced from a com‑
parison between calculated and experimental pressure P(ρ, T) data. The new formulation is valid for
the whole fluid region from themelting line to 2300 K and for pressures up to 50 GPa. It also predicts
the existence of a maximum of the isochoric heat capacity CV along isochors, as experimentally ob‑
served in several other fluids. For many applications, an approximate form of the equation of state
for the liquid phase may be sufficient. A Tait–Tammann equation is therefore proposed between the
triple‑point temperature and 148 K.

Keywords: argon; data evaluation; equation of state; fundamental equation; property tables; thermal
and caloric properties; vapor–liquid coexistence curve; spinodal; metastable state; Tait–Tammann
equation of state
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Abbreviations

Symbol description
c sound speed
CP isobaric heat capacity
CV isochoric heat capacity
F Helmholtz free energy
G Gibbs energy
H enthalpy
i, j, k serial numbers
M molar mass
Na Avogadro number
P pressure
RA specific gas constant
S entropy
T thermodynamic temperature
U internal energy
V specific volume (V = 1/ρ)
x dimensionless parameter (x = Tdiv/T)
y dimensionless parameter (y = x–1 = T/Tdiv)
Z compressibility factor
Greek
∂ partial differential
δT isothermal throttling coefficient
ρ density
Γ incomplete gamma function
Superscripts
o ideal gas property
r, * residual terms
~ dimensionless quantity

^ dimensionless quantity (for energy only) using 3
2 RATc as a

reference
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Subscripts
c at the critical point
calc calculated
exp experimental
sat denotes states at saturation
sp denotes spinodal states
t at the triple point
σl saturated liquid state
σv saturated vapor state
0 terms that do not contribute to CV
Physical Constants for Argon
M molar mass
M = 39.948 g mol–1
R universal gas constant
R = 8.31451 J mol–1 K–1

RA specific gas constant
RA = 0.2081333 kJ kg–1 K–1

Tc critical temperature
Tc = 150.687 K
Pc critical pressure
Pc = 4.863 MPa
ρc critical density
ρc = 0.535599 g cm−3

Tt triple‑point temperature
Tt = 83.8058 K
Pt triple‑point pressure
Pt = 68.891 kPa
ρt,Gaz triple‑point gas density
ρt,Gaz = 0.0040546 g cm−3

ρt,Liq triple‑point liquid density
ρt,Liq = 1.41680 g cm−3

ρt,Sol triple‑point solid density
ρt,Sol = 1.6239 g cm−3

1. Introduction
Argon is a noble gas, and on earth, its isotopic composition is 99.6% 40Ar, 0.34% 36Ar,

and 0.06% 38Ar. Argon is very stable and chemically inert under most conditions. Due to
those properties and its low cost, argon is largely used in scientific and industrial applica‑
tions. For instance, in high‑temperature industrial processes, an argon atmosphere can pre‑
vent material burning, material oxidation, material defects during the growth of crystals,
etc. Due to its molecular simplicity (monoatomic and quasi‑spherical geometry), argon is
also considered a reference fluid with well‑known properties, i.e., its triple‑point tempera‑
ture (83.8058 K) is a defining fixed point in the International Temperature Scale of 1990 [1].
Its simple fluid characteristics allow, for example, to understand the fundamental mecha‑
nisms of interaction between ions and neutral species and thus gain a deeper insight into
ion transport regimes (e.g., [2]). Thewidespread use of argon requires accurate knowledge
of its thermodynamic properties in the largest possible temperature and pressure ranges,
i.e., covering both stable andmetastable states. Numerous empirical equations of state can
be found in the literature, but most of them cover only small parts of the fluid region. For
example, Shamsundar et al. [3] have shown that the development of cubic‑like equations
of state provides very accurate thermodynamic properties of liquids on the coexistence
curve and in the metastable (superheated) state. However, this approach has flaws on the
vapor side. A very detailed overview of argon’s experimental thermodynamics and the
most important equations of state published prior to 1999 can be found in [4], so we will
not delve into it here. In [4], Tegeler et al. also describe a new equation of state for argon
that covers a very wide range of the fluid phase and will serve as the reference equation of
state for this study.
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The development of the equation of state generally starts by an empirical description
of Helmholtz free energy F (i.e., an arbitrary set of mathematical functions is a priori chosen)
with two independent variables: density ρ and temperature T. All thermodynamic proper‑
ties of a pure substance can then be obtained by combining derivatives of F(ρ, T). The dimen‑
sionless Helmholtz free energy ã = F/(RAT) is commonly split into a part ão(ρ, T), which
represents the properties of the ideal gas at given temperature and density, and a residual
part ãr(ρ, T), which takes into account the dense fluid behavior. While statistical thermo‑
dynamics can predict the behavior of fluids in the ideal gas state with high accuracy, no
physically founded equation is known that accurately describes the actual thermodynamic
behavior in the whole fluid region. Thus, an equation for the residual fluid behavior, in this
case for the residual part of Helmholtz free energy ãr, has to be determined in an empirical
way. However, as Helmholtz free energy is not accessible to direct measurements, a suitable
mathematical structure and some fitted coefficients have to be determined from properties
for which experimental data are available. Hence, all the physical properties are contained
in the mathematical form given to Helmholtz free energy.

In the wide‑range equation of state for argon developed by Tegeler et al. [4], the resid‑
ual part of Helmholtz free energy ãr(ρ, T) contains polynomial terms, Gaussian terms, and
exponential terms, resulting in a total of 41 coefficients (named ni in [4]), which represent the
number of mathematically distinct entities (with each mathematical entity containing sev‑
eral adjustable parameters). This equation of state is valid for the fluid region delimited by

83.8058 K < T < 700 K,

and
0 MPa < P < 1000 MPa.

The large number (∼120) of adjustable parameters of the equation of state of Tegeler
et al. (see Table 30 in [4]) are determined by a sophisticated fitting technique that is a pow‑
erful mathematical tool and a practical way for representing data sets (by assigning weights
to each of them subjectively). This technique provides an easily practical overall numerical
representation of the data, but it also allows for the completion of the representation of mea‑
surable quantities in areas where no measurements have been made. However, passing in
a set of data points does not mean that the obtained variations have a physical meaning or
that the physical ideas underlying mathematical representation are unique. For example, the
following drawbacks of the equation of state of Tegeler et al. [4] can be noticed:
1. Extrapolation of the equation for the isochoric heat capacity in regions of high or low

density and high temperature is non‑physical.
2. The extrapolation of polynomial developments does not generally give valid results;

indeed, polynomial development is very sensitive (i.e., instable) with respect to the
values of its coefficients, and these coefficients cannot be truncated, even slightly.
Therefore, all the coefficients ni of Tegeler et al. [4]’s model have 14 digits, and the
coefficients thus have no physical sense.

3. The model applies to the pure fluid phases and cannot, in its actual form, take into
account particular properties inside the liquid–vapor coexistence region. Moreover,
the model gives negative values of CV on some isotherms inside the liquid–vapor
coexistence region (CV < 0 is never observed for classical thermodynamic systems).
This implies, for example, some non‑physical variations in the liquid spinodal curve.
The aim of this paper is not to increase the precision of the equation of state of Tegeler

et al. [4] in its own domain of validity but instead to develop a new equation of state based
on different physical ideas that can fill the drawbacks previously expressed in order to
obtain a more physical description of the experimental thermodynamic data of argon in a
broader temperature and pressure range. In the classical approach, the ideal part of the
free energy is generally determined from the well‑known properties of the ideal gas heat
capacities. We propose to also extend the classical approach to the residual part; therefore,
the proposed new equation of state is based on an original empirical description of the
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isochoric heat capacity CV(ρ, T) containing the metastable states explicitly. Then, the ther‑
modynamic properties (internal energy, entropy, and free energy) are obtained by com‑
bining the integration of functions involving CV(ρ, T). For instance, internal energy U can
be deduced from U(ρ, T) =

∫
CV(ρ, T)dT + U0(ρ) + constant, where U0(ρ) is an arbitrary

function of density. In this way, possible data noise is smoothed. However, an integration
process introduces arbitrary functions (e.g., U0(ρ)). These functions can be deduced from
a comparison between calculated and experimental data. The pressure equation of state
P(ρ, T) was chosen because it is the largest available data set. The set of experimental data
taken into account by the model of Tegeler et al. [4] will be further extended with the in‑
clusion of the L’Air Liquide database [5], thus extending the temperature validity range
of this new modeling compared to that of Tegeler et al. The interest of this new approach
is that it can be easily extended to all other fluids that exhibit a first‑order transition with
metastable states.

Hereafter, the model of Tegeler et al. [4] will be simply named the TSW model.

2. A New Equation of State for Isochoric Heat Capacity
As stated previously, the present approach starts with the empirical description of

a chosen thermodynamic quantity. An experimentally measured quantity is chosen for
description, which is not the case for Helmholtz free energy. The quantity that has the
simplest mathematical and physical comprehensive variation is the isochoric heat capacity
CV as a function of density ρ and temperature T. Starting with this quantity, we therefore
lose the advantage of the description provided by Helmholtz free energy, from which all
other thermodynamic quantities can be obtained by derivation. However, it allows us to
more easily introduce new physical bases, in particular non‑extensivity, and simplicity is
enhanced. Indeed, the number of coefficients αi (without αcrit,b) for the description of CV is
11 (see Table 1), and it will be shown in the next section that the number of coefficients αi
for the description of Helmholtz free energy is only 26 compared to 41 for the TSWmodel.

Table 1. Coefficients and exponents of Equations (6)–(12).

i εi αi

reg,1 11.23233957
reg,1a 1.1178177
reg,1b 0.23513928
reg,2 0.53278931
reg,2a 2.9322362
reg,2b 15.5957
m,1 0.07079238
m,2 0.33623345
m,3 1.3019754
m,4 −0.24008716
m,5a 14.4899
m,5b 7.20862
nonreg,1 0.089409
nonreg,1a 0.71915
nonreg,1b 0.22569
nonreg,2 0.015481
nonreg,2a 1.3401
nonreg,2b 0.29485
div,1 102.06515
div,1a 0.9218165
div,1b 1.1328347
div,2 120.40518
div,2a 0.12035802
div,2b 4.424004
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Table 1. Cont.

i εi αi

crit,a 0.80803 701.52
crit,b 1.134 4.27385
crit,c 1.436786
crit,d 123.1335
crit,e 2.205614
crit,f 26.32662
crit,g 4.437711

After choosing the thermodynamic quantity to be described, one must find a mathe‑
matical structure for its representation. A virial‑like development is an easy andwidespread
approximation. The problem with polynomial terms is that they introduce very small oscil‑
lations that are not physical. To avoid such effects, it is assumed that the description must
not contain any form of polynomial expression. Thus, the description is formulated in terms
of power laws and exponentials with density‑dependent exponents. We shall see that with
such a description, we obtain a dozen different characteristic densities among the parame‑
ters of the model instead of only ρc (which is consistent with the fact that argon does not
follow the law of corresponding states). Therefore, all the equations of states are expressed
in a dimensionless form according to the variables ρ and T, which lead to simpler expres‑
sions than if one had considered the dimensionless variables ρ/ρc and T/Tc. In addition, the
most suitable units for density ρ and temperature T have been chosen as g/cm3 and Kelvin,
respectively.

As for Helmholtz free energy, the isochoric heat capacity is split into a part Co
V , which

represents the properties of the ideal gas and a part Cr
V , which takes into account the resid‑

ual fluid behavior at given T and ρ. Note here that the ideal part of free energy is, in fact,
determined by the known properties of Co

V in the classical approach. Because argon is
monoatomic, only the translational contribution to the ideal gas heat capacity Co

P,tr =
5
2 RA

has to be taken into account, so it is deduced from Mayer’s law that Co
V = 3

2 RA. In dimen‑
sionless form, the isochoric heat capacity is written as follows:

c̃V(ρ, T) =
CV(ρ, T)

RA
= c̃oV + c̃rV(ρ, T) =

3
2

(
1 +

2
3

c̃r
V(ρ, T)

)
(1)

To take into account all fluid domains, including the liquid–vapor coexistence region
and the region around the critical point, c̃rV(ρ, T)must be split up into three terms—regular,
non‑regular, and critical—such that

c̃rV(ρ, T) = c̃r
V,reg + c̃r

V,nonreg + c̃r
V,crit (2a)

with
c̃rV,reg = nreg(ρ)

{
1 − exp

(
−
(

λ T
Tc

)1−(m(ρ)−1)
)} (

T
Tc

)m(ρ)−1

c̃r
V,nonreg = nnonreg(ρ) exp

(
−
(

Tdiv(ρ)
T

)−3/2
)

1
1− Tdiv(ρ)

T

c̃rV,crit = ncrit(ρ)
(

Tdiv(ρ)
T

)εcrit(ρ)


for T ≥ Tdiv (2b)

where λ = 6.8494 and nreg(ρ), m(ρ), nnonreg(ρ), Tdiv(ρ), ncrit(ρ), and εcrit(ρ) are empirical
functions determined from the best fit of NIST [6] and Ronchi [7] data, whose expressions
are given further on. In other words, it is assumed here that these two data sets are a priori
consistent with each other.

An important feature of the Ronchi model is to predict the appearance of a maximum
on the isochoric heat capacity CV along isochors. A maximum of CV along isochors has
been experimentally observed in several fluids, for example, water. Consequently, the ex‑
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trapolation of CV along isochors from a given model must show a maximum, as predicted
by the Ronchi model. This predicted behavior of CV along isochors constitutes the main
interest of the Ronchi model.

The Ronchi calculated data cover the largest available temperature range of 300 to
2300 K and the largest available pressure range of 9.9 to 47,058.9 MPa (420 data points).
It is important to notice that they are consistent with many experimental data that were
used by Tegeler et al. [4] but which they assigned to groups 2–3. The data of Ronchi were
assigned to Group 2 by Tegeler et al. From the data of Ronchi, the highest available density
is called ρmax,Ronc, and its value is given in Table 2.

Table 2. Characteristic values of densities of argon and the corresponding molar volumes used in
Equations (6)–(12).

i ρi (g/cm3) Vi (cm3/mole)

t,Gas 0.0040546 9852.51318
t,Liq 1.41680 28.1959
c 0.53559 74.5857
crit,a 0.51182 78.0502
crit,b 0.73085 54.6589
max,Ronc 3.35697 11.9
reg,Ronc 3.53159 11.3116
m,Ronc 3.67875 10.8591
u,1 6.61153 6.04217
u,2 3.99925 9.98884
u,3 3.90870 10.22026
s,1 1.50915 26.47047
s,4 1.18697 33.65528
sRonc,1 3.28898 12.146
sRonc,2 4.31602 9.25574

By construction, a part of the Ronchi [7] andNIST [6] data overlaps. For their common
range of density values, it is observed in Figure 1 that the deviation is always less than 2.5%,
so the data of Ronchi can be considered to be consistent with the data fromNIST.Hereafter,
the term “NIST” will simply be used to refer to the data in [6] and the term “Ronchi” to refer to the
data in [7].

The relations constituting Equation (2) are therefore consistent with two sets of coher‑
ent data, but at this stage of the theoretical development, it must be strongly emphasized
that these relations are only valid for temperatures T ≥ Tdiv(ρ), i.e., in particular for all
states in the single‑phase region. In this way, Tdiv(ρ) defines a divergence curve (i.e., it
defines an asymptotic curve), and we will see later that it is related to the spinodal curve.
We shall see in Section 3.4 how this relation is transformed for T < Tdiv(ρ) (i.e., for states
inside the coexistence region).

It is very important to notice that with the present model, once themathematical form
of the regular term is chosen, it is not possible to envisage any mathematical form for
the two other residual terms. Indeed, the two remaining terms must have a consistent
mathematical form with that of the first one; otherwise, the amplitude terms ni become
erratic functions of density and are no longer smooth functions. The mathematical forms
are certainly not unique, but there are strong constraints on them. This is a fundamental
difference from the classical fitting approach to the free energy function, where there is no
mathematical constraint between the different terms that are summed.
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The three terms of the residual part of CV are now clarified.
• The first term c̃rV,reg, which is a simple power law, is called “regular”. It shows no

singularity and can be calculated for temperatures from Tt (triple‑point temperature)
up to infinity. When T → 0 K following isochors, this term can be approximated by

c̃rV,reg(ρ, T → 0 K) ∼=
3
2

nreg(ρ) λ
T
Tc

(3)

which tends towards zero as a linear law.
For T >> Tc/λ, c̃r

V,reg reduces to

c̃rV,reg(ρ, T >> Tc/λ) ∼=
3
2

nreg(ρ)
(

T
Tc

)m(ρ)−1
(4)

The characteristic temperature Tc/λ = 22.0 K is not the Debye temperature of argon,
which is equal to 85 K. This new characteristic temperature was chosen tominimize the rel‑
ative error ofCV on the saturated vapor pressure curve so that the term containingλT/Tc be‑
comes important only for temperatures smaller than the triple‑point temperature (i.e., for
T << Tt with λ = 6.8494).
• The second term c̃rV,nonreg, called “non regular”, presents an asymptote for T = Tdiv(ρ)

(i.e., CV is infinite for this value of temperature). This term is only significant near the
liquid–vapor coexistence region. We can also note that the divergence is weak.

• The third term c̃rV,crit is important only in a small region around the critical point. This
term allows us to reproduce the very sharp evolution of CV very close to the critical
point. It can be understood as themacroscopic contribution of the critical fluctuations.
This termplays the samemathematical role as the contribution of the four last terms in
the second derivative with temperature of the residual free energy in the TSWmodel.
We have pointed out that the regular term c̃rV,reg tends to zero when T tends to zero.

