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Abstract: College context and academic performance are important determinants of academic success;
using students’ prior experience with machine learning techniques to predict academic success
before the end of the first year reinforces college self-efficacy. Dropout prediction is related to
student retention and has been studied extensively in recent work; however, there is little literature
on predicting academic success using educational machine learning. For this reason, CRISP-DM
methodology was applied to extract relevant knowledge and features from the data. The dataset
examined consists of 6690 records and 21 variables with academic and socioeconomic information.
Preprocessing techniques and classification algorithms were analyzed. The area under the curve was
used to measure the effectiveness of the algorithm; XGBoost had an AUC = 87.75% and correctly
classified eight out of ten cases, while the decision tree improved interpretation with ten rules in
seven out of ten cases. Recognizing the gaps in the study and that on-time completion of college
consolidates college self-efficacy, creating intervention and support strategies to retain students is a
priority for decision makers. Assessing the fairness and discrimination of the algorithms was the
main limitation of this work. In the future, we intend to apply the extracted knowledge and learn
about its influence of on university management.

Keywords: educational data mining; machine learning; educational analysis; higher education;
academic success

1. Introduction

Higher education has developed a fundamental role due to the versatility and com-
plexity of today’s world, which has led to the rapid growth of scientific literature dedicated
to predicting academic success or the risk of student dropout [1–7]. Higher education
institutions and their traditional role of knowledge dissemination have changed; innova-
tion in new knowledge especially with the irruption of artificial intelligence [8] and the
training of qualified professionals make many of them interact in different areas of society.
In fact, their missions through teaching, research, and the ability to share and transfer
this knowledge constitute central functions of their academic and cultural activity, with
the aim of improving the level of knowledge in society. They have the important role of
transmitting knowledge, skills, and values to students to create competitive professionals
in society. Therefore, channeling students towards academic success is transcendental, as
HEIs must continue the work undertaken and further deepen their involvement, signifi-
cance, and service capacity in relation to the social, cultural, and economic framework [9].
Thus, the prediction of academic success with past information of students who have
successfully completed their university studies has become a tool of interest for educational
managers since it allows them to strengthen decisions and build improvement alternatives
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or educational policies. ICT is one of the most widely used alternatives today, especially
machine learning.

Hence, advances in machine learning techniques, along with other areas of study,
are precursors to educational data mining. In higher education, the academic success of
students is statistically measured by the graduation rate, which is defined as the total
number of students graduating among the total number of entering students. In fact,
ref. [10] states that it is possible to think about student success more broadly by studying
endogenous and exogenous factors in the student environment. Thus, the constant need to
be effective in the academic success of students has led to the customization of machine
learning, this to achieve specific predictive models that provide useful information.

In the last decade, many studies have focused on investigative works that address
the problems of performance, dropout, and academic success in university students. As
detailed in [11–14], the authors emphasize that university dropout or failure converges
with students from disadvantaged social strata who project university dropout behavior.
To sustain university permanence among their findings, the authors are inclined to consider
that extra-university activities that guarantee retention should be strengthened. Therefore,
early detection has become a tool for solving these problems. Academic history, university
context (tangible and intangible resources), and other data were used as the input elements
to predict the results [4]. For this purpose, qualitative and quantitative research methods
have been used to solve these problems. More recently, multiple studies have been derived
that employed data mining or machine learning techniques that, among other things, use
algorithms and two well-known techniques to extract useful knowledge from data. The
first technique, supervised classification, evaluates the data and predicts the target variable
(class). The work of [6,15–17] has shown results related to supervised classification.

Similarly, in [18,19], using another approach based on supervised classification, they
used a set of pre-selected algorithms that classify the data by applying the voting technique.
Both approaches attempt to predict students’ academic success or performance effectively.
The second technique, unsupervised classification, is one in which the target variable
is unknown and that focuses on finding hidden patterns among the data. In general,
association rules are used to discover facts occurring within the data and are composed of
two parts: antecedent and consequent; for example, the rule {A, B}⇒{C} means that, when
A and B occur, then C occurs. In [20–22], they look for the occurrence of data by focusing
on the association rules and evaluating the rules with metrics such as support, confidence,
and lift, among others.

In the studies of [23–25], related to machine learning, the convergence of objectives and
techniques applied for the data preprocessing stage was observed, both in feature reduction,
data transformation, normalization, and instance selection, among others. At the same time,
data balancing techniques and “black box” classification algorithms were analyzed. The
synergy of the studies lies in the simplification of the predictive models obtained given the
high degree of complexity of the extracted knowledge, for which they used decision trees,
since this technique simplifies the knowledge by means of the representation of rules of type
(X⇒Y). To some extent, the methods applied are part of the KDD process proposed in [26].
However, data asymmetry is a typical problem in any area of study. Duplicity, ambiguity,
and missing and overlapping data are frequent, especially in authentic problems. Indeed,
in data mining classification techniques, problems are presented as an unequal distribution
of examples among classes (target variable), where one or more classes (minority class)
are underrepresented compared to the others (majority class) [27]. Commonly, the data
balancing method defined by Chawla [28] is used in this type of problem. However, it is
intended to fill the existing gap of data balancing with educational data by using different
balancing methods for multiclass problems.

The approach of this study is like previous work described in [6,29–31], where similar
tasks were performed with predictions in binary and multiclass classes. However, the
main difference with our approach focuses on the in-depth analysis of data balancing and
feature selection techniques to avoid biases in predictions. Using 53% fewer variables
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and improving its accuracy by 10% over the preliminary results with the raw data, we
not only built classification models to identify the relevant factors of college students’
academic success, but also obtained a general model from the decision tree to obtain a
higher readability of the predictive model. In this way, it is intended to provide additional
guidance to academic decision makers in decision making. The open license software used
for this work was R [32] through a customized library to visualize, preprocess and classify
the data. The Python library scikit-learn [33] was used for data balancing.

The core of the work focuses on the study of machine learning techniques that predict
academic success. This has allowed us to establish the objective of the work, which is to
know in advance the factors that explain the academic success of students at the end of their
first year of university. To do this, it has been necessary to pose the research questions since
we intend to identify the factors that contribute to the academic success of students during
their first year of college. This will allow us to examine the preprocessing techniques, the
predictive model, the determinants of academic success and, of course, the visualization
techniques to improve its interpretation before and after obtaining the predictive model. In
this sense, the following research questions were posed:

• RQ1: Which balancing and feature selection technique is relevant for supervised
classification algorithms?

• RQ2: Which predictive model best discriminates students’ academic success?
• RQ3: Which factors are determinants of students’ academic success?

Most studies on predicting academic success by machine learning have focused solely
on finding a predictive model, which is, to some extent, highly effective. In contrast, the
work presented, in line with RQ1, seeks the group of features that are most significant for
the model and, on the other hand, also seeks a balanced training dataset, using different
data balancing techniques and avoiding biases in the prediction. RQ2, on the other hand,
aims to find the effective predictive model using different supervised learning algorithms.
Finally, RQ3 examines which variables were relevant in the predictive model achieved by
the machine learning algorithms to then obtain another model with a better interpretation
for the decision maker.

The presented work differs, among other things, by the following contributions:
(i) we unveil the effectiveness