It will be shown in Section 3.4 that for T < Tdiv, the non‑regular and critical terms also
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have a limit equal to zero when T → 0 K. Hence, c̃rV(ρ, T) → 0 if T → 0; this result is in
agreement with the third law of thermodynamics (Nernst–Planck assumption). Because
c̃V = c̃0

V + c̃r
V , this law imposes c̃V → 0 if T → 0 and then c̃oV → 0 if T → 0. To reach this

result, c̃oV is rewritten in the following form:

c̃oV(T) =
3
2

(
1 − exp

(
−λ0

T
Tc

))
(5)

where λ0 = 18.2121.
In the expression of c̃rV(ρ, T), all coefficients depend on density ρ in the followingway:

nreg(ρ) = αreg,1

(
ρ

ρ+ρt,Liq

)εreg,1a
exp

(
−
(

ρ
ρt,Gas

)εreg,1b
)

+αreg,2

(
ρ

ρt,Liq

)εreg,2a
{

1 − exp
(
−
(

ρ
ρreg,Ronc

)−εreg,2b
)} (6)

m(ρ) = −αm,1 + αm,2 exp
(
−
(

ρ
ρt,Liq

)3/2
)
+ αm,3

(
ρ
ρc

)3/2
exp

(
− ρ

ρc

)
−αm,4 ln

(
ρ
ρc

)
+ mRonc(ρ)

(7)

mRonc(ρ) =

{ [
αm,1 + αm,4 ln

(
ρ
ρc

)] (
1 + ρ

ρm,Ronc

)εm,5a
exp

(
− exp

((
ρm,Ronc

ρ

)εm,5b
))

for ρ ≥ M
12.9 g/cm3

0 otherwise
(8)

nnonreg(ρ) =


αnonreg,1

(
ρ

ρt,Gas

)εnonreg,1a
exp

(
−
(

ρt,Liq
ρt,Gas

)εnonreg,1b
(

ρ
ρt,Liq−ρ

)εnonreg,1b
)

+αnonreg,2

(
ρ

ρt,Gas

)εnonreg,2a
exp

(
−
(

ρt,Liq
ρt,Gas

)εnonreg,2b
(

ρ
ρt,Liq−ρ

)εnonreg,2b
)
for ρ ≤ ρt,Liq

0 otherwise

(9)

Tdiv(ρ) = αdiv,1

(
ρ

ρc

)εdiv,1a
exp

(
−
(

ρ

ρc

)εdiv,1b
)
+ αdiv,2

(
ρ

ρt,Liq

)εdiv,2a
exp

(
−
(

ρ

ρt,Liq

)εdiv,2b
)

(10)

ncrit(ρ) = αcrit,a

(
ρ

ρc

)εcrit,a

exp

(
−
((

αcrit,b
ρ − ρc

ρc

)2
)εcrit,b

)
(11)

εcrit(ρ) = εcrit,c + εcrit,d exp

(
−
(

εcrit,e
ρ − ρcrit,a

ρcrit,a

)2
)
+ εcrit,f exp

(
−
(

εcrit,g
ρ − ρcrit,b

ρcrit,b

)2
)

(12)

where εi are exponents, and αi are characteristic coefficients. Table 1 lists the values of these
parameters.

Note that the function m(ρ) is decomposed into two parts so that Equation (8) can
represent Ronchi data at very high density (i.e., for ρ ≥ M

12.9 g/cm3). Indeed, the variations
imposed by Ronchi data are too complex to be taken into account by a single function.

Now, some explanations will be given for the properties of these coefficients. Most of
them involve the three characteristic densities of argon:
• the density ρt,Liq of liquid at the triple point;
• the density ρt,Gas of gas at the triple point;
• the critical density ρc.

Moreover, two other characteristic densities, ρreg,Ronc and ρm,Ronc, have to be added
in view to correctly fit the data of Ronchi at very high densities. All values of these charac‑
teristic densities are given in Table 2.

Obviously, other mathematical forms for Equations (6)–(12) could be used, but the
proposed equations are the simplest ones that have been found and that lead to an accu‑
rate fitting of the whole data set. The consequences of this representation will be seen in
Section 3.1.
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The density dependence of the ni coefficients is shown in Figure 2. Each coefficient
is equal to zero when ρ → 0 and ρ → ∞ and gets through a maximum in between (the
maximum of nreg really occurs but is outside the range of density shown in Figure 2).
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The density dependence of exponentm is shown in Figure 3. This coefficient is always
strictly smaller than one, and it tends to −∞ when ρ → 0 and ρ → ∞. Then, there are two
density values for which m = 0. This means that, in the region where T >> Tc/λ, c̃rV,reg is
always decreasing along isochors when the temperature is increasing.
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The characteristic temperatureTdiv as a function of density defines a curve Tdiv(ρ) that
lies entirely inside the vapor–liquid coexistence region defined by Tsat(ρ) (see Figure 4).
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For a first‑order phase transition, the divergence of CV must occur on the spinodal curve
(i.e., loci of thermodynamic mechanical instability), corresponding to(

∂P
∂V

)
T
= 0 (13)
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Figure 4. Variationswith density of the functions Tdiv(ρ) (red curve) and Tsat(ρ) (black dashed curve)
from ρt,Gas to ρt,Liq. The curve Tsat(ρ) is deduced from NIST data [6].

Because no experimental data of the spinodal curve can be found in all the density
ranges from ρt,Gas to ρt,Liq, Tdiv was only determined by fitting the data of CV fromNIST. If
this set of data is accurate and consistent enough with the PρT data set, one should be able
to identify Tdiv(ρ) as the spinodal temperature curve. We will discuss the results obtained
for the spinodal states in more detail in Section 4.3.3.

From Equation (2), it is also easy to see that the second thermodynamic instability
(i.e., the thermal instability), defined by

CV < 0 (14)

will never occur in the present approach, contrary to the TSW model.
Consequently, with Equation (2) being valid for T > Tdiv, this relation can be used

in the vapor–liquid coexistence region by crossing Tsat(ρ) till approximately the spinodal
curve. No trouble occurs as long as T > Tdiv, though the model is based on a pure fluid
description. The fact that there is no discontinuity of CV when crossing the coexistence
curve (except at the critical point) is a characteristic of a first‑order transition. We shall see
in Section 3.4 how to treat the crossing of the divergence curve defined by Tdiv(ρ). Finally,
it can be noticed that Tdiv = 0 for ρ = 0 and Tdiv → 0 when ρ → ∞; hence, Tdiv(ρ) shows the
right density dependence, which allows us to investigate the fluid properties from the gas
phase up to the sublimation curve.

The flexibility of the present method is now illustrated from the equation of state for
the isochoric heat capacity. If one wants to represent the data from NIST instead of the
data of Ronchi for densities higher than ρt,Liq, it is only necessary to change the values of
the couple (ρreg,Ronc, εreg,2b) and the mathematical form of the exponent function m(ρ). In
this case, Equation (7) must be replaced by the following function:

mNIST(ρ) = αm,1 − αm,2 ln
(

ρ
ρm,2

+
ρm,2

ρ

)
+ αm,3

(
ρ

ρm,3

)εm,3a
exp

(
−
(

ρ
ρm,3

)εm,3b
)

+αm,4 exp
((

ρm,4b
ρm,4a

)2εm,4
(

ρm,4a
ρ−1

)2εm,4
)
+ mExtrapol(ρ)

(7bis)
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with

mExtrapol(ρ) =
ρt,Liq

ρ

[
− αm,5

εm,5 − 1

(
ρ

ρm,4a

)εm,5

+ αm,6

(
ρ

ρm,4a

)εm,6

Eεm,6

(
ρ

ρm,6

)]
where En(z) =

∫ ∞
1

e−zt

tn dt represents the exponential integral function. The corresponding
parameters have the following values:
‑ Coefficients: αm,1 = 0.48962315, αm,2 = 0.24014465, αm,3 = 1.0932969, αm,4 = 0.08936644,

αm,5 = 67.4598, and αm,6 = 1331.29.
‑ Exponents: εm,3a = 1.56671, εm,3b = 0.930273, εm,4 = 4.785, εm,5 = 166.594, εm,6 = 5.93118,

and εreg,2b = 5.248961.
‑ Characteristic densities in g/cm3: ρm,2 = 1.35802, ρm,3 = 0.449618, ρm,4a = 3.30149, ρm,4b

= 4.05911, and ρm,6 = 24.5967, and the new value for ρreg,Ronc is now equal to 2.22915.
It immediately follows that this new function needs more parameters than for

Equation (7), but the global shape of the function mNIST(ρ) is very similar to that of Equa‑
tion (7), except that this new function has a strong oscillation around the density value
ρ = 1.8 g/cm3. This oscillation is needed for a good representation of the data, but it is phys‑
ically difficult to understand. Equation (7bis) is therefore of no practical use compared to
Equation (7) and will not be analyzed further.

3. Thermodynamic Properties Derived from Isochoric Heat Capacity
BecauseHelmholtz free energy versus density and temperature is one of the four basic

forms of an equation of state, we focus here on the process for deducing its expression. For
this purpose, we used the thermodynamic relation:

CV =

(
∂U
∂T

)
V
= T

(
∂S
∂T

)
V
= −T

(
∂2F
∂T2

)
V

(15)

Consequently, F can be deduced from (i) two successive integrations of CV or (ii) a
single integration of CV to calculate U and S and then use the thermodynamic relation:

F = U − TS (16)

withU(ρ, T) =
∫

CV(ρ, T)dT+U0(ρ)+ constant, S(ρ, T) =
∫ CV (ρ,T)

T dT+S0(ρ)+ constant
and CV(ρ, T) = RA

(
c̃o

V(T) + c̃r
V(ρ, T)

)
(given by Equations (1), (2), and (5)).

We chose the second approach that the two integrations to find U and S induces the
existence of two arbitrary functions, U0(ρ) and S0(ρ), respectively, which are simpler to
determine than directly finding the arbitrary function for F. The later simply writes F0(ρ,
T) =U0(ρ)− TS0(ρ). It will be seen in Section 3.1 how the two arbitrary functionsU0(ρ) and
S0(ρ) can be determined.

There is no difficulty in finding a primitive of c̃oV(T) for U or S. For the residual part
of CV (see Equation (2)), there is also no difficulty in finding a primitive of c̃rV,reg and c̃rV,crit.
However, for c̃rV,reg, when T >> Tc/λ, two expressions can be obtained for the primitive of
U depending onwhether the value ofm(ρ) is zero or not, that is to say, a power law ifm ̸= 0
and a logarithmic law if m = 0. It can be seen in Figure 3 that there are two values of ρ for
which m = 0, namely, ρlow = 0.11726382 g/cm3 and ρhigh = 3.29510771 g/cm3. To obtain a
single expression that is uniformly valid, the primitive is written as follows:

∫
c̃rV,reg(T >> Tc/λ)dT =

3
2

nreg(ρ)Tc
(T/Tc)

m(ρ) − 1
m(ρ)

(17)

Using the Hospital’s rule, it can be easily verified that lim
m→0

(T/Tc)
m(ρ)−1

m(ρ)
= ln

(
T
Tc

)
,

which corresponds to the right expression for the primitive when m = 0.
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The same problem occurs for the primitive of S, but this time, the expression depends
on whether m = 1 or not. For argon, the value m = 1 is never reached, but to maintain a
general expression, we proceed in the same manner to determine the expression for the
primitive of S.

For the integration of CV, the only term for which it may be difficult to find a primitive
is c̃rV,nonreg (see Equation (2)). It could be integrated numerically, but a reference state must
be chosen; thiswill be shown in Section 3.4. Tofind aprimitive, it is also possible to perform
a series expansion of the term (1 − x)−1 with x = Tdiv/T. Hence, c̃rV,nonreg can be written
in the following form:

c̃rV,nonreg(ρ, x) =
3
2

nnonreg(ρ)
∞

∑
k=0

exp
(
−x−3/2

)
xk, k ∈ NNN (18)

A primitive for each term of the series can be obtained. For a practical calculation, the
series expansion must be truncated. The convergence is slower as x approaches the unit
value, and as a result, the number of terms thatmust be considered increases. An empirical
formula for calculating the number of terms required is given below so that the residual
error due to truncation is less than 0.1% (except for x > 0.99 because the function weakly
diverges as T → Tdiv):

kmax(x) = 1 +
⌊

400
exp[exp(−8.52 |1 − x|)− 1]

1 + 16.6 |1 − x|

⌋
(19)

where ⌊•⌋ represents the integer part function.
Finally, the equations for U and S can be written in standard dimensionless form

(i.e., an ideal gas part and a residual one) as

ũ(ρ, T) =
U(ρ, T)

RAT
=

3
2

[
1 +

Tc

λ0T
exp

(
−λ0T

Tc

)]
+ ũ∗(ρ, T) + ũ0(ρ) (20)

with

ũ∗(ρ, T) = 3
2 nreg(ρ) Tc

T

{
( T

Tc )
m(ρ)−1

m(ρ)
+ λ−m(ρ)

2−m(ρ)
Γ
(

m(ρ)
2−m(ρ)

,
(

λT
Tc

)2−m(ρ)
)}

−nnonreg(ρ)
Tdiv(ρ)

T

∞
∑

k=0
Γ
(
− 2

3 (k − 1),
(

Tdiv(ρ)
T

)−3/2
)
+ 3

2 ncrit(ρ)
(Tdiv(ρ)/T)εcrit(ρ)

1−εcrit(ρ)

(21)

and
s̃(ρ, T) =

S(ρ, T)
RA

=
3
2

[
ln(T)− Ei

(
−λ0T

Tc

)]
+ s̃∗(ρ, T) + s̃0(ρ) (22)

with

s̃∗(ρ, T) = 3
2 nreg(ρ)

{
( T

Tc )
m(ρ)−1−1

m(ρ)−1 + λ1−m(ρ)

2−m(ρ)
Γ
(

m(ρ)−1
2−m(ρ)

,
(

λT
Tc

)2−m(ρ)
)}

−nnonreg(ρ)
∞
∑

k=0
Γ
(
− 2

3 k,
(

Tdiv(ρ)
T

)−3/2
)
− 3

2 ncrit(ρ) εcrit(ρ)
−1
(

Tdiv(ρ)
T

)εcrit(ρ)
(23)

where Γ(a, z) =
∫ ∞

z ta−1 exp(−t)dt represents the incomplete gamma function, and
Ei(z) =

∫ ∞
−z

exp(−t)
t dt represents the exponential integral function.

In the ideal gas limit, the relations for internal energy and entropy must be written as

Uo(T) =
3
2

RAT + Uo
0 (24)

So(ρ, T) =
3
2

RA ln(T)− RA ln(ρ) + So0 (25)
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whereUo
0 and So0 are arbitrary constants. These formulas can be rewritten as follows (using

Equation (5) for c̃oV):

Uo(T) =
3
2

RAT
[

1 +
Tc

λ0T
exp

(
−λ0T

Tc

)]
+ Uo

0 (26)

So(ρ, T) =
3
2

RA

[
ln(T)− Ei

(
−λ0T

Tc

)]
− RA ln(ρ) + So0 (27)

Equations (26) and (27) are used to express the Helmholtz free energy and its various
derivatives as shown in Table 3.

Table 3. The ideal gas part ã◦ of the dimensionlessHelmholtz free energy function and its derivatives.

ã◦ = 3
2

[
1 − ln(T) + Tc

λ0T exp
(
− λ0T

Tc

)
+ Ei

(
− λ0T

Tc

)]
+ ln(ρ) + ς0

Tc
T − ω0

Tc

(
∂ã◦
∂T

)
ρ
= − Tc

T

[
3
2

(
1 + Tc

λ0T exp
(
− λ0T

Tc

))
+ ς0

Tc
T

]
T2

c

(
∂2 ã◦
∂T2

)
ρ
= 3

2

(
Tc
T

)2(
1 + 4

3
Tc
T ς0

)
+ 3

2

(
Tc
T

)2(
1 + 2 Tc

λ0T

)
exp

(
− λ0T

Tc

)
ρc

(
∂ã◦
∂ρ

)
T
=

ρc
ρ

ρ2
c

(
∂2 ã◦
∂ρ2

)
T
= −

(
ρc
ρ

)2(
∂2 ã◦
∂ρ∂T

)
= 0

The above expressions can now be used to rearrange Equations (20) and (22) in order
to extract the residual part for the internal energy (i.e., ũ(ρ, T) minus the ideal gas part)
and for the entropy:

ũr(ρ, T) = ũ∗(ρ, T) + ũ0(ρ)− ς0
Tc

T
with ς0 =

Uo
0

RATc
(28)

s̃r(ρ, T) = s̃∗(ρ, T) + s̃0(ρ) + ln(ρ)− ω0 with ω0 =
So0
RA

(29)

where ς0 and ω0 are two arbitrary constants. In view of fitting NIST data, the constant
values must be such that ς0 = −0.00070133 and ω0 = 2.71428.

3.1. Determination of the Arbitrary Functions for Internal Energy and Entropy
The two arbitrary functions U0(ρ) and S0(ρ) can be determined in two different ways.

One way is to find the difference between previously published data ofU (or S) and theU (or
S) values calculated by the presentmodeling and then find a function (U0(ρ) or S0(ρ)) that best
fits this difference. However, this method could be problematic as U and S are not measured
quantities anddependona chosen reference state. Anotherway is to use a newexperimentally
measured quantity, namely, pressure P, and by using the following relationship:

P = −
(

∂F
∂V

)
T
= ρ2

(
∂F
∂ρ

)
T

(30)

Along isochors, from Equations (15) and (16), it is deduced that F =
∫

CVdT + U0 −
T
(∫ CV

T dT + S0

)
, and its derivative versus V (or ρ) gives P − PCV = U′

0 − TS′
0, with PCV =

∂
∂V

(
−
∫

CVdT + T
∫ CV

T dT
)
, U′

0 = ∂
∂V (U0), and S′

0 = ∂
∂V (S0). Here, PCV is calculated from

theCV values given by Equation (1). For a given isochor of density ρ, the difference P− PCV
must be a straight line (of slope S′

0 and ordinate at origin U′
0) if the CV values are well

predicted by Equation (1). This is effectively observed in Figure 5, which displays P − PCV
versus T on different isochors (i.e., the quasi‑infinite curvature is a consequence of the
extremely good representation of CV along isochors). The best and simplest functions that
represent U′

0(ρ) and S′
0(ρ) are
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û′
0(ρ) =

U′
0(ρ)

3
2 RATc

=
αu,0

ρt,Liq
− 1

ρ

(
ρt,Liq

ρ

) [
αu,1 exp

(
− ρu,1

ρ

)
− αu,2

(
ρu,2

ρt,Liq

)εu,2
(

ρ
ρu,2−ρ

)εu,2

+αu,3

(
ρu,3

ρt,Liq

)εu,3
(

ρ
ρu,3−ρ

)εu,3
+αu,4

(
ρ

ρt,Liq

)εu,4 − αu,5

(
ρ

ρt,Liq

)3
exp

(
−
(

ρu,1
ρ

)2
)
+ αu,6

(
ρ

ρ+ρc

)εu,6
] (31)

and

s̃′0(ρ) =
S′

0(ρ)
RA

= − 1
ρ

[
1 + αs,1

(
ρ

ρt,Liq

)εs,1−1( ρs,1
ρ+ρs,1

)εs,1 − αs,2

(
ρ

ρt,Liq

)εs,2−1
ln
(

ρ
ρt,Liq

)
+ αs,3

(
ρ

ρt,Liq

)εs,3−1
ln
(

ρ
ρt,Liq

)
+αs,4

(
ρ

ρt,Liq

)εs,4−1
exp

(
− ρ

ρs,4

)
+ αs,5

(
ρ

ρt,Liq

)
exp

(
−
(

ρ
ρs,1

)εs,5
)
+ αs,6

(
ρ

ρt,Liq

)
exp

(
−
(

ρ−ρs,4
ρc

)2
)]

+s̃′0,Ronc(ρ)

(32)

with

s̃′0,Ronc(ρ) =
1

ρsRonc,1

[
αsRonc,1

(
ρ

ρsRonc,1

)εsRonc,1
− αsRonc,2

(
ρ

ρsRonc,1

)
exp

(
−ρsRonc,2

ρ

)][
1 − exp

(
−
(

ρ

ρc

)2
)]

(33)
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Before continuing, it is worth noting that lim
ρ→0

ρU′
0(ρ)

3
2 RATc

= 0 and lim
ρ→0

ρS′
0(ρ)

RA
= −1.

A primitive of expressions (31) and (32) leads to the functionsU0(ρ) and S0(ρ) such that

û0(ρ) = U0(ρ)
3
2 RATc

= αu,0
ρ

ρt,Liq
− αu,1

εu,1−1

(
ρt,Liq
ρu,1

)
exp

(
− ρu,1

ρ

)
+

αu,2
εu,2−1

(
ρu,2

ρt,Liq

)εu,2−1( ρ
ρu,2−ρ

)εu,2−1

− αu,3
εu,3−1

(
ρu,3

ρt,Liq

)εu,3−1( ρ
ρu,3−ρ

)εu,3−1
− αu,4

εu,4−1

(
ρ

ρt,Liq

)εu,4−1

+ 1
2 αu,5

(
ρ

ρt,Liq

)2
[

exp
(
−
(

ρu,1
ρ

)2
)
−
(

ρu,1
ρ

)2
Γ
(

0,
(

ρu,1
ρ

)2
)]

− αu,6
εu,6−1

(
ρt,Liq

ρc

) (
ρ

ρ+ρc

)εu,6−1

(34)

and
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s̃0(ρ) =
S0(ρ)

RA
= − ln

(
ρ

ρt,Liq

)
− αs,1

εs,1−1

(
ρ

ρt,Liq

)εs,1−1( ρs,1
ρ+ρs,1

)εs,1−1

+
αs,2

(εs,2−1)2

(
ρ

ρt,Liq

)εs,2−1 [
−1 + (εs,2 − 1) ln

(
ρ

ρt,Liq

)]
− αs,3

(εs,3−1)2

(
ρ

ρt,Liq

)εs,3−1 [
−1 + (εs,3 − 1) ln

(
ρ

ρt,Liq

)]
− αs,4

(
ρ

ρt,Liq

)εs,4−1
E2−εs,4

(
ρ

ρs,4

)
+

αs,5
εs,5

(
ρ

ρt,Liq

)
E εs,4−1

εs,4

((
ρ

ρs,1

)εs,5
)
−

√
π

2 αs,6

(
ρc

ρt,Liq

)
erf
(

ρ−ρs,4
ρc

)
+ s̃0,Ronc(ρ)

(35)

with

s̃0,Ronc(ρ) =
αsRonc,1

2 (εsRonc,1+1)

(
ρ

ρsRonc,1

)1+εsRonc,1
[

2 + (1 + εsRonc,1) E 1−εsRonc,1
2

((
ρ
ρc

)2
)]

− αsRonc,2
ρsRonc,1

∫ ρ
0

(
t

ρsRonc,1

)
exp

(
− ρsRonc,2

t

) (
1 − exp

(
−
(

t
ρc

)2
))

dt
(36)

where En(z) =
∫ ∞

1
e−zt

tn dt represents the exponential integral function, and erf(x) represents
the error function.

The coefficient and exponent values appearing in these equations are given in Table 4.
The density dependence of the terms ũ0 and s̃0 are shown in Figure 6.

Table 4. Coefficients and exponents for û0 and s̃0.

i εi αi

u,0 16.86969325
u,1 71.08169282
u,2 2.57795090 12.16671437
u,3 2.01916041 22.41395798
u,4 12.94678106 0.13352634
u,5 16612.44198645
u,6 1.78738624 0.04855950
s,1 2.23951150 11.75732913
s,2 3.18259094 9.91697667
s,3 2.71140252 12.27973100
s,4 1.55994791 0.04075918
s,5 21.47158258 0.31499626
s,6 0.46391511
sRonc,1 62.32164244 57.01690712
sRonc,2 187.65045674
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It is important to remember that the two primitives above depend on an arbitrary
constant αu0 and αs0, respectively. Moreover, it must be ensured that the dimensionless
form for internal energy is such that

ũ0(ρ) =
Tc

T

[
3
2

û0(ρ) + αu0

]
(37)

and for the entropy,
s̃∗0(ρ) = s̃0(ρ) + ln(ρ) (38)

From Equations (20), (22), and (34)–(38), the expression for Helmholtz free energy can
be easily deduced. In dimensionless form, this one writes as follows:

ã(ρ, T) =
F

RAT
=

U
RAT

− S
RA

= ũ(ρ, T)− s̃(ρ, T) = ão(ρ, T) + ãr(ρ, T) (39)

where ão(ρ, T) is given in Table 3 and

ãr(ρ, T) = ãrreg(ρ, T) + ãrnonreg(ρ, T) + ãrcrit(ρ, T)︸ ︷︷ ︸
ũ∗−s̃∗

+ ãr0(ρ, T) (40)

with

ãr0(ρ, T) = ũ0(ρ, T)− [s̃∗0(ρ)− ω0]− ς0
Tc

T
=

Tc

T

[
3
2

û0(ρ) + αu0 − ς0

]
− [s̃∗0(ρ) + αs0 − ω0] (41)

For the sake of simplicity, the two constants αu0 and αs0 can be chosen such that αu0 = ς0
and αs0 = ω0. It follows that

ãr0(ρ, T) =
3
2

Tc

T
û0(ρ)− s̃∗0(ρ) (42)

and
ũr(ρ, T) = ũ∗(ρ, T) +

3
2

Tc

T
û0(ρ) (43)

s̃r(ρ, T) = s̃∗(ρ, T) + s̃∗0(ρ) (44)

It appears that if one wants to represent the data from NIST instead of the data of
Ronchi for densities higher than ρt,Liq, it is only necessary to change the mathematical
form of Equations (31)–(33). For example, the new function for û′

0(ρ) can be written with
the same mathematical terms as in Equation (31) but without the two last terms and with
different values of the parameters. Therefore, it can be understood that the global shape
of the new functions û′

0(ρ) and ŝ′0(ρ) will have very similar variations. This remark also
shows that the two data sets discussed above for high densities can be represented by only
small variations in the shape of the two derivative functions û′

0(ρ) and ŝ′0(ρ). Once these
two functions are determined, all the thermodynamic equations of state are known.

Table 5 summarizes the various terms making up the residual part of the Helmholtz
free energy.

Table 5. Mathematical expressions of the dimensionless terms in the residual part ãr of Helmholtz
free energy for T ≥ Tdiv.

ãrreg = 3
2 nreg Tc

T

{
( T

Tc )
m−1

m + λ−m

2−m Γ
(

m
2−m ,

(
λT
Tc

)2−m
)}

− 3
2 nreg

{
( T

Tc )
m−1−1

m−1 + λ1−m

2−m Γ
(

m−1
2−m ,

(
λT
Tc

)2−m
)}

ãrnonreg = nnonreg
∞
∑

k=0

{
Γ
(
− 2

3 k,
(

Tdiv
T

)−3/2
)
− Tdiv

T Γ
(
− 2

3 (k − 1),
(

Tdiv
T

)−3/2
)}

ãrcrit =
3
2 ncrit

(Tdiv/T)εcrit
(1−εcrit) εcrit

ãr0 = 3
2

Tc
T û0(ρ)− {s̃0(ρ) + ln(ρ)}
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3.2. Analytic Expression of the Thermal Equation of State for T ≥ Tdiv
The thermal state equation P = P(ρ, T), which is a fundamental equation to calculate

the basic thermal properties of argon, can easily be establishedusingEquations (30) and (39)
for free energy. Free energy is made up of four terms coming from the residual part of
Helmholtz free energy and a term that represents the behavior of the ideal gas:

P(ρ, T) = Preg(ρ, T) + Pnonreg(ρ, T) + Pcrit(ρ, T) + P0(ρ, T) + ρRAT (45)

or in a dimensionless form

Z =
P

ρRAT
=

Preg(ρ, T)
ρRAT︸ ︷︷ ︸

Zreg

+
Pnonreg(ρ, T)

ρRAT︸ ︷︷ ︸
Znonreg

+
Pcrit(ρ, T)

ρRAT︸ ︷︷ ︸
Zcrit

+
P0(ρ, T)
ρRAT

+ 1︸ ︷︷ ︸
Z0

(46)

Zreg = ρ

(
∂ãrreg

∂ρ

)
T

with

Znonreg = ρ
(

∂ãrnonreg
∂ρ

)
T
= −ρ n′

nonreg(ρ)
∞
∑

k=0

[
x Γ
(
− 2

3 (k − 1), x−3/2
)
− Γ

(
− 2

3 k, x−3/2
)]

−nnonreg(ρ)
ρ T′

div(ρ)
T

∞
∑

k=0
Γ
(
− 2

3 (k − 1), x−3/2
) (47)

Z0 = ρ

(
∂ãr0
∂ρ

)
T
+ 1 = ρ

[
3
2

Tc

T
û′

0(ρ)− ŝ′0(ρ)
]

(48)

Zcrit = ρ
(

∂ãrcrit
∂ρ

)
T

= 3
2 ρ n′

crit(ρ)
(Tdiv(ρ)/T)εcrit(ρ)

εcrit(ρ) (1−εcrit(ρ))

+ 3
2 ρ ncrit(ρ)

{
2εcrit(ρ)−1

εcrit(ρ)
2(εcrit(ρ)−1)2 ε′crit(ρ)

(
Tdiv(ρ)

T

)εcrit(ρ)

− (Tdiv(ρ)/T)εcrit(ρ)

εcrit(ρ) (εcrit(ρ)−1)

[
ε′crit(ρ) ln

(
Tdiv(ρ)

T

)
+ εcrit(ρ)

T′
div(ρ)

Tdiv(ρ)

]} (49)

It is recalled that x = Tdiv/T in the expression of Znonreg. Zreg(ρ, T) displays toomany
terms, and its expression is given in Appendix A. The expressions of the first derivatives
of Equations (6)–(12) are listed in Appendix B. From the expression of these factors, it is
easy to see that Zreg = Znonreg = Zcrit = 0 and Z0 = 1 for ρ → 0; therefore, Z → 1 for
any temperature when density tends to zero. In a certain range of temperatures, isotherms
intersect the line Z = 1 for ρ values that are not identically zero. As thermodynamic quan‑
tities corresponding to Z = 1 are physically important and not easy to find in the literature,
they are listed in Table 6.

Table 6. Thermodynamic properties corresponding to Z = 1 (i.e., ideal curve) deduced from Equa‑
tion (46).

T/Tc P/Pc ρ/ρc CV/RA CP/RA c
/√

RAT
M

0.56408 5.3565 2.7491 2.7545 5.1425 7.1030
0.62500 5.7641 2.6699 2.6239 5.0445 6.5008
0.69444 6.1935 2.5819 2.4987 4.9633 5.9013
0.76389 6.5850 2.4956 2.3942 4.9091 5.3765
0.83333 6.9372 2.4100 2.3054 4.8869 4.9093
0.90278 7.2480 2.3242 2.2290 4.8871 4.4926
0.97222 7.5154 2.2379 2.1626 4.8993 4.1212
1.0417 7.7380 2.1505 2.1044 4.9136 3.7909
1.1111 7.9149 2.0622 2.0532 4.9213 3.4978
1.1806 8.0462 1.9731 2.0078 4.9165 3.2384
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Table 6. Cont.

T/Tc P/Pc ρ/ρc CV/RA CP/RA c
/√

RAT
M

1.2500 8.1324 1.8835 1.9673 4.8967 3.0090
1.3194 8.1744 1.7935 1.9309 4.8621 2.8062
1.3889 8.1729 1.7036 1.8979 4.8148 2.6267
1.4583 8.1284 1.6136 1.8676 4.7565 2.4674
1.5278 8.0406 1.5236 1.8395 4.6881 2.3258
1.5972 7.9091 1.4335 1.8133 4.6093 2.1994
1.6667 7.7330 1.3432 1.7887 4.5188 2.0865
1.7361 7.5118 1.2526 1.7653 4.4151 1.9854
1.8056 7.2453 1.1617 1.7429 4.2976 1.8947
1.8750 6.9343 1.0707 1.7214 4.1672 1.8133
1.9444 6.5801 0.97968 1.7005 4.0261 1.7402
2.0139 6.1845 0.88903 1.6803 3.8775 1.6743
2.0833 5.7492 0.79890 1.6605 3.7247 1.6150
2.1528 5.2754 0.70942 1.6412 3.5712 1.5617
2.2222 4.7635 0.62056 1.6223 3.4196 1.5137
2.2917 4.2127 0.53218 1.6038 3.2719 1.4707
2.3611 3.6210 0.44397 1.5857 3.1294 1.4322
2.4306 2.9847 0.35551 1.5682 2.9927 1.3977
2.5000 2.2996 0.26630 1.5511 2.8616 1.3667
2.5500 1.7737 0.20137 1.5389 2.7700 1.3462
2.6000 1.2211 0.13596 1.5266 2.6803 1.3270
2.6500 0.66245 0.072369 1.5144 2.5944 1.3095
2.6900 0.29167 0.031390 1.5061 2.5396 1.2987
2.7100 0.14787 0.015796 1.5029 2.5193 1.2947
2.7125 0.11575 0.012354 1.5022 2.5149 1.2939

3.3. The Liquid–Vapor Coexistence Curve
At a given temperature T, vapor pressure and densities of the coexisting phases can

be determined by the simultaneous resolution of the equations:

Psat
ρσl RAT

= 1 + ρσl

(
∂ãrσl
∂ρσl

)
T
= Z(ρσl , T) (50)

Psat
ρσvRAT

= 1 + ρσv

(
∂ãrσv
∂ρσv

)
T
= Z(ρσv, T) (51)

Psat
RAT

(
1

ρσv
− 1

ρσl

)
− ln

(
ρσl
ρσv

)
= ãr(ρσl , T)− ãr(ρσv, T) (52)

where the indices σl and σv represent the liquid and the vapor coexistence states, respec‑
tively.

These equations represent the phase equilibrium conditions, i.e., the equality of pres‑
sure, temperature, and specific Gibbs energy (Maxwell criterion) in the coexisting phases.
The calculated values on the liquid–vapor coexistence curve (vapor pressure, saturated liq‑
uid density, saturated vapor density, etc.) are given in Table 12. Approximate formulas for
representing the pressure and densities of liquid and vapor as a function of temperature
along the coexistence curve are given in Appendix C.

3.4. Thermodynamic State inside the Liquid–Vapor Coexistence Curve for T < Tdiv(ρ)
The thermodynamic properties of argon are calculated from the isochoric heat capac‑

ity equation CV(ρ, T). However, with the equation only being valid for T ≥ Tdiv, a new
equation, valid for T < Tdiv (i.e., inside the liquid–vapor coexistence region), has to be es‑
tablished. This requires solving three mathematical problems.
• First, an expression of CV(ρ, T) for T < Tdiv(ρ) has to be found.



Fluids 2024, 9, 102 20 of 67

• Secondly, to integrate CV, the artificial divergence introduced with the term c̃rV,nonreg
must be removed in order to have a finite value of CV for T = Tdiv(ρ).

• Finally, for the integration of CV, a reference state must also be chosen.
The procedure used to develop the modified equation is now presented. It will be

shown that this new formulation leads to a better description of the two‑phase thermody‑
namic properties than the polynomial approach.

3.4.1. Expression of CV
The two terms in CV(ρ, T) creating difficulties are c̃rV,nonreg and c̃rV,crit. For T < Tdiv,

c̃rV,nonreg becomes negative, which has no physical meaning; indeed, the thermodynamic
thermal stability has always to be satisfied. And the term c̃rV,crit, for T < Tdiv, diverges
when T → 0, which also has no physical meaning. The easiest way to solve these problems
is to take a symmetric function by changing the variable Tdiv/T into T/Tdiv; hence, the
following is obtained:

c̃r
V,nonreg

inside

(ρ, T < Tdiv) =
3
2

nnonreg(ρ) exp

[
−
(

T
Tdiv(ρ)

)−3/2
]

1
1 − T

Tdiv(ρ)

(53)

c̃r
V,crit
inside

(ρ, T < Tdiv) =
3
2

ncrit(ρ)
(

T
Tdiv(ρ)

)εcrit(ρ)

(54)

However, a problem remains as the two equations (c̃rV,nonreg and c̃r
V,nonreg

inside

) become

infinite for T = Tdiv. In fact, this is the consequence of the extensive nature of CV. Therefore,
this divergence can be removed by explicitly introducing a finite numberNV of particles into
the equations for CV. NV has to be the largest possible without being infinite (which is the
condition for an extensive property). Then, as these equations must converge for T = Tdiv,
the terms 1

1− T
Tdiv

and 1
1− Tdiv

T

have to be corrected so that the two equations must tend to the

same finite value for T = Tdiv. The following functions have the required properties:

• 1
1− T

Tdiv

is replaced by 1−N
−(1− T

Tdiv
)

V
1− T

Tdiv

, so c̃rV,nonreg now becomes

c̃r
V,nonreg
outside

=
3
2

nnonreg(ρ) exp

[
−
(

Tdiv(ρ)
T

)−3/2
]

1 − N
−(1− T

Tdiv
)

V

1 − T
Tdiv

(55)

• and 1
1− Tdiv

T

is replaced by 1−N
−(1−

Tdiv
T )

V

1− Tdiv
T

, so c̃r
V,nonreg
inside

now becomes

c̃r
V,nonreg
inside

=
3
2

nnonreg(ρ) exp

[
−
(

T
Tdiv(ρ)

)−3/2
]

1 − N−(1− Tdiv
T )

V

1 − Tdiv
T

(56)

The two corrections tend to ln(NV)when T → Tdiv . NV may be thought of as a quan‑
tity representing the number of particles in the volume V for a given experiment, so it can
be written as

NV = f mol Na
ρ

ρc
(57)

where fmol = 1020 is an arbitrary constant required to remove the divergence. This means
that, near the transition, CV and its related quantities are no longer extensive quantities.
This is not surprising because sample size effects are known to exist around the phase
transition. Thus, the divergence occurs only for an infinite number of particles. This non‑
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extensive contribution introduced in Equations (55) and (56) has also been used to revisit
liquid physics in order to explain rheological behavior under a wide variety of thermody‑
namic and mechanical conditions [8–11].

Outside the liquid–vapor coexistence region, thepercentagedeviationbetween c̃rV,nonreg
calculated by Equation (18), and c̃rV,nonreg, calculated by Equation (55), is shown in Figure 7.
It is observed that the difference is only significant in the close vicinity of the critical point.
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Eq. (18)

−Cr
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Eq. (55)


/

Cr
V,nonreg
Eq. (18)

for the single‑phase region in the temperature range of Tt

to 160 K and density range of ρt,Gas to ρt,Liq.

Figure 8 shows the behavior of CV on two isotherms that are crossing the coexistence
phase. One can observe that, on both isotherms, the new model always gives positive
values ofCV withmaximum values, as has been experimentally observed. It can be noticed
that the TSW model leads to erroneous CV variations in this coexistence region.
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3.4.2. Choice of a Reference State
The functionsU, S, and F are obtained by successive integrations of CV along isochors;

thismeans a reference temperature is necessary. FromEquations (55) and (56), it is obvious
that the only state that is identical for all isochors is T infinite.
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Due to the fact that, firstly, the development of an equation such as Equation (18) for
c̃rV,nonreg becomes more complex with a much slower convergence of the series and, sec‑
ondly, there are two expressions for this term inside the liquid–vapor coexistence region,
it is preferable and easier to numerically integrate these terms. Thus, the respective expres‑
sions for ũrnonreg and s̃rnonreg are now

ũrnonreg(ρ, T) = T−1
∫ T

∞
c̃rV,nonreg(ρ, t)dt (58)

s̃rnonreg(ρ, T) =
∫ T

∞
c̃rV,nonreg(ρ, t) t−1dt (59)

with c̃rV,nonreg(ρ, T) =


c̃r

V,nonreg
outside

(ρ,T) if T ≥ Tdiv

c̃r
V,nonreg

inside

(ρ,T) otherwise .

To complete the description, the expression for the non‑regular compressibility factor
is also given, i.e.,

Znonreg = ρ

(
∂ãrnonreg

∂ρ

)
T

=
ρ

T

∫ T

∞

(
1 − T

t

)
∂

∂ρ
c̃rV,nonreg(ρ, t) dt (60)

To calculate the partial derivative of c̃rV,nonreg,NVmust be considered constant because
the experiments imagined here to measure the pressure are performed on a closed system.
Thus, the expressions of the partial derivative of c̃rV,nonreg are

∂
∂ρ c̃r

V,nonreg
outside

(ρ, T) = 3
2

exp
(
−
( Tdiv(ρ)

T

)−3/2)
1− Tdiv(ρ)

T

{
n′
nonreg(ρ)

(
1 − N−1+

Tdiv(ρ)
T

V

)

+nnonreg(ρ)
Tdiv(ρ)

T

 1−N
−1+

Tdiv(ρ)
T

V

1− Tdiv(ρ)
T

− N−1+
Tdiv(ρ)

T
V ln(NV) +

3
2

(
Tdiv(ρ)

T

)−5/2
(

1 − N−1+
Tdiv(ρ)

T
V

)
(61)

∂
∂ρ c̃r

V,nonreg
inside

(ρ, T) = 3
2

exp
(
−
(

T
Tdiv(ρ)

)−3/2
)

1− T
Tdiv(ρ)

{
n′
nonreg(ρ)

(
1 − N

−1+ T
Tdiv(ρ)

V

)

−nnonreg(ρ)
(

T
Tdiv(ρ)

)2 T′
div(ρ)

T

 1−N
−1+ T

Tdiv(ρ)
V

1− T
Tdiv(ρ)

− N
−1+ T

Tdiv(ρ)
V ln(NV) +

3
2

(
T

Tdiv(ρ)

)−5/2
(

1 − N
−1+ T

Tdiv(ρ)
V

)
(62)

In the samemanner as previously, one can deduce primitives forU and S correspond‑
ing to the term c̃r

crit
inside

as follows:

ũr
crit
inside

=
3
2

ncrit(ρ)

[
(T/Tdiv(ρ))

εcrit(ρ)

1 + εcrit(ρ)
+

2εcrit(ρ)

1 − εcrit(ρ)
2

]
(63)

s̃r
crit
inside

=
3
2

ncrit(ρ) εcrit(ρ)
−1

[(
T

Tdiv(ρ)

)εcrit(ρ)

− 2

]
(64)
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Then it is deduced that

ãr
crit
inside

(ρ, T) =
3
2

ncrit(ρ)

[
(T/Tdiv(ρ))

εcrit(ρ)

εcrit(ρ) (1 + εcrit(ρ))
+

2

1 − εcrit(ρ)
2

]
(65)

and

P
crit
inside

(ρ,T)

ρRAT = 3
2 ρ n′

crit(ρ)

[
(T/Tdiv(ρ))

εcrit(ρ)

εcrit(ρ) (1+εcrit(ρ))
+ 2

1−εcrit(ρ)
2

]
+ 3

2 ρ ncrit(ρ)
{
− 1+2εcrit(ρ)

εcrit(ρ)
2(1+εcrit(ρ))

2 ε′crit(ρ)
(

T
Tdiv(ρ)

)εcrit(ρ)
+

4εcrit(ρ) ε′crit(ρ)

(1−εcrit(ρ)
2)

2

+ (T/Tdiv(ρ))
εcrit(ρ)

εcrit(ρ) (1+εcrit(ρ))

[
ε′crit(ρ) ln

(
T

Tdiv(ρ)

)
− εcrit(ρ)

T′
div(ρ)

Tdiv(ρ)

]}
(66)

We emphasize here that the choice of these expressions to describe the coexistence
region has no effect on the properties of the pure fluid up to the saturation curve.

The presentmodelingwith these new expressions of regular andnon‑critical terms is re‑
ferred to as the “non‑extensive formulation”. The non‑extensive residual part of Helmholtz
energy ãr(ρ, T) and its partial derivatives with temperature are given in Table 7. The first
partial derivative with density can be easily deduced from the expression of the compress‑
ibility factor Z. Then, the second partial derivatives ∂2 ãr

∂ρ∂T and ∂2 ãr
∂ρ2

∣∣∣
T
can be obtained from

the first derivatives of the compressibility factor, which are given in Tables 8 and 9.

Table 7. Mathematical expressions of the dimensionless terms for the non‑extensive residual part of
the Helmholtz function and its partial derivatives with temperature.

ãrreg = 3
2 nreg Tc

T

{
1
m

[(
T
Tc

)m
− 1
]
+ λ−m

2−m Γ
(

m
2−m ,

(
λT
Tc

)2−m
)}

− 3
2 nreg

{
1

m−1

[(
T
Tc

)m−1
− 1
]
+ λ1−m

2−m Γ
(

m−1
2−m ,

(
λT
Tc

)2−m
)}

Tc

(
∂ãrreg
∂T

)
ρ
= 3

2 nreg
(

Tc
T

)2
m−1

{
1 −

(
T
Tc

)m
+ λ−mm

m−2 Γ
(

m
2−m ,

(
λT
Tc

)2−m
)}

T2
c

(
∂2 ãrreg
∂T2

)
ρ

= 3
2 nreg

(
Tc
T

)3
{(

T
Tc

)m
(

2−m
m + exp

(
−
(

λT
Tc

)2−m
))

− 2
m + 2λ−m

m−2 Γ
(

m
2−m ,

(
λT
Tc

)2−m
)}

ãrnonreg =
∫ T

∞ c̃rV,nonreg

(
1 − T

t

)
dt
T

Tc

(
∂ãrnonreg

∂T

)
ρ
= − Tc

T2

∫ T
∞ c̃rV,nonreg dt, T2

c

(
∂2 ãrnonreg

∂T2

)
ρ

= −
(

Tc
T

)2
c̃rV,nonreg + 2 T2

c
T3

∫ T
∞ c̃rV,nonreg dt

ãrcrit =
3
2 ncrit


(Tdiv/T)εcrit

(1−εcrit) εcrit
if T ≥ Tdiv

(T/Tdiv)
εcrit

(1+εcrit) εcrit
+ 2

1−ε2
crit

otherwise

Tc

(
∂ãrcrit
∂T

)
ρ
= 3

2 ncrit Tc
T


1

εcrit−1

(
Tdiv

T

)εcrit
if T ≥ Tdiv

1
1+εcrit

(
T

Tdiv

)εcrit
otherwise

T2
c

(
∂2 ãrcrit
∂T2

)
ρ
= 3

2 ncrit
(

Tc
T

)2


1+εcrit
εcrit−1

(
Tdiv

T

)εcrit
if T ≥ Tdiv

εcrit−1
1+εcrit

(
T

Tdiv

)εcrit
otherwise

ãr0 = 3
2

Tc
T û0(ρ)− {s̃0(ρ) + ln(ρ)}

Tc

(
∂ãr0
∂T

)
ρ
= − 3

2

(
Tc
T

)2
û0(ρ)

T2
c

(
∂2 ãr0
∂T2

)
ρ
= 3

(
Tc
T

)3
û0(ρ)
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Table 8. Mathematical expressions of the first partial derivatives with temperature of the compress‑
ibility factor Z. All these derivatives are in K−1.(

∂Zreg
∂T

)
ρ
is given in Appendix A(

∂Znonreg
∂T

)
ρ
= − ρ

T2

∫ T
∞

∂c̃rV,nonreg
∂ρ

∣∣∣∣
T

dt

(
∂Zcrit

∂T

)
ρ
= 3

2
ρ
T n′

crit


1

εcrit−1

(
Tdiv

T

)εcrit
if T ≥ Tdiv

1
1+εcrit

(
T

Tdiv

)εcrit
otherwise

+ 3
2 ρ ncrit


(Tdiv/T)εcrit−1

T2(εcrit−1)2

{
εcrit(εcrit − 1)T′

div + Tdivε′crit

(
(εcrit − 1) ln

(
Tdiv

T

))
− 1
}
if T ≥ Tdiv

(T/Tdiv)
εcrit−1

T2
div(1+εcrit)

2

{
εcrit(1 + εcrit)T′

div − Tdivε′crit

(
(1 + εcrit) ln

(
T

Tdiv

))
− 1
}
otherwise(

∂Z0
∂T

)
ρ
= − 3

2
ρ
T

Tc
T û′

0(ρ)

Table 9. Mathematical expressions of the first partial derivatives with density of the compressibility
factor Z for T ≥ Tdiv. All these derivatives are in cm3/g.(

∂Zreg
∂ρ

)
T
is given in Appendix A(

∂Znonreg
∂ρ

)
T
= 1

T
∫ T

∞

(
1 − T

t

)
∂c̃rV,nonreg

∂ρ

∣∣∣∣
T

dt + ρ
T
∫ T

∞

(
1 − T

t

)
∂2 c̃rV,nonreg

∂ρ2

∣∣∣∣
T

dt

with
∂2 c̃rV,nonreg

∂ρ2

∣∣∣∣
T
= − 3

2
T′
div

(T−Tdiv)

[
n′
nonreg +

T′
div

(T−Tdiv)
nnonreg + 1

2
T′′
div

T′
div

nnonreg

]
exp

(
−
(

T
Tdiv

)3/2
)

×
{

3
(

T
Tdiv

)5/2
(
−1 + N−1+ Tdiv

T
V

)
+ 2N−1+ Tdiv

T
V ln(NV)

}
− 3

8
nnonreg T′2

div
Tdiv(T−Tdiv)

exp
(
−
(

T
Tdiv

)3/2
)(

T
Tdiv

)5/2
{

3
(

3
(

T
Tdiv

)3/2
− 5
) (

−1 + N−1+ Tdiv
T

V

)
+4N−1+ Tdiv

T
V ln(NV)

Tdiv
T

(
3 + ln(NV)

(
Tdiv

T

)5/2
)}

− 3
2

T
(T−Tdiv)

3 exp
(
−
(

T
Tdiv

)3/2
) (

−1 + N−1+ Tdiv
T

V

) {
2(T − Tdiv) T′

div n′
nonreg + (T − Tdiv)

2n′′
nonreg

+
(
2T′2

div + (T − Tdiv) T′′
div
)

nnonreg
}(

∂Zcrit
∂ρ

)
T
= 3

2
(
n′
crit + ρ n′′

crit
) (Tdiv/T)εcrit

(1−εcrit)εcrit
+ 3

2
(
ncrit + 2ρ n′

crit
) (Tdiv/T)εcrit

(εcrit−1)

{
2εcrit−1

(εcrit−1)εcrit
ε′crit
εcrit

− T′
div

Tdiv − ln
(

Tdiv
T

)
ε′crit
εcrit

}
− 3

2 ρ ncrit
(Tdiv/T)εcrit

(εcrit−1)2

{
(εcrit − 1)2

(
T′
div

Tdiv

)2
+

2ε′2crit
(εcrit−1)ε3

crit
+

T′
div

Tdiv

[
(εcrit − 1) T′′

div
T′
div

+ 2ε′crit

(
−1 + ln

((
Tdiv

T

)εcrit−1
))]

+ 1
ε2
crit

[
ε′′crit

(
1 − εcrit

(
2 + ln

(
Tdiv

T

))
+ ε2

crit ln
(

Tdiv
T

))
+ 6 ε′2crit + ε′2crit ln

(
Tdiv

T

) (
2 − εcrit

(
4 + ln

(
Tdiv

T

))
+ ε2

crit ln
(

Tdiv
T

))]}(
∂Z0
∂ρ

)
T
= 3

2
Tc
T
[
û′

0(ρ) + ρ û′′
0 (ρ)

]
−
[
s̃′0(ρ) + ρ s̃′′0 (ρ)

]

Table 26 of [4] summarizes how to calculate the thermodynamic properties from the
empirical description ofHelmholtz free energy and its derivatives. In the present approach,
the same thermodynamic properties are deduced from the isochoric heat capacity equation
and the thermal equation of state, which are now two experimentally measured quantities.
A Mathematica application with the new equations of state corresponding to the non‑extensive
formulation can be found in the Supplementary Materials.

4. Comparison of the New Equation of State with Experimental Data and the
TSWModel

In this section, the quality of the new equation of state in its non‑extensive formulation
(see Tables 3 and 7) is analyzed in comparisonwith selected experimental and theoretical data.
Most figures also show a comparison with the values calculated using the so‑called reference
equation of state established by Tegeler et al. [4], which has been called the TSWmodel here.
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4.1. Melting‑Phase Transition
In the TSW model, their Equation (2.7) gives the melting pressure variation (see [4]).

However, they arbitrarily discard some data sets, for example, the data of Zha et al. [12]. It is
clear that these data are scattered, but as they are obtained at high temperatures and pressures,
it should be interesting to use them. New and more accurate data from Datchi et al. [13] are
almost in the same temperature range as those by Zha et al. [12] and are consistent with these
data. It is possible to have a complete view of the melting line for the range of temperature
corresponding to Ronchi’s data set by adding the data of Jephcoat et al. [14].

Thus, using a two‑parameter Simon–Glatzel‑type function, it is possible to represent in
a coherent manner and with continuity the data of Hardy et al. [15], Zha et al. [12], Datchi
et al. [13] and Jephcoat et al. [14]:

Pm − Pt = a1

[(
T
Tt

)a2

− 1
]

(67)

with a1 = 225.2858MPa and a2 = 1.5284. This equation is used in the following to represent the
melting line.

It must be noticed that for determining the parameters in Equation (67), the data from
Bridgman [16], Lahr et al. [17], Crawford et al. [18] and L’Air Liquide [5] have also been used.

Figure 9 compares some different data sets with values calculated from Equation (67)
(solid line), Equation (2) written by Datchi et al. [13] (dashed curve), and Equation (1) writ‑
ten by Abramson [19] (dot dashed curve). Equation (67) is very close to the function written
by Datchi et al. [13], and both equations are consistent with the data of Jephcoat et al. [14].
The main difference between Equation (67) and Equation (2) from Datchi et al. [13] is at low
temperature, where this last one is very inaccurate and cannot be usedwhen approaching the
triple point. Equation (1) fromAbramson is determined for the representation of its own data,
and it can be seen that the extrapolation of this function is not consistent with the data of Jeph‑
coat et al. [14]. Also, Equation (1) of Abramson [19] is not very accurate at low temperatures.
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Figure 9. Plot of the melting pressure data determined by Zha et al. [12], Hardy et al. [15], Datchi
et al. [13], Abramson [19], and Jephcoat et al. [14]. The plotted curves correspond to values calculated
from Equation (67) (solid line), Equation (2) given by Datchi et al. (dashed curve), and Equation (1)
given by Abramson (dot‑dashed curve).
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Some of the previous authors have also measured the liquid density on the melting line.
But, as can be seen in Figure 10, all the data sets have a large dispersion, which makes their
representation difficult. In particular, the data of Lahr et al. [17] at low temperatures seem
incompatible with the other data sets, and at high temperatures, these data are incompatible
with the data of Crawford et al. [18]. For these reasons, two equations are proposed here that
give greater importance at high temperatures: the data from Lahr et al. [17] and the data from
Crawford et al. [18]:

Tm,Low(ρ) = Tt + 1015.4 ×
(

ρ

ρt,Liq
−1
)1.843

+ 250.46 ×
(

ρ

ρt,Liq
−1
)

(67Low)

Tm,High(ρ) = Tt + 677.25 ×
(

ρ

ρt,Liq
−1
)1.236

+ 94.955 ×
[

1 − exp

(
−
(

ρ − ρt,Liq

0.25

)10.442
)]
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Figure 10. Plot of the liquid density data on the melting line determined by Bridgman [16],
Lahr et al. [17], Crawford et al. [18], Witzenburg et al. [20], and L’Air Liquide [5]. The plotted curves
correspond to values calculated from the functions Tm,Low(ρ) (i.e., Equation (67Low), dashed line)
and Tm,High(ρ) (i.e., Equation (67High), solid line).

These two empirical functions are represented in Figure 10. As can be seen, for a liquid
density smaller than 1.6 g/cm3 (i.e., ρ < ρt,Sol), the two functions are almost identical.

4.2. Single‑Phase Region
4.2.1. Isochoric Heat Capacities

The present modeling is mainly based on CV data provided by NIST, but because the
data from NIST are identical, with some exceptions, to the numerical values deduced from
Equation (4.1) of the TSW model [4], a comparison between the results obtained with the
two models is necessary. In the pressure–temperature region covered by NIST, the relative
differences in ∆CV observed between the TSW model and the present one are less than the
uncertainties given in Figure 44 of [4]. The most important relative difference is obtained in
the vicinity of the critical point, as shown in Figure 11. It can also be noticed in Figure 11 that
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outside the critical region, the error oscillates almost regularly with density (for all tempera‑
tures). These oscillations come from the different mathematical forms used in the twomodels.
For the present modeling, a perfectly smoothmonotonic function has been used for CV, while
the TSWmodel uses a polynomial equation. This polynomial equation induced small oscilla‑
tions on CV and these oscillations can be seen on ∆CV (see Figure 11). Such oscillations, more
or less amplified, should also appear in other relative differences between thermodynamic
quantities calculated from the two models.
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Figure 11. Percentage deviations of isochoric heat capacity ∆CV =

(C V
TSWmodel

−C V
Eq. (1)

)/C V
TSWmodel

between the TSW model and Equation (1) in the density

range between ρt,Gas and ρt,Liq: (a) temperature range between 200 and 700 K; (b) temperature range
between Tt and 200 K. The black lines correspond to values of ∆CV equal to zero.

In the paper of Ronchi, there are no CV data, so no direct comparison is possible with
the present modeling. However, in the region covered by Ronchi, Vrabec et al. [21] have
calculated CV data using a molecular dynamics calculation based on a (12, 6) Lennard‑Jones
potential. Figure 12 shows plots of the isochoric heat capacity on three high density isochors.
The isochors with ρ = 1.196 g/cm3 and ρ = 1.393 g/cm3 are smaller than the density ρt,Liq of
the liquid at the triple point and hence are limited by the saturated liquid line at low tem‑
peratures. The isochor ρ = 1.6 g/cm3 is limited by the solidification line. As can be seen, in
the pressure–temperature region covered by NIST data, the difference between the present
approach and the TSW model is insignificant. The difference only becomes significant for
temperatures larger than 1000 K and for densities higher than ρt,Liq. For these conditions, the
data of Vrabec et al. [21] are better fittedwith the present modeling than with the TSWmodel.
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This result was expected because the present model has been built to reproduce the data of
Ronchi, which are also based on a statistical model using a potential of type (12, 7).
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Figure 12. Variations with temperature of the isochoric heat capacity along three isochors for high
liquid densities (i.e., ρ~ρt,Liq). The black points correspond to the data of Vrabec et al. [21]. The
plotted curves correspond to the values calculated fromEquation (1) (red curves) and the TSWmodel
(black dashed curves).

In the region covered by the data of Ronchi and not covered by data from NIST, there
exists the data of L’Air Liquide (685 data points [5]), which were not considered in the TSW
model. Figure 13 shows plots of L’Air Liquide data [5] on their highest isotherm at 1100 K
and the corresponding calculated curves from the present work and the TSW model. The
maximum relative error is around 3%, and once again, these data are slightly better fitted
with the present model than with the TSWmodel.
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Figure 13. Variation with pressure of the isochoric heat capacity along the isotherm at 1100 K. The
data points are from L’Air Liquide [5], and the plotted curves correspond to the values calculated
from Equation (1) (red curve) and the TSW model (black dashed curve).
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Even if the calculated values of Ronchi are not accurate enough, the isochors of CV show
the right variation with a maximum when the temperature tends to zero, as expected for all
liquids (Figure 14). These maxima of CV are observed in water, and they should also exist
in argon. The maximum is also well understood as an extension in the single phase of the
same very sharpmaximum, which is observed in the vapor–liquid coexistence region. On the
contrary, with the TSW model, CV tends to infinity when the temperature tends to zero (see
Figure 14), which is an improper variation.
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calculated from Equation (1) (red curves) and the TSW model (black dashed curves).

4.2.2. Thermal Properties
As explained in Section 3.1, the PρT data from NIST and Ronchi (420 data points, [7])

were used to determine the arbitrary functions U0(ρ) and S0(ρ) of the internal energy and
entropy, respectively. Therefore, the equation of state P(ρ, T) with the present approach de‑
pends on the accuracy obtained from the modeling of U0(ρ) and S0(ρ). Although the slopes
of the straight lines P − PCV are more accurately determined than the ordinates at the origin
of these curves, Figures 15 and 16 show that the average absolute errors obtained for U(ρ, T)
and S(ρ, T), respectively, on all the isochors located in the region of pressure and temperature
covered by NIST are very small and of the same order of magnitude for a given tempera‑
ture. Figures 15 and 16 show that, in both cases, the oscillation of the average error value
is nearly centered on zero. Error bars represent the standard deviation of the absolute error,
and given the value of these standard deviations from the average, it can be understood that
the deviation on each isochor is nearly the same for all values of temperature. This indicates
that the shape of the isochors as a function of temperature is very well reproduced, and the
errors are due to small oscillations in the data arising from the mathematical form used in
the TSW model. However, from the mathematical expressions we used, it is not possible to
compensate for such oscillations.

Thus, for T > Tc and for all densities in the range of ρt,Gas to ρt,Liq, it is found that the
relative error on pressure between the NIST data (or TSWmodel) and the data calculated by
the present model shows a “beautiful” oscillation in density (i.e., along isotherms) between
−0.2% and +0.4%. In the gas phase, the relative error remains well below 0.2%, which is only
reached on the coexistence curve and in the vicinity of ρ = 0.3 g/cm3. In the liquid phase, the
relative error remainswell below0.5%, except close to the coexistence line. These largest errors
are due to the fact that, in dense phases, small variations in density can lead to large variations
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in pressure. We will come back to this question in Section 4.3.2, but it can be noticed that, in
order to clearly analyze this problem, it is necessary to look at the inverse equation ρ(P, T)
obtained by inversion of Equation (45).
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Due to the strong nonlinearity of the equation P(ρ, T), irrespective of the model (TSW,
Ronchi, or the present one), it is not possible to obtain an analytical form of the inverse equa‑
tion ρ(P, T), so a numerical method needs to be used. The calculated data ρ(P, T) from the
different models were compared. Figure 17 shows the relative error in density between the
data calculated by the present model and the NIST data. The same tolerance range (from
±0.03% to ±0.5% in density) as proposed in Figure 42 of [4] was used. It is evident that Fig‑
ure 17 and Figure 42 of [4] are comparable, though the distribution of tolerance regions is
different.

Fluids 2024, 9, x FOR PEER REVIEW 37 of 80 
 

-0.02

-0.01

0

0.01

0.02

10-4 10-3 10-2 10-1 100 101

En
tro

py
 S

N
IS

T - 
S

ca
lc
 (J

/m
ol

/K
)

Density ρ (g/cm3)

ρ
t,Gas

ρ
t,Liq

 
Figure 16. Deviations of NIST entropy data [6] from Equation (39) along isochors up to 700 K. The 
error bars correspond to standard deviations. The dashed lines are eye guides. 

 
Figure 17. Tolerance diagram for densities calculated from inversion of Equation (45). The red curve 
corresponds to the saturated vapor pressure curve and the black one to the melting line. 

For P > Pc and for all temperatures corresponding to NIST data, it can be seen that the 
relative error in density and their oscillations (Figure 17) of the present modeling are lower 
or close to the error obtained from the TSW model (see Figure 42 of [4]), except in the 
vicinity of the critical point. It can, however, be noticed that in this region, the TSW model 

Figure 17. Tolerance diagram for densities calculated from inversion of Equation (45). The red curve
corresponds to the saturated vapor pressure curve and the black one to the melting line.

For P > Pc and for all temperatures corresponding to NIST data, it can be seen that the
relative error in density and their oscillations (Figure 17) of the present modeling are lower or
close to the error obtained from the TSW model (see Figure 42 of [4]), except in the vicinity
of the critical point. It can, however, be noticed that in this region, the TSW model shows an
uncertainty on pressure; such uncertainty is obviously smaller than the uncertainty in density.

For P < Pc and for all the gaseous phase, the relative error in density (in the range ±0.03
to±0.1%) is close to the one given by the TSWmodel; globally, the error of the present model
is in the range of±0.03%, i.e., category C in [4].

Before discussing these different tolerance diagrams, wewill first look at the comparison
of the calculated density data (from the TSWmodel and the present one) with the data from
L’Air Liquide (729 data points, [5]). The accuracy claimed by L’Air Liquide on density mea‑
surements ranges between±0.1% and±1.5%, depending on the experimental method used.

Figures 18 and 19 display the relative error in density as a function of temperature be‑
tween the calculated data and L’Air Liquide data [5] along two isobars. The data along the
isobar at 0.1 MPa are all in the gaseous phase, while the data along the isobar at 100 MPa
range from the liquid phase to the supercritical one. Both relative errors show comparable
variations with temperature. Figure 18 shows that using the TSW model, the relative errors
are in agreement with the uncertainty obtained with the present model. The relative errors
of the present modeling are slightly larger at low temperatures, but the error variation in all
the temperature ranges is better centered on zero. This means that the shape of the isobars is
better reproduced by the present modeling. In Figure 19, it can be noticed that the relative er‑
rors using the TSWmodel agree again with the uncertainty obtained with the present model.
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The relative errors from the present model are slightly larger almost everywhere but remain
in the tolerance range given by Tegeler et al.
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Figure 18. Percentage deviations of density ∆ρ =
(

ρLAir Liquide − ρcalc

)
/ρLAir Liquide on the isobar

at 0.1 MPa between the data of L’Air Liquide [5] and the inversion of Equation (45) (red diamonds)
or the TSW model (black open squares). The lines are eye guides.
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Some data from L’Air Liquide [5] are outside the range of NIST data but are connected
to data calculated from the model of Ronchi. Such data from L’Air Liquide can be compared
to the calculated data from the twomodels (TSW and the present one). Figure 20 shows plots
of the relative errors in density between the calculated and L’Air Liquide data as a function of
pressure on the highest isotherm at 1100 K. The maximum relative error is around 0.3%, and
the two models lead to a similar variation with temperature. The error variation is slightly
better centered on zero using the present model than the TSW one.
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Figure 20. Percentage deviations of density∆ρ =
(

ρLAir Liquide − ρcalc

)
/ρLAir Liquide on the isotherm

at 1100 K between the data of L’Air Liquide [5] and the inversion of Equation (45) (red diamonds) or
the TSW model (black open squares). The lines are eye guides.

It finally appears that the present model can ultimately better reproduce the thermal
properties in the gas phase than in the liquid phase. This is consistent with the fact that the
state equations forU and S are better reproduced at lowdensities than at high densities. There‑
fore, if one wants to better reproduce the data in the liquid phase, it is necessary to increase
the accuracy of these two functions going towards high densities. It can, however, be noticed
that the relative errors on pressure and density as defined by NIST remain very comparable
for the two models, with a few exceptions.

In the region covered by the calculated data of Ronchi, it is only possible to use the ther‑
mal equations of state P(ρ, T) to compare data. Figure 21 shows the relative error on pressure
versus temperature for different isochors. In the region of density covered by NIST data, the
relative error from the presentmodel below 700 K is similar to the relative error deduced from
the TSWmodel (see Figure 1). Above 700 K, the maximum error is −2.5% on the isochor ρ =
1.1784 g/cm3, and above 1000 K, the relative error on all the isochors decreases towards zero.
Therefore, up to 2300 K, the overall error using the present model does not exceed the error
obtained in the region covered by NIST data. Outside the region of density covered by NIST,
Figure 22 shows that the relative error corresponding to the present model is in the range
±5%, except at low temperature on the two isochors ρ = 1.84944 g/cm3 and ρ = 2.01758 g/cm3.
For these isochors, the relative error can be reduced to zero by decreasing the density value
corresponding to these isochors by about 0.6%. The uncertainty of ±5% corresponds to the
uncertainty claimed by Ronchi between his model and the many experimental data he used.
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If Ronchi’s data are comparedwith the extrapolation of the TSWmodel, then Figure 23 shows
that the relative error increases with increasing isochor density and reaches a value of 60% on
the highest‑density isochor. This result was already mentioned in [4].

Fluids 2024, 9, x FOR PEER REVIEW 40 of 80 
 

extrapolation of the TSW model, then Figure 23 shows that the relative error increases 
with increasing isochor density and reaches a value of 60% on the highest-density isochor. 
This result was already mentioned in [4]. 

-0.2

-0.1

0

0.1

0.2

0.3

0.1 1 10 100

TSW model
From inversion of Eq. (45),
non-ext. formulation

10
0 

Δρ

Pressure P (MPa)

P
c

1100 K

 
Figure 20. Percentage deviations of density ( ) LiquideAir L'calcLiquideAir L' ρρρρ −=Δ   on the iso-

therm at 1100 K between the data of L’Air Liquide [5] and the inversion of Equation (45) (red dia-
monds) or the TSW model (black open squares). The lines are eye guides. 

-2

-1

0

1

2

500 1000 1500 2000 2500

0.16813 g/cm3

0.33626 g/cm3

0.50439 g/cm3

0.67252 g/cm3

0.84101 g/cm3

1.0088 g/cm3

1.1784 g/cm3

1.34505 g/cm3

10
0 

ΔP

Temperature T (K)  
Figure 21. Percentage deviations of pressure ∆P = (PRonchi − Pcalc)/PRonchi between the data of
Ronchi [7] and Equation (45) along isochors for densities less than ρt,Liq.

Fluids 2024, 9, x FOR PEER REVIEW 41 of 80 
 

Figure 21. Percentage deviations of pressure ( ) RonchicalcRonchi PPPP −=Δ  between the data of 
Ronchi [7] and Equation (45) along isochors for densities less than ρt,Liq. 

-8

-4

0

4

8

500 1000 1500 2000 2500

ρ = 1.51318 g/cm3

ρ = 1.67849 g/cm3

ρ =1.84944 g/cm3

ρ = 2.01758 g/cm3

ρ = 2.18295 g/cm3

ρ = 2.34988 g/cm3

ρ =2.52835 g/cm3

ρ = 2.68107 g/cm3

ρ =2.85343 g/cm3

ρ = 3.02636 g/cm3

ρ = 3.19584 g/cm3

ρ = 3.35697 g/cm3

10
0 

ΔP

Temperature T (K)  
Figure 22. Percentage deviations of pressure ( ) RonchicalcRonchi PPPP −=Δ  between the data of 
Ronchi [7] and Equation (45) along isochors for densities greater than ρt,Liq. 

-10

0

10

20

30

40

50

60

500 1000 1500 2000 2500

ρ = 1.51318 g/cm3

ρ = 1.67849 g/cm3

ρ = 1.84944 g/cm3

ρ = 2.01758 g/cm3

ρ = 2.18295 g/cm3

ρ = 2.34988 g/cm3

ρ = 2.52835 g/cm3

ρ = 2.68107 g/cm3

ρ = 2.85343 g/cm3

ρ = 3.02636 g/cm3

ρ = 3.19584 g/cm3

ρ = 3.35697 g/cm3

10
0 

ΔP

Temperature T (K)  
Figure 23. Percentage deviations of pressure ( ) RonchimodelTSW Ronchi PPPP −=Δ between the data 
of Ronchi [7] and the TSW model along isochors for densities greater than ρt,Liq. 

Figure 22. Percentage deviations of pressure ∆P = (PRonchi − Pcalc)/PRonchi between the data of
Ronchi [7] and Equation (45) along isochors for densities greater than ρt,Liq.



Fluids 2024, 9, 102 35 of 67

Fluids 2024, 9, x FOR PEER REVIEW 41 of 80 
 

Figure 21. Percentage deviations of pressure ( ) RonchicalcRonchi PPPP −=Δ  between the data of 
Ronchi [7] and Equation (45) along isochors for densities less than ρt,Liq. 

-8

-4

0

4

8

500 1000 1500 2000 2500

ρ = 1.51318 g/cm3

ρ = 1.67849 g/cm3

ρ =1.84944 g/cm3

ρ = 2.01758 g/cm3

ρ = 2.18295 g/cm3

ρ = 2.34988 g/cm3

ρ =2.52835 g/cm3

ρ = 2.68107 g/cm3

ρ =2.85343 g/cm3

ρ = 3.02636 g/cm3

ρ = 3.19584 g/cm3

ρ = 3.35697 g/cm3

10
0 

ΔP

Temperature T (K)  
Figure 22. Percentage deviations of pressure ( ) RonchicalcRonchi PPPP −=Δ  between the data of 
Ronchi [7] and Equation (45) along isochors for densities greater than ρt,Liq. 

-10

0

10

20

30

40

50

60

500 1000 1500 2000 2500

ρ = 1.51318 g/cm3

ρ = 1.67849 g/cm3

ρ = 1.84944 g/cm3

ρ = 2.01758 g/cm3

ρ = 2.18295 g/cm3

ρ = 2.34988 g/cm3

ρ = 2.52835 g/cm3

ρ = 2.68107 g/cm3

ρ = 2.85343 g/cm3

ρ = 3.02636 g/cm3

ρ = 3.19584 g/cm3

ρ = 3.35697 g/cm3

10
0 

ΔP

Temperature T (K)  
Figure 23. Percentage deviations of pressure ( ) RonchimodelTSW Ronchi PPPP −=Δ between the data 
of Ronchi [7] and the TSW model along isochors for densities greater than ρt,Liq. 
Figure 23. Percentage deviations of pressure ∆P = (PRonchi − PTSW model)/PRonchi between the data
of Ronchi [7] and the TSW model along isochors for densities greater than ρt,Liq.

New experimental PρT data in the supercritical phase at 300 K have been determined by
Hanna et al. [22]. The results havebeen comparedwith theTSWmodel andare consistentwith
it. But due to the large error bars, the present model is also consistent with these new data.

Precise experimental PρT data in the gaseous phase in the temperature range of 234 to
505 K have been produced by McLinden [23]. These results have been compared with the
values calculated from the TSW model and are consistent with them. In the pressure and
temperature ranges covered by these data, the present model has the same precision as that
of the TSWmodel; hence, these data are also consistent with the present model.

4.2.3. Isobaric Heat Capacities, Sound Velocities, and Isothermal Throttling Coefficient
As can be observed from Table 26 of [4], the isobaric heat capacity CP(ρ, T), the speed

of sound c(ρ, T), and the isothermal throttling coefficient δT(ρ, T) = (∂H/∂P)T are functions
expressed with first and second derivatives of Helmholtz free energy; therefore, these quan‑
tities are more complex with respect to the quantities shown in the previous sections. Given
that the present model is not built on free energy but instead on the equation of state of CV(ρ,
T) and thermal state equation P(ρ, T), it is preferable to express the three above quantities as

CP = CV + TVKT

(
∂P
∂T

)2

V
= CV + TV

β2

KT
(68)

c2 =
V
KT

CP
CV

(69)

δT = V(1 − Tβ) (70)

whereKT = − 1
V

(
∂V
∂P

)
T
represents the isothermal compressibility coefficient, and β = 1

V

(
∂V
∂T

)
P

represents the isobaric coefficient of thermal expansion. These quantities include the deriva‑
tives of pressure along the two directions ρ and T. The two quantities c and δT are functions of
KT and of the ratio CP/CV . The errors on these two last quantities will reflect in a different way
the errors on the state equations for pressure and for the isochoric heat capacity.
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Because CP diverges at the critical point, it is only possible to compare the two models
(TSWand the present one) outside the region of coexistence. Figure 24 shows the relative error
of CP between the TSW model and the present one. The relative error is everywhere inside
the uncertainty given in Figure 44 of [4]. In particular, Figure 24 shows that, for most of the
states, the relative error of the present model oscillates globally, without going into the details,
between±0.5%, except for high‑density states and states in the vicinity of the critical point.
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It is again interesting to compare the results of the two models with the data from L’Air
Liquide (729 data points, [5]). Figure 25 displays the data values of L’Air Liquide [5] on two
isotherms at 700 and 1100 K (i.e., the highest isotherm) and the corresponding calculated
curves from the present approach and the TSWmodel. As for the CV data, the present model
shows a closer fitting of data from L’Air Liquide [5] than the TSWmodel. The highest relative
error (about 1%) is obtained for the isotherm at 1100 K using the TSWmodel.

The sound velocity cdoes not diverge at the critical point but exhibits a very pronounced
minimum. However, in the present model, c is expressed on the basis of CP, which diverges
itself (Equation (69)). For numerical reasons, wewill compare the data calculated from the two
models, with the exception of the data on the respective curves of coexistence. The relative
error on c (see Figure 26) between the TSW model and the present one shows a very similar
variation with ρ and T to the one displayed by CP in Figure 24. In the largest part of the (ρ,
T) diagram, the relative error oscillates globally at ±0.5%, except for high‑density states and
near the critical point, where the error reaches 2%. In Figure 43 of [4], the tolerance diagram
for c shows similar uncertainties that were obtained in Figure 26; however, some regions of
their diagram present lower uncertainties (±0.02% and±0.1%).



Fluids 2024, 9, 102 37 of 67

Fluids 2024, 9, x FOR PEER REVIEW 43 of 80 
 

 
Figure 24. Percentage deviations of isobaric heat capacity 

modelW T (68) Eq.modelW T S
PP

S
PP CCCC 










−=Δ   between the TSW model and Equation (68) in the 

density range of ρt,Gas to ρt,Liq. The black lines correspond to values of PCΔ  equal to zero. 

It is again interesting to compare the results of the two models with the data from L’Air 
Liquide (729 data points, [5]). Figure 25 displays the data values of L’Air Liquide [5] on two 
isotherms at 700 and 1100 K (i.e., the highest isotherm) and the corresponding calculated 
curves from the present approach and the TSW model. As for the CV data, the present model 
shows a closer fitting of data from L’Air Liquide [5] than the TSW model. The highest rela-
tive error (about 1%) is obtained for the isotherm at 1100 K using the TSW model. 

 
Figure 25. Variations with pressure of the isobaric heat capacity CP along the two isotherms at 700 
and 1100 K. The blue diamonds and black points correspond to data from L’Air Liquide [5], and the 
plotted curves correspond to the values calculated from Equation (39) (red curves) and the TSW 
model (black dashed curves). 
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model (black dashed curves).
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If one compares the calculated data using the twomodels with the data of L’Air Liquide
(296 data points, [5]), it can be observed in Figures 27 and 28 that, although the corresponding
errors in the present model are sometimes higher than those of the TSWmodel, they are gen‑
erally better centered on zero. This means that the isobars and isotherm variations are better
predicted using the presentmodel. Unfortunately, there is no data on sound speed fromL’Air
Liquide in the range of 700 to 1100 K.
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isobar at 1000 atmospheres between the data of L’Air Liquide [5] and Equation (69) (red diamonds)
or the TSW model (black open squares). The lines are eye guides.

Equation (70) can be easily derived from the Gibbs–Helmholtz relation, and its non‑
dimensional formulation V−1δT almost reflects the behavior of the thermal expansion
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coefficient. When this quantity is equal to zero, the fluid behaves as an ideal gas. Due
to the fact that zero is a possible value for this function, it is not possible to conduct
a relative error analysis. Figure 29 shows the absolute ρδT vs. P diagram for the same
isotherms plotted in Figure 33 of [4]. It can be observed that the difference between the
two models is very small and only more pronounced in the vicinity of the minimum of
ρδT . On the isotherm at 162 K, the shape for the present modeling has a deeper well,
which seems slightly better in light of the data from Kim [24].
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Finally, it is important to note that, because the present model gives overall numerical
results very close to those of the TSW model, both models have the same weakness for the
representation of most of the experimental data very close to the critical point.

4.2.4. The “Ideal Curves”
Ideal curves are curves along which one property of a real fluid is equal to the corre‑

sponding property of the hypothetical ideal gas in the same state. The most important ideal
curves can be obtained from the compressibility factorZ and its first derivatives, i.e., the classi‑
cal ideal curve (Z = 1), the Boyle curve [(∂Z/∂P)T = 0 or (∂Z/∂V)T = 0], the Joule–Thomson
inversion curve (or Charles curve) [(∂Z/∂T)P = 0 or (∂Z/∂V)P = 0], and the Amagat curve
(or Joule curve) [(∂Z/∂P)ρ = 0 or (∂Z/∂T)ρ = 0]. For argon, all ideal curves lie within the
range covered by data fromNIST andRonchi, with the exception of the high‑temperature part
of the Amagat curve.

Figure 30 shows the plot of the ideal curves calculated from Equation (46) and its deriva‑
tives and from the TSW model. Inside the single‑phase domain, where reliable data exists,
both equations show the expected variations in ideal curves. The visible differences occur for
the part of each curve corresponding to very low densities. This can be explained by the fact
that, in the present model, the various thermodynamic functions are designed to converge to
a physically admissible value when density tends towards zero. Another difference can be
seen on the high‑temperature Amagat curve, which is explained by a better representation of
Ronchi’s data than the TSWmodel (as shown in Figures 22 and 23).
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point cp. The dark green curve represents the melting curve calculated from Equation (67).

It thus appears that, in the pressure and temperature range covered by the NIST and
Ronchi data, the compressibility factor and its first derivatives are well represented by the
present model.

4.2.5. Extrapolation to High Temperatures
Tegeler et al. [4] compared their model to data resulting from the shock wave experi‑

ments of van Thiel et al. [25], Nellis et al. [26], and Grigor’ev et al. [27]. The pressure and den‑
sity are calculated from the Hugoniot relations using experimental velocity measurements.
All of these data are in the pressure range and density range of Ronchi’s data but not in its
temperature range. For example, all the data of Grigor’ev et al. [27] correspond to a temper‑
ature range of 3700 to 17,000 K. In addition, for most of these experiments, argon is ionized,
and the corresponding physics is clearly not included in the present approach, but nor is it
explicitly included in the TSWmodel.

For all data that are in Ronchi’s domain, theHugoniot curve determinedwith the present
model is consistent with the data, as is theHugoniot curve calculated by the TSWmodel. This
can be easily understood because the Hugoniot states depend mainly on the behavior of the
Poisson adiabatic curves, which have close variations until the melting line, as can be seen in
Figure 31 for the two different initial states, which correspond to those of van Thiel et al. [25].

From these results, we suggest not extrapolating the present model outside the highest
limit of Ronchi’s domain.
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Figure 31. Variations with density of the Poisson adiabatic curves calculated from Equation (39) (red
curves) and the TSW model (black dashed curves) for the two different initial states of van Thiel
et al. [25]. The density ρt,Sol represents the triple‑point solid density.

4.3. Liquid–Vapor Phase Boundary
4.3.1. Isochoric Heat Capacities

Along the coexistence curve, the relative errors between the data from NIST and the
present modeling oscillate about ±0.45% (see Figure 11). This result can be compared to the
uncertainties given in Figure 44 of [4]. The relative error of the present model on the satu‑
rated liquid side is smaller than the one given in Figure 44 of [4] (±0.45% instead of ±2%)
and slightly larger on the saturated vapor side (±0.45% instead of±0.3%).

Along this coexistence line, noNISTdata are available in thedensity rangeof 0.5–0.6 g/cm3.
However, this region, which extends on both sides of the critical point, is covered along some
isochors that crossed the coexistence curve by Voronel et al. [28,29]. Figure 32 shows that the
twomodels (TSWand the present one) lead to similar variationswith T, and the discrepancies
with the data of Voronel et al. [28,29] increase more and more as one approaches the coexis‑
tence curve. Inside the coexistence phase, the data of Voronel et al. [28,29] show a peak in
CV that is not symmetrical. Such CV variation is, in any case, impossible to reproduce using
the TSW model (see Figure 8). On the other hand, the present model could be modified to
correctly describe such CV variations. Indeed, the parameter Tdiv was inserted into the model
(i.e., Equation (10)) to qualitatively describe the CV divergence inside the coexistence phase
(see Figure 8). It is, however, evident from the data of Voronel et al. [28,29] that the values
defined by Tdiv are not quantitatively suitable. The peak position of CV along the entire coex‑
istence curve could be used to establish a new equation for Tdiv, leading to a reliable fitting
of CV divergence inside the coexistence phase. The other side of Tdiv (i.e., for T < Tdiv) could
also be easily modeled without changing any properties for the single‑phase region. Unfortu‑
nately, the data of Voronel et al. [28,29], which are limited to a very small density range, are
insufficient to be taken into account in view to improve the presentmodel into the coexistence
phase. It can also be noted that the data of Voronel et al. [28,29] have been correctly modeled
by Rizi et al. [30] using the crossovermodel. However, thismodel, which contains coefficients
among which a number unknown, cannot be put into practice.
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Figure 32. Variations with temperature of the isochoric heat capacity CV in the vicinity of the critical
point along four isochors: (a) 0.504 g/cm3, (b) 0.549 g/cm3, (c) 0.560 g/cm3, and (d) 0.531 g/cm3. The
data points are from Voronel et al. [28,29], and the plotted curves correspond to values calculated
from Equation (1) (red curves) and the TSW model (black dashed curves).

4.3.2. Thermal Properties
The coexistence phase is characterized by three specific points, which are the saturated

liquid triple point, the saturated vapor triple point, and the critical point. These points corre‑
spond to different well‑known thermodynamic states.

From the thermal equation of state P(ρ, T) of the TSW model and the present one, the
specific points were calculated using the data from NIST for ρ and T. Table 10 shows that the
calculated values of the three characteristic states using the present model are globally more
accurate than the ones calculated using the TSW model, particularly for the triple point on
the saturated liquid curve. As shown in Table 10, near the liquid saturated curve, even a tiny
variation indensityproduces a largevariation in the calculatedpressure, i.e., thedensity values
for these states must be extremely accurate. Thus, the TSWmodel gives an error of 0.003% on
ρt,Liq(Pt, Tt), and this leads to an error of 20% on Pt(ρt,Liq, Tt).

Table 10. Characteristic values of the coexistence line calculated from the thermal equation of state
and using the NIST values.

Unit NIST TSWModel Non‑Extensive Formulation, Equation (45)

Pc(ρc, Tc) MPa 4.863 4.86299 4.86298
ρc(Pc, Tc) g/cm3 0.535599 0.549928 0.535526
Pt(ρt,Liq, Tt) MPa 0.068891 0.082671 0.0688907
ρt,Liq(Pt, Tt) g/cm3 1.4168 1.41676 1.41680
Pt(ρtGas, Tt) MPa 0.068891 0.0688913 0.068891
ρt,Gas(Pt, Tt) g/cm3 0.0040546 0.00405458 0.00405460
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At a given temperature, the vapor pressure and the densities of the coexisting phases
(ρσl and ρσv) can also be calculated from the Maxwell criterion of phase equilibrium condi‑
tions and, therefore, the characteristic values of the coexistence line (triple and critical points)
as well. Table 11 shows these characteristic values calculated from the TSW model and the
present model (i.e., Equations (50)–(52)). The data from NIST and those calculated with the
TSWmodel are in good agreement, but this is not the case for the present model, particularly
for the critical point. However, it can be noticed that Tc and Tt are imposed values for the
TSWmodel, whereas only Tt is fixed in the present one. Then, the critical values (Pc, Tc, and
ρc) are calculated in the present approach. Equation (45) leads to better results for character‑
istic values than those calculated with the TSWmodel, while using the Maxwell equations, it
is the opposite.

Table 11. Characteristic values of the coexistence line calculated from the Maxwell relations, i.e.,
Equations (50)–(52).

NIST TSWModel Non‑Extensive Formulation

Tc (K) 150.687 150.687 151.396
Pc (MPa) 4.863 4.86295 4.99684
ρc (g/cm3) 0.535599 0.533136 0.543786
Tt (K) 83.8058 83.8058 83.8058
Pt (MPa) 0.068891 0.0688908 0.0689657
ρt,Liq (g/cm3) 1.4168 1.41676 1.416802
ρt,Gas (g/cm3) 0.0040546 0.00405457 0.00405912

Howdoweexplain this result? TheMaxwell equations represent the equality of pressure,
temperature, and specific Gibbs energy in the coexisting phases. The present approach built
all the required thermodynamic quantities (U, S, F, etc.) from the empirical description of
the experimental data of CV(ρ, T) and P(ρ, T). The accuracy of these empirical equations to
describe the experimental data has been shown to be of very high quality. Therefore, the
discrepancy between the critical values (Pc, Tc, and ρc) calculated with the present model and
those from NIST can be attributed to the inconsistency of the data in this critical state. The
agreement between the calculated liquid triple point and the experimental one is better using
the present model; this means that, on the liquid side, the present isochors network is slightly
twisted compared to the TSWmodel network. This slight distortion of the isochor network on
the liquid side then has a strong impact on the construction of the coexistence curve, as already
shown in Table 11. Indeed, considering that there is good agreement with the TSW model
on the gas side but not as good on the liquid side, it is clear that the equilibrium conditions
deduced from the Maxwell relations must be different. Table 12 gives a numerical summary
of all the thermodynamic quantities on the saturation curve using the present non‑extensive
formulation.

Table 12. Thermodynamic parameters of saturated argon. For each temperature, the first line corre‑
sponds to the liquid and the second line to the gas.

Temperature
(K)

Pressure
(MPa)

Density
(g cm−3)

Enthalpy
(kJ kg−1)

Entropy
(kJ kg−1 K−1)

CV
(kJ kg−1 K−1)

CP
(kJ kg−1 K−1)

c
(m s−1)

83.8058 a 0.068891 1.41680 −121.39 1.3297 0.54864 1.11895 856.17
0.0040546 42.23 3.2824 0.32640 0.55734 168.02

84 0.070522 1.41561 −121.17 1.3323 0.54795 1.11968 854.73
0.0041430 42.31 3.2786 0.32660 0.55794 168.17

86 0.088193 1.40321 −118.92 1.3586 0.54097 1.12304 840.88
0.0050845 43.08 3.2425 0.32855 0.56400 169.74

88 0.109096 1.39072 −116.67 1.3844 0.53426 1.12305 828.22
0.0061790 43.82 3.2082 0.33063 0.57071 171.24

90 0.133597 1.37815 −114.41 1.4095 0.52782 1.12402 815.37
0.0074416 44.52 3.1755 0.33284 0.57812 172.67

92 0.162078 1.36549 −112.15 1.4342 0.52164 1.12613 802.28
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Table 12. Cont.

Temperature
(K)

Pressure
(MPa)

Density
(g cm−3)

Enthalpy
(kJ kg−1)

Entropy
(kJ kg−1 K−1)

CV
(kJ kg−1 K−1)

CP
(kJ kg−1 K−1)

c
(m s−1)

0.0088882 45.18 3.1443 0.33519 0.58629 174.02
94 0.194930 1.35271 −109.88 1.4583 0.51569 1.12944 788.92

0.0105356 45.80 3.1145 0.33768 0.59531 175.30
96 0.232558 1.33979 −107.60 1.4820 0.50996 1.13400 775.28

0.0124010 46.37 3.0859 0.34032 0.60523 176.51
98 0.275373 1.32672 −105.31 1.5053 0.50445 1.13988 761.35

0.0145031 46.89 3.0584 0.34311 0.61617 177.64
100 0.323796 1.31346 −103.00 1.5282 0.49915 1.14718 747.12

0.0168613 47.36 3.0319 0.34607 0.62824 178.69
102 0.378255 1.29999 −100.68 1.5508 0.49405 1.15597 732.59

0.0194966 47.78 3.0063 0.34919 0.64156 179.68
104 0.439185 1.28630 −98.34 1.5730 0.48916 1.16640 717.75

0.0224312 48.14 2.9816 0.35251 0.65630 180.58
106 0.507023 1.27233 −95.97 1.5951 0.48446 1.17859 702.59

0.0256892 48.43 2.9575 0.35603 0.67264 181.41
108 0.582216 1.25808 −93.58 1.6169 0.47997 1.19271 687.10

0.0292969 48.67 2.9341 0.35977 0.69081 182.17
110 0.665211 1.24349 −91.15 1.6385 0.47568 1.20896 671.25

0.0332828 48.83 2.9112 0.36375 0.71110 182.84
112 0.756461 1.22855 −88.70 1.6600 0.47160 1.22758 655.04

0.0376785 48.92 2.8888 0.36801 0.73383 183.44
114 0.856424 1.21319 −86.20 1.6814 0.46775 1.24886 638.45

0.0425194 48.94 2.8669 0.37257 0.75942 183.97
116 0.965560 1.19739 −83.66 1.7027 0.46415 1.27315 621.45

0.0478449 48.86 2.8452 0.37747 0.78839 184.41
118 1.0843 1.18108 −81.07 1.7240 0.46080 1.30090 604.01

0.0537001 48.70 2.8238 0.38276 0.82138 184.77
120 1.2132 1.16422 −78.43 1.7452 0.45774 1.33265 586.10

0.0601365 48.44 2.8026 0.38849 0.85921 185.05
122 1.3526 1.14673 −75.72 1.7666 0.45501 1.36910 567.70

0.0672141 48.08 2.7814 0.39473 0.90296 185.24
124 1.5032 1.12853 −72.95 1.7880 0.45264 1.41114 548.75

0.0750035 47.60 2.7603 0.40154 0.95400 185.33
126 1.6653 1.10955 −70.11 1.8097 0.45070 1.45995 529.20

0.0835889 46.99 2.7390 0.40904 1.01421 185.34
128 1.8394 1.08966 −67.17 1.8315 0.44926 1.51708 509.01

0.0930725 46.24 2.7176 0.41733 1.08612 185.24
130 2.0261 1.06875 −64.14 1.8536 0.44841 1.58468 488.11

0.103580 45.33 2.6958 0.42658 1.17327 185.03
132 2.2260 1.04666 −61.00 1.8762 0.44830 1.66578 466.42

0.115272 44.23 2.6735 0.43697 1.28078 184.69
134 2.4395 1.02319 −57.73 1.8992 0.44909 1.76485 443.85

0.128351 42.94 2.6505 0.44877 1.41628 184.21
136 2.6672 0.998082 −54.31 1.9229 0.45102 1.88882 420.29

0.143090 41.39 2.6266 0.46233 1.59167 183.57
138 2.9099 0.970997 −50.71 1.9474 0.45442 2.04902 395.56

0.159864 39.55 2.6015 0.47818 1.82657 182.73
140 3.1682 0.941443 −46.88 1.9730 0.45984 2.26491 369.39

0.179210 37.35 2.5747 0.49706 2.15574 181.63
142 3.4430 0.908698 −42.77 2.0000 0.46824 2.57120 341.35

0.201946 34.68 2.5455 0.52030 2.64684 180.19
144 3.7351 0.871668 −38.28 2.0292 0.48183 3.03858 310.73

0.229420 31.38 2.5129 0.55034 3.45008 178.23
146 4.0460 0.828488 −33.24 2.0614 0.50566 3.85590 276.57

0.264135 27.13 2.4749 0.59279 4.97016 175.27
148 4.3773 0.775089 −27.30 2.0989 0.55048 5.71750 237.51

0.311718 21.29 2.4273 0.66271 8.72009 169.94
150 4.7323 0.698343 −19.28 2.1495 0.64763 13.9176 190.54

0.390945 11.82 2.3569 0.80939 26.4188 157.52
150.687 b 4.8607 0.656707 −15.14 2.1758 0.71568 29.7562 171.24

0.439127 6.406 2.3188 0.89167 56.4503 149.66
151.396 c 4.99684 0.543786 −4.184 2.2468 0.87926 3580 146.56

a Triple‑point temperature. b Critical temperature from NIST. c Critical temperature from Maxwell relations
Equations (50)–(52).
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Figure 33 shows that the relative error between the TSW model and the present one for
the saturated liquid density is less than ±0.2% in the range Tt to 139 K, which is within the
uncertainty of the data selected by Tegeler et al. (see Figure 5 of [4]). Therefore, on the liq‑
uid side, the network of isochors induced by the present model below 139 K is clearly more
realistic.
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Also, Figure 33 shows that the relative error between the TSWmodel and the present one
for the saturated vapor density is within the uncertainty of the data selected by Tegeler et al.
(see Figure 6 of [4]) in the range 100 K to 149.5 K. Below 100 K, the error of the present model
is 3 to 4 times larger than the claimed experimental uncertainties of Gilgen et al. [31]. But,
as mentioned by Tegeler et al., the densities on the saturated vapor curve were extrapolated
from measurement in the homogeneous region close to the phase boundary. Such density
values are obviously depending on the method used for doing the extrapolation. Although
the error of the present model in this region is relatively high, the calculated density values
are compatible with the experimental data.

Finally, Figure 33 also shows that the relative error between the TSW model and the
present one for the saturated vapor pressure is within the uncertainty of the data selected by
Tegeler et al. in the range of 97 to 144 K. Below 97 K, the error of the present model oscil‑
lates slightly around −0.1%, which is within the uncertainty of the data assigned to Group
2 by Tegeler et al.; therefore, it can be said that these results are also in agreement with the
experimental data.

However, in the vicinity of the critical state, the two models lead to very different val‑
ues. This is due to the different approaches used for the two models. For the TSW model,
the parameters of the critical point are imposed, whereas they are calculated in the present
model. Apart from the numerical values, Figure 34 shows that the shape of the saturated va‑
por pressure curve around the critical point depends on themodel. The TSWmodel generates
an extremely “flat” variation on a wide range of densities around the critical point, whereas
the present model produces a more rounded variation in the same range of density. This last
variation is closer to the experimental saturated vapor pressure curve from L’Air Liquide [5]
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than the one given by the TSW model. The fact that the critical state is imposed in the TSW
model seems to lead to a forced flattening out of the saturated vapor pressure curve at the
critical point.
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lative errors between the properties on the saturated vapor and saturated liquid sides can 
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of [4], and more particularly, from Tt to 134 K, the relative error is less than ±0.1%. 

Figure 34. Variations with density of the saturated pressure in the vicinity of the critical point
(i.e., from 0.35 to 0.75 g/cm3). The plotted curves correspond to values calculated from Maxwell
relations Equations (50)–(52) (red curve), the TSWmodel (black dashed curve), and the data of L’Air
Liquide (blue dot‑dashed curve, [5]).

If we use Tsat(ρ) on the phase boundary derived from NIST data and calculate the satu‑
rated pressure curve using Equation (45), then Figure 35 shows that the relative error on the
saturated vapor pressure curvePsat(ρ) is less than±0.2%below ρc. This uncertainty is compat‑
ible with the uncertainty of the data assigned to Group 2 by Tegeler et al. On the other hand,
the relative error on the saturated liquid pressure curve Psat(ρ) in the range ρc to 0.85 g/cm3 is
compatible with the uncertainty of the data assigned to Group 3 by Tegeler et al. From this, it
can be concluded that the present thermal equation of state is probably not accurate enough
in the range of 145 K to Tc.
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Figure 35. Percentage deviations of saturated pressure ∆Psat =

(PTSW mod.(Tsat(ρ), ρ)− Pcalc(Tsat(ρ), ρ))/PTSW mod.(Tsat(ρ), ρ) between the TSW model and
Equation (45) in the density range of ρt,Gas to 0.85 g/cm3. The curve Tsat(ρ) used is an interpolation
of the data from NIST [6].
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From the analysis of the latent heat of vaporization Lv = Hσv − Hσl, the effect of cumu‑
lative errors between the properties on the saturated vapor and saturated liquid sides can be
determined. Figure 36 shows that, until 149.5 K, the relative error between the TSW model
and ours is far greater than the experimental data uncertainties shown in Figure 15 of [4], and
more particularly, from Tt to 134 K, the relative error is less than±0.1%.
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)
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Owing to the fact that the “ideal curves” are correctly described, in particular near the
critical point, but that the saturated pressure is not correctly reproduced in the vicinity of the
critical point, it can be concluded that the problem comes from the fact that the experimental
data in this region are not correctly described and,moreover, are not coherent enoughbetween
themselves. These arguments can be easily observed with the spinodal properties.

4.3.3. The Spinodal Properties
The spinodal properties correspond to the metastable states of the fluid system. The

knowledge of these metastable states is important for industrial processes that involve ever‑
increasing heat fluxes and rapid transients but also for testing the validity of a new equation
of state formulation.

Most of the available experimental data pertain to states much closer to the saturated liq‑
uid state than the spinodal limit, except very close to the critical point. The experimental data
of Voronel et al. [28,29] crossed the spinodal limit in a very narrow range of density around
the critical point, and the divergence states are shown in Figure 37. This figure also shows the
liquid spinodal data points from Ba�dakov et al. [32]. These data were determined from ex‑
perimentalPρT data combinedwith a simple theoretical equation ofCV(ρ, T). Therefore, these
data points are dependent on the theoretical variations in CV chosen by Ba�dakov et al. [32].
Figure 37 shows that these data decrease rapidly as the density increase, but they are compat‑
ible with the spinodal states determined from the present approach or from the TSW model,
except for the TSW model around the density of 0.8 g/cm3, where a strong unphysical hole
appears due to uncontrollable strong oscillations of the polynomial terms.
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Figure 37. Variations with the density of the spinodal temperature. The plotted curves correspond
to the divergence curve of CV, the calculated values using the derivation of Equation (45), and the
TSW model. The data points are from Voronel et al. [28,29] and Baidakov et al. [32].

Figure 37 shows that, globally, the two spinodal curves determined from the present
approach and the TSW model are very close, except for the liquid triple point, where our
spinodal curve shows a strong decrease vs. density. This is due to the fact that in this region,
the PρT data are not represented with enough accuracy by the TSW model. It has already
been seen in previous sections that the presentmodel has better accuracy in this region, which
was obtained by “twisting” the isochors network. The strong decrease in the spinodal curve
near the liquid triple point is simply the result of this local network deformation.

From Figure 37, it is possible to compare our divergence curve of CV with the spinodal
curve. If the data sets of CV and PρT used for the theoretical developments were sufficiently
coherent, both curves would be identical. This is approximately true only on the liquid side
for densities higher than 0.9 g/cm3 and on the gaseous side in the density range of 0.025 to 0.15
g/cm3. Elsewhere, this is not the case, showing that the variations in CV close to the saturation
curve are not correctly represented. Because high accuracy is obtained with the TSW model,
it means that the variations in CV calculated from the TSW model do not have a good shape.
This shows that it is not enough to have great precision with a priori selected set of data to
ensure a coherent representation. Local variations in somemeasured quantities have physical,
non‑negligible importance.

5. Uncertainty of the New Equation of State
Mainly guided by comparison with the TSWmodel, estimates for the uncertainty of cal‑

culated densities ρ, speeds of sound c, and isobaric heat capacities CP calculated from Equa‑
tion (39) were made. These uncertainties are illustrated in the following tolerance diagrams:
Figures 17, 38 and 39. For all these tolerance diagrams, the variables are the pressure P and
the temperature T. Because the quantities c and CP depend on ρ and T, the pressure was con‑
verted to density by inversion of Equation (45). In order to make an easier comparison with
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the tolerance diagrams given in [4], we used the same tolerance ranges (±0.03 to ±5%) and
identical notations (A, B, C, D, E, and F) with their corresponding meanings.
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the saturated vapor pressure curve and the black one to the melting line.

Fluids 2024, 9, x FOR PEER REVIEW 57 of 80 
 

 
Figure 38. Tolerance diagram for isobaric heat capacities calculated from Equation (68) with the use 
of Equation (45) for determining densities as a function of pressure. The red curve corresponds to 
the saturated vapor pressure curve and the black one to the melting line. 

 
Figure 39. Tolerance diagram for sound speed calculated from Equation (69) with the use of Equa-
tion (45) for determining densities as a function of pressure. The red curve corresponds to the satu-
rated vapor pressure curve and the black one to the melting line. 

We did not plot a tolerance diagram for CV as it will not produce different information 
from Figure 11. Moreover, the relative error on CV between the TSW model and the present 
one is everywhere far inside the errors shown in Figure 44 of [4]. 

Comparisons with the data of L’Air Liquide (1710 data points, [5]) allow completing 
the tolerance diagrams in the temperature range of 700 to 1100 K. These uncertainties for 
calculated densities ρ, isobaric heat capacities CP, and isochoric heat capacities CV are il-
lustrated in the tolerance diagrams (Figures 40–42). Here again, in order to extend the 
comparison with the tolerance diagrams in [4], we have retained the same notations with 
their corresponding meanings. The new tolerance intervals are entered directly without 
using new letters of the alphabet. 

Figure 39. Tolerance diagram for sound speed calculated from Equation (69) with the use of Equa‑
tion (45) for determining densities as a function of pressure. The red curve corresponds to the satu‑
rated vapor pressure curve and the black one to the melting line.

We did not plot a tolerance diagram for CV as it will not produce different information
from that contained in Figure 11. Moreover, the relative error on CV between the TSWmodel
and the present one is everywhere far inside the errors shown in Figure 44 of [4].

Comparisons with the data of L’Air Liquide (1710 data points, [5]) allow completing the
tolerance diagrams in the temperature range of 700 to 1100 K. These uncertainties for calcu‑
lated densities ρ, isobaric heat capacities CP, and isochoric heat capacities CV are illustrated in
the tolerance diagrams (Figures 40–42). Here again, in order to extend the comparison with
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the tolerance diagrams in [4], we have retained the same notations with their corresponding
meanings. The new tolerance intervals are entered directly without using new letters of the al‑
phabet.
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Figure 42. Tolerance diagram for isochoric heat capacities calculated from Equation (1) with the use
of Equation (45) for determining densities as a function of pressure in the temperature range of 700 to
1100 K.

6. Tait’s Equation of State to Describe the Liquid Phase
As a result of Tait’s work to understand and analyze the ocean temperature measure‑

ments [33] from the first global oceanographic campaign of the H.M.S. Challenger [34], it was
shown that most liquids can be described empirically by a so‑called Tait equation of state [35].
The most commonly used form of equation is the so‑called Tait–Tammann equation, defined
from the isothermal mixed elasticity modulus in volume, which we will write here using the
notations of [35] (in Chapter 3):

V(T, P) = Vσl(T)− J̃(T) ln

(
P + Π̃(T)

Psat(T) + Π̃(T)

)
(71)

where V represents the specific volume of the liquid, Vσl the specific volume of liquid along
the coexistence curve deduced from Equation (A24), and Psat is given by Equation (A23).
The two Tait–Tammann parameters Π̃ and J̃ have the following expression in the case of
liquid argon:

Π̃(T) = −Pc + 7.5538(1 − Tr)
1.0728 exp

(
−
∣∣∣ Tr−0.77453

0.22816

∣∣∣39
)

×
(

1 + 176 exp
(
−| Tr − 0.5614 |1.1276

)2.3856
) (72)

J̃(T) = 1.7549 T6
r exp

(
−
∣∣∣ Tr−0.56277

0.1147

∣∣∣1.0685
)
+ 0.064031 exp

(
−
∣∣∣ Tr−0.98098

0.17611

∣∣∣1.2217
)

+0.01 exp
(
−
∣∣∣ Tr−0.577

0.061826

∣∣∣1.2
) (73)

where Tr = T/Tc with Tc = Tc,non‑ext. formulation = 151.396 K and Pc = Pc,non‑ext. formulation =
49.9684 bar. Equation (72) gives Π̃ in bar, and Equation (73) gives J̃ in cm3/g.

It can be immediately noticed that Equations (72) and (73) verify the necessary conditions
for thermodynamic stability such that Π̃(Tc) = −Pc and J̃ ≥ 0 (see Section 3.3 of [35]). Equa‑
tion (72) implies that the corresponding temperature forwhich Π̃ = 0 for argon isT∞ = 137.584
K. This temperature represents the transition between liquid‑ and gas‑like behavior. There‑
fore, for temperatures T∞ < T < Tc, Equation (71) shows an asymptote that lies in the biphasic
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region for T < 150.5 K, but beyond that, it appears in the liquid phase. In other words, it is not
advisable to use the Tait–Tammann approximation for temperatures above 150.5 K.

Figure 43 shows that the variations in Tait–Tammann parameters for argon are very simi‑
lar to those of water (see Figure 3.4 of [35]), except for J̃ near the critical point, which reaches a
maximumhere. Formany liquids, it is generally assumed that J̃ is constant. Figure 43b shows
that this is approximately the case between 90 and 110 K for liquid argon, so the average value
is J̃average ≈ 0.07305 cm3/g. The closeness of the variations in the Tait–Tammann parameters
to those of water still implies that the Ginell parameters [36] will have the same variations
along an isotherm or isobar as those shown in Figures 3.7 and 3.8 of [35], and consequently,
the same picture of the structure of liquid argon in terms of aggregates can be drawn.
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Figure 43. Variations in Tait–Tammann parameters for liquid argon between Tt and Tc = 151.396 K.
(a) Equation (72); (b) Equation (73). The green dotted curve represents the average value of J̃ between
90 and 110 K.

In Figure 44, from an example of a given isotherm, it can be observed that the isothermal
mixed elasticitymodulus of liquid argonhas an appreciable curvature over a pressure range of
1000 bar. Therefore, the Tait–Tammann equation over this pressure range can only be a rough
approximation. If one wants to obtain a representation that fits into the tolerance diagram in
Figure 17, the pressure rangemust be reduced. In the case of liquid argon, the variation of the
isothermal mixed elasticity modulus as a function of pressure can be considered linear for a
pressure range globally below 200 bar. Above 200 bar, it was shown in Chapter 4 of [35] that
it is the adiabatic modulus of elasticity that satisfies the linearity with pressure, and therefore,
a modified Tait equation must be used to describe the liquid and supercritical states of argon.

Figure 45a shows the deviation obtained between the Tait–Tammann equation of state
given byEquations (71)–(73) and the present non‑extensive formulation given by the inversion
of Equation (45). It can be observed that the deviation essentially increases for temperatures
above 140 K, so it diverges from the prescription given by the tolerance diagram in Figure 17,
which provides a tolerance of ±0.2% for subregion E. Figure 45b shows that to achieve the
tolerance of ±0.2%, the pressure range must be reduced between Psat and 100 bar. However,
the tolerance corresponding to subregion E is still slightly exceeded between 146 and 148 K.

Figure 45a shows a larger negative deviation for pressures above 100 bar and tempera‑
tures above 130 K. In other words, it seems that the tolerance diagram prescription of ±0.1%
for subregion D is not held at high pressures. This is confirmed by Figure 46a, which shows
that the tolerance of±0.1% for subregion D is slightly exceeded for temperatures above 130 K
and pressures above 160 bar. On the other hand, Figure 46b shows that the tolerance dia‑
gram prescription of ±0.03% for subregion C is well achieved for the pressure range of Psat
to 200 bar. Moreover, Figure 47 shows that the application of the Tait–Tammann equation of
state up to 300 bar in subregion C leads to a deviation of ±0.05% between Tt and 110 K and
then becomes very slightly higher between 110 and 115 K for pressures above 260 bar. Even
if the deviation is slightly larger than the tolerance in Figure 17, the use of the Tait–Tammann
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equation of state between Tt and 115 K can be considered a “good” approximation between
Psat and 300 bar.
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Figure 44. Evolution of the isothermal mixed elasticity modulus along the isotherm at T = 130 K,
calculated from the present non‑extensive formulation (i.e., blue curve). The black dotted line simply
represents a straight line connecting the first and last points of the isotherm.

Jain et al. [37] also developed aTait–Tammann equation to describe the specific volume of
liquid argon between 90 and 148 K for a pressure range of 300 bar. It is therefore instructive to
compare the evolution of the Tait–Tammann parameters with Equations (71)–(73). The form
proposed by Jain et al. is such that their reference volume is no longer that of the liquid on
the coexistence curve Vσl but rather the volume corresponding to zero pressure, noted as V0.
Under this condition, the pressure Psat is now replaced by the zero value in Equation (71).
With the notations of Jain et al., J̃ is equivalent to cV0, where c is a constant and Π̃ to B.
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be‑

tween the Tait–Tammann equation of state Equation (71) and the present non‑extensive formulation
from the inversion of Equation (45). The thick green curve represents the melting line, while the red
curve represents the saturated vapor pressure curve. The black dashed curves are those in Figure 17
that represent the separation between subregions C, D, and E in the liquid phase. (a) Pressure range
of Psat to 200 bar and temperature range of Tt to 148 K; (b) pressure range of Psat to 100 bar and
temperature range of 135 to 148 K.
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Figure 46. Percentage deviations of the specific volume 100(V non− ext.
formulation

− VEq. (71))/V non− ext.
formulation

be‑

tween the Tait–Tammann equation of state Equation (71) and the present non‑extensive formulation
from the inversion of Equation (45), in the pressure range of Psat to 200 bar. The thick green curve
represents the melting line, while the red curve represents the saturated vapor pressure curve. The
black dashed curves are those in Figure 17 that represent the separation between subregions C and
D in the liquid phase. (a) Temperature range Tt to T∞; (b) temperature range of Tt to 115 K.
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To cover the entire temperature range between 90 and 148 K, Jain et al. [37] performed a
piecewise determination of their equation of state as they explained:
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“in two overlapping temperature ranges (i) 90 to 130 K and (ii) 127 to 148 K. […]
The differences in the calculated values of V0, and B in these overlapping ranges for
both liquids are less than 1 in 4000”.

Figure 48 shows the comparison between the two specific reference volumes of the Tait–
Tammannequationof state for the twodeterminations of Jain et al. [37] andEquations (71)–(73).
It can be observed that the specific volume at zero pressure V0 is smaller and then becomes
the same as the liquid coexistence specific volume when the temperature is lower than 100 K,
which is not physically acceptable. However, the saturated vapor pressure Psat is not negli‑
gible for temperatures between 90 and 100 K; therefore, the equation of state of Jain et al. is
expected to deviate strongly from the TSWmodel or the present non‑extensive formulation in
the vicinity of the saturated vapor pressure curve. However, this is a voluntary choice made
by Jain et al., as they have explained below:

“At sufficiently low saturation pressures, the observed volume can be taken equal to
V0, and the problem of finding a suitable value of B to represent the experimental
results presents little difficulty”.
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of temperature in the range of Tt to 148 K: the dashed curves correspond to the two determinations
of Jain et al. [37] and the solid blue curve to Vσl deduced from Equation (A24).

Figure 49 shows significant differences between the parameters B and Π̃, and cV0 and J̃.
However, the variations show some similarities, like the maximum of cV0. Indeed,
Figure 49b shows that Equation (73) also has a maximum but for a slightly higher temper‑
ature than for Jain et al. [37].

Jain et al. [37] developed their Tait–Tammann equation of state to represent the experi‑
mental data of van Itterbeek et al. (11 isotherms that range from 90.15 to 148.25 K, TABLE I
of [38]). These experimental data were assigned by Tegeler et al. [4] to Group 3 and therefore
do not fit into the tolerance diagram of Figure 17. Thus, the equation of state of Jain et al.
is expected to represent the raw data of van Itterbeek et al. much more accurately than the
non‑extensive formulation of the present model or the Tait–Tammann equation of state, i.e.,
Equations (71)–(73).

Figure 50 shows a comparison of the different models to represent the raw van Itterbeek
et al. data corresponding to subregionC in Figure 17. It can befirst observed that Equation (71)
and the non‑extensive formulation of the present model are not much different according to
the deviation in Figure 47. It appears that the deviation of the model of Jain et al. [37] is com‑
parable to the other models for pressures above 100 bar, which is quite surprising. It is even
more surprising to note that the model of Jain et al. appears entirely shifted by −0.15% on
the lowest isotherm at 90.15 K. However, the model of Jain et al. better represents data that
is close to the saturated vapor pressure curve. This is consistent with the fact that these data
were not considered by Tegeler et al. to determine the liquid density on the coexistence curve.
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tions of Jain et al. [37] and J̃ from Equation (73).
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Figure 51 shows the comparison of the different models for the isotherms corre-
sponding to subregion D in Figure 17. It can be first observed that there is a larger devia-
tion between the non-extensive formulation and Equation (71) beyond 150 bar, which is 
consistent with Figure 46a. Then, it can be seen that the model of Jain et al. [37] again has 
difficulties reproducing the data near the saturated vapor pressure curve. This can only 
be explained by an incorrect extrapolation to determine their function V0(T), if we refer to 
their explanation below: 

Figure 50. Percentage deviations of the specific volume ∆V = (Vvan Itterbeek − Vcalc)/Vvan Itterbeek be‑
tween the rawdata of van Itterbeek et al. (TABLE I of [38]) and the differentmodels (i.e., Jain et al. [37],
equation 71 and the present non‑extensive formulation) for the three isotherms corresponding to sub‑
region C in Figure 17: (a) 90.15 K; (b) 96.99 K; (c) 108.18 K.

Figure 51 shows the comparison of the different models for the isotherms corresponding
to subregion D in Figure 17. It can be first observed that there is a larger deviation between
the non‑extensive formulation and Equation (71) beyond 150 bar, which is consistent with Fig‑
ure 46a. Then, it can be seen that themodel of Jain et al. [37] again has difficulties reproducing
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the data near the saturated vapor pressure curve. This can only be explained by an incorrect
extrapolation to determine their function V0(T), if we refer to their explanation below:

“However, at high saturation pressures, both V0, and B have to be suitably chosen.
The trial value of V0 is first obtained by extrapolation of the V0, against T graph
from the low temperature side”.
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Figure 51. Percentage deviations of the specific volume ∆V = (Vvan Itterbeek − Vcalc)/Vvan Itterbeek be‑
tween the rawdata of van Itterbeek et al. (TABLE I of [38]) and the differentmodels (i.e., Jain et al. [37],
Equation (71) and the present non‑extensive formulation) for the six isotherms corresponding to sub‑
region D in Figure 17: (a) 117.10 K; (b) 127.05 K; (c) 130.85 K; (d) 134.40 K; (e) 136.02 K; (f) 138.98 K.
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Figure 52 shows the comparison of the different models for the isotherms corresponding
to subregion E in Figure 17. It can be observed here that the deviation of the Jain et al. model
from thedata is greatest in the vicinity of the saturated vapor pressure curve, and thedeviation
is systematical in the same direction. On the other hand, this model allows data to be taken
into account with the tolerance prescribed for subregion E for pressures higher than 120 bar.
It can be seen that the opposite process occurs to a smaller extent for Equation (71). This is due
to the curvature of the mixed elastic modulus becoming stronger and stronger, and therefore
the approximation of the Tait–Tammann equation only makes sense for a smaller and smaller
range of pressures. Equation (71) allows a satisfactory representation of data up to 150 bar,
while the model of Jain et al. is able to reproduce data between 150 and 300 bar. The two
descriptions cannot be connected except bymaking the Tait–Tammann parameters depend on
the pressure, but under these conditions, it is preferable to use the non‑extensive formulation.
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In this section, it has been shown that the Tait–Tammann equation of state can be a simple
alternative to describe the specific volume of liquid argon between Tt and 148 K, for pressures
varying between Psat and 300 bar in subregion C, then between Psat and 200 bar in subregion
D, and finally between Psat and 100 bar for subregion E. These pressure ranges are sufficient
for a very large number of applications.

7. Conclusions
A new equation of state for argon was developed, which can be written in the form of

a fundamental equation explicit in the reduced Helmholtz free energy. This equation was
derived from themeasured quantitiesCV(ρ,T) andP(ρ,T). It is valid for thewhole fluid region
(single‑phase and coexistence states) from the melting line to 2300 K and for pressures up to
50 GPa. The formulation is based on data fromNIST (or equivalently on the calculated values
from the TSWmodel) and calculated values from the model of Ronchi [7].

This new approach, using mainly power laws with density‑dependent exponents, in‑
volves much fewer coefficients than the TSW model and, more importantly, eliminates the
very small oscillations introduced by a polynomial description. This leads to a more phys‑
ical description of the thermodynamic properties. On the other hand, the reduction in the
number of terms and parameters does not modify the uncertainties of the calculated data in
an appreciable way (as shown in the different diagrams of tolerance). However, in an un‑
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expected way, the present approach, which generates more regular and monotonous expres‑
sions, raises greater difficulty for the reversal of certain equations of state due to the highly
nonlinear behavior of these expressions.

Thenewequationof state also showsmorephysical behavior along isochorswhenT tends
to zero for basic properties, such as the isochoric heat capacity and the compressibility factor.
It also shows a more reasonable behavior for the crossing of the coexistence phase. However,
it does not correctly describe the properties in the vicinity of the critical point, in the same
way as the TSWmodel does not properly describe the properties in the vicinity of the critical
point, with the exception of the saturation curve. However, variations in the isochoric heat
capacity in the coexistence phase with the present model show peaks that are qualitatively in
agreement with experimental observations, unlike the TSW model, which produces unphys‑
ical variations. Comparison of the present model with the data of L’Air Liquide [5], which
had not previously been taken into account, shows that this model is consistent with data up
to 1100 K and 100 MPa, which allows, regardless of the data of Ronchi [7], the range of NIST
data to be extended [6].

In Section 6 and Appendix C, simple expressions are also provided to describe the spe‑
cific volume of the liquid states of argon between Tt and 148 K in the form of a Tait–Tammann
equation of state and some properties of the liquid–vapor coexistence curve. These approx‑
imate formulas can advantageously replace the complex, non‑extensive formulation of the
present model for a large number of applications.

The non‑extensive approach developed here shows that metastable states are, by con‑
struction, included as an extension of single‑phase isochoric heat capacity modeling. As CV
data are generally known for the vast majority of fluids, this new approach can be easily ex‑
tended to all of them.
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Appendix A. Expression of the Regular Term of Pressure Preg
The regular term of pressure is formed by the difference of two terms that come from the

derivative of energy and entropy, respectively:

Preg(ρ, T) = PUreg(ρ, T)− PSreg(ρ, T) (A1)

and
Zreg(ρ, T) =

Preg(ρ, T)
ρRAT

= ZUreg(ρ, T)− ZSreg(ρ, T) (A2)

with

https://notebookarchive.org/2024-01-8ag2wbe
https://notebookarchive.org/2024-01-8ag2wbe
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where G
m
p

n
q

(
z
∣∣∣∣ a1, · · · , ap

b1, . . . , bq

)
represents the Meijer G function. It is worth noting that the

Meijer functions in ZUreg and ZSreg are equal to zero when T ≥ Tt whatever the value of den‑
sity.

For calculating some thermodynamics parameters, the first partial derivatives of this
pressure term are needed.

The first partial derivatives of ZUreg and ZSreg with temperature are written below:
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The first partial derivatives of ZUreg and ZSreg with density are written hereafter:
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Appendix B. Expression of the First and Second Derivatives of the Coefficients in the
CV Expression

In this appendix, the expressions of the first derivatives of coefficients that appear in the
expression of CV (see Equation (2)) and those useful for calculating pressure are given below.

ρ n′
reg(ρ) = αreg,1

(
ρ

ρ+ρt,Liq

)εreg,1a
exp

(
−
(

ρ
ρt,Gas

)εreg,1b
) {

εreg,1a
ρt,Liq

ρ+ρt,Liq
− εreg,1b

(
ρ

ρt,Gas

)εreg,1b
}

−αreg,2

(
ρ

ρt,Liq

)εreg,2a
{
−εreg,2a

(
1 − exp

(
−
(

ρ
ρreg,Ronc

)−εreg,2b
))

+ εreg,2b

(
ρ

ρreg,Ronc

)−εreg,2b
exp

(
−
(

ρ
ρreg,Ronc

)−εreg,2b
)} (A9)
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ρ m′(ρ) = −
{

αm,4 + αm,3

(
− 3

2 + ρ
ρc

) (
ρ
ρc

) 3
2 exp

(
− ρ

ρc

)
+ 3

2 αm,2

(
ρ

ρt,Liq

) 3
2 exp

(
−
(

ρ
ρt,Liq

) 3
2
)}

+ρ m′
Ronc(ρ)

(A10)

ρ m′
Ronc

(
ρ ≥ M

12.9 g/cm3
)
= ρ

ρm,Ronc

(
ρ+ρm,Ronc

ρm,Ronc

)εm,5a−1
exp

(
− exp

((
ρm,Ronc

ρ

)εm,5b
))

×
{

αm,1 εm,5a + αm,4

(
1 + ρm,Ronc

ρ + εm,5a ln
(

ρ
ρc

))
+ εm,5b

(
ρ+ρm,Ronc

ρm,Ronc

) (
ρm,Ronc

ρ

)εm,5b

× exp
((

ρm,Ronc
ρ

)εm,5b
) (

αm,1 + αm,4 ln
(

ρ
ρc

))} (A11)

ρ n′
nonreg

(
ρ ≤ ρt,Liq

)
= αnonreg,1

(
ρ

ρt,Gas

)εnonreg,1a
(

ρt,Liq
ρ

)
exp

(
−
(

ρt,Liq
ρt,Gas

)εnonreg,1b
(

ρ
ρt,Liq−ρ

)εnonreg,1b
)

×
{

εnonreg,1a
ρ

ρt,Liq
− εnonreg,1b

(
ρt,Liq
ρt,Gas

)εnonreg,1b
(

ρ
ρt,Liq−ρ

)1+εnonreg,1b
}

+αnonreg,2

(
ρ

ρt,Gas

)εnonreg,2a
(

ρt,Liq
ρ

)
exp

(
−
(

ρt,Liq
ρt,Gas

)εnonreg,2b
(

ρ
ρt,Liq−ρ

)εnonreg,2b
)

×
{

εnonreg,2a
ρ

ρt,Liq
− εnonreg,2b

(
ρt,Liq
ρt,Gas

)εnonreg,2b
(

ρ
ρt,Liq−ρ

)1+εnonreg,2b
} (A12)

ρ T′
div(ρ) = αdiv,1

(
ρ
ρc

)εdiv,1a
exp

(
−
(

ρ
ρc

)εdiv,1b
) {

εdiv,1a − εdiv,1b

(
ρ
ρc

)εdiv,1b
}

+αdiv,2

(
ρ

ρt,Liq

)εdiv,2a
exp

(
−
(

ρ
ρt,Liq

)εdiv,2b
) {

εdiv,2a − εdiv,2b

(
ρ

ρt,Liq

)εdiv,2b
} (A13)

ρ n′
crit(ρ) = αcrit,a

(
ρ
ρc

)εcrit,a × exp
[
−
((

αcrit,b
ρ−ρc

ρc

)2
)εcrit,b

]
×
{

εcrit,a − 2 εcrit,bρ
(

αcrit,b
ρc

)2 εcrit,b
(
(ρ − ρc)

2
)εcrit,b− 1

2 sign(ρ − ρc)

} (A14)

ρcε′crit(ρ) = 2εcrit,dε2
crit,e

ρcrit,a−ρ
ρcrit,a

ρc
ρcrit,a

exp
(
−
(

εcrit,e
ρ−ρcrit,a

ρcrit,a

)2
)

+2εcrit,fε
2
crit,g

ρcrit,b−ρ
ρcrit,b

ρc
ρcrit,b

exp
(
−
(

εcrit,g
ρ−ρcrit,b

ρcrit,b

)2
) (A15)

It is interesting to note that the limits of ρ n′
crit(ρ), ρ T′

div(ρ), ρ n′
nonreg(ρ), and ρ n′

reg(ρ)

are equal to zero when ρ → 0. Moreover, the limit of ρ m′(ρ) is equal to 0.240087 when ρ →
0.

The expressions of the second derivatives of the coefficients, which appear in the expres‑
sion of CV and are useful for calculating the compressibility factor, are expressed below.

ρ2 n′′
reg(ρ) = αreg,1

(
ρ

ρ+ρt,Liq

)εreg,1a
exp

(
−
(

ρ
ρt,Gas

)εreg,1b
) {

ε2
reg,1b

(
ρ

ρt,Gas

)εreg,1b
(
−1 +

(
ρ

ρt,Gas

)εreg,1b
)

+εreg,1a

(
ρt,Liq

ρ+ρt,Liq

)2(
−2 ρ

ρt,Liq
− 1 + εreg,1a

)
+ εreg,1b

(
ρ

ρt,Gas

)εreg,1b
(

1 − 2 εreg,1a
ρt,Liq

ρ+ρt,Liq

)}
+αreg,2 εreg,2b

(
ρ

ρt,Liq

)εreg,2a
(

ρ
ρreg,Ronc

)−2 εreg,2b
exp

(
−
(

ρ
ρreg,Ronc

)−εreg,2b
)

×
{
−εreg,2b +

(
1 − 2 εreg,2a + εreg,2b

) (
ρ

ρreg,Ronc

)εreg,2b
}

+αreg,2 εreg,2a
(
εreg,2a − 1

) ( ρ
ρt,Liq

)εreg,2a
(

1 − exp
(
−
(

ρ
ρreg,Ronc

)εreg,2b
))

(A16)

ρ2 m′′ (ρ) = αm,4 + αm,3

(
ρ
ρc

) 3
2 exp

(
− ρ

ρc

) (
3
4 − 3 ρ

ρc
+
(

ρ
ρc

)2
)

+ 3
2 αm,2

(
ρ

ρt,Liq

) 3
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(
−
(

ρ
ρt,Liq

) 3
2
) (

1 + 3
2

(
−1 +

(
ρ

ρt,Liq

) 3
2
))

+ ρ2 m′′
Ronc(ρ)

(A17)
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ρ2 m′′
Ronc

(
ρ ≥ M

12.9 g/cm3
)
=
(

ρ+ρm,Ronc
ρm,Ronc

)εm,5a
exp

(
− exp

((
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ρ
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))

×
{
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ρ
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+ 2 εm,5b

(
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(
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(
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ρ
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ρm,Ronc

ρ

)εm,5b
) (
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ρ
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(A18)

ρ2 n′′
nonreg

(
ρ ≤ ρt,Liq
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ρt,Liq
ρ−ρt,Liq
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αnonreg,1

(
ρ
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(
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(
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) ρ
ρt,Liq
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)]
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(
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(
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)

×
[

εnonreg,2a
(
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) ( ρ
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− 1
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(

ρ
ρt,Liq−ρ
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(A19)

ρ2 T′′
div(ρ) = αdiv,1

(
ρ
ρc

)εdiv,1a
exp

(
−
(

ρ
ρc

)εdiv,1b
)

×
{
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(
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(
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(
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)

×
{
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(
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+ ε2
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(
ρ
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)2 εdiv,2b
} (A20)

ρ2 n′′
crit(ρ) = αcrit,a

(
ρ

ρ−ρc

)2( ρ
ρc

)εcrit,a
exp

[
−
((

αcrit,b
ρ−ρc

ρc

)2
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]
×
{
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(
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)2εcrit,b

−2εcrit,b

((
αcrit,b

ρ−ρc
ρc

)2
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))} (A21)

ρ2
c ε
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crit(ρ) = 2 εcrit,d ε2

crit,e

(
ρc

ρcrit,a

)2
(

2 ε2
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(
ρ−ρcrit,a
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)2
− 1
)

exp
(
−
(

εcrit,e
ρ−ρcrit,a

ρcrit,a

)2
)

+2 εcrit,f ε2
crit,g

(
ρc

ρcrit,b

)2
(

2 ε2
crit,g

(
ρ−ρcrit,b

ρcrit,b

)2
− 1
)

exp
(
−
(

εcrit,g
ρ−ρcrit,b

ρcrit,b

)2
) (A22)

It is interesting to note that the limits of ρ2 n′′ crit(ρ), ρ2 T′′ div(ρ), ρ2 n′′ nonreg(ρ) and
ρ2 n′′ reg(ρ) are also equal to zero when ρ → 0, and the limit of ρ2 m′′ (ρ) = −0.240087 is same
absolute value as that of the limit of ρ m′(ρ) but with opposite sign.

Appendix C. Approximate Formulas to Describe Some Properties along the Liquid–Vapor
Coexistence Curve

In this appendix, we propose simple formulas, valid between Tt and Tc, to approximate
the pressure and densities of liquid and vapor deduced from Maxwell’s relations. Thus, a
simple formula to describe the variation of pressure with temperature along the saturation
vapor pressure curve (SVP) can be written as follows:

Psat(T) = Pc exp

(
−5.9887 θ + 1.7151 θ3/2 + 3.344 θ2

T1.7791
r

)
(A23)
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where Tr = T/Tc and θ = 1 − Tr with Tc = Tc,non‑ext formulation = 151.396 K and Pc =
Pc,non‑ext formulation = 49.9684 bar (see Table 11).

The variation of the liquid density with temperature along the SVP can be described ap‑
proximately by the following formula:

ρσl(T) = ρc
1 + 5.38842

(
1 − T8.23084

r
)0.296407 − (5.38842 − 1.02985)

(
1 − T2.54783

r
)0.280344

T3.19766
r

(A24)

with ρc = ρc,non‑ext formulation = 0.543786 g/cm3 (see Table 11).
The variation of the vapor density with temperature along the SVP can be described ap‑

proximately by the following formula:

ρσv(T) = ρc exp
(
−
[

5.5815
(
1 − T3.5104

r
)0.49565 − (5.5815 + 0.209) θ0.44766

]
exp(1.1761 θ2)

T2
r

)
× exp

(
−5.5815 θ1.1685 exp

(
−
∣∣∣ Tr−0.99338

0.019791

∣∣∣)) (A25)

with ρc = ρc,non‑ext formulation = 0.543786 g/cm3 (see Table 11). By construction, all formulas cross
exactly the critical point.

Figure A1 shows the deviations obtained between the approximate formulas Equations
(A23)–(A25) from the values calculated with Maxwell’s equations for the non‑extensive for‑
mulation of the present model. First of all, it can be observed that the maximum deviations
occur systematically in a neighborhood very close to the critical point.
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Figure A1a shows that Equation (A23) reproduces the pressure very well because the
deviation obtained is smaller than that of Figure 33, which compares the TSWmodel and the
present model. Therefore, it can be said that Equation (A23) is both a good representation of
the TSWmodel and the present model.

With respect to the deviation of the liquid density, Figure A1b appears to be consis‑
tent with the tolerance diagram of Figure 17 all along the coexistence curve up to the criti‑
cal point. Again, the deviation is smaller than the corresponding one in Figure 33; therefore,
Equation (A24) is a good representation of both the TSWmodel and the present model.

The greatest deviation is obtained for the vapor density, which does not conform to the
tolerancediagram inFigure 17. Numerically, thedeviation is comparable to the corresponding
one in Figure 33. However, Figure A1c shows that the deviation is globally well centered on
zero, indicating that the overall variation is correctly reproduced. This last remark is also valid
for the deviations in Figure A1a,b.
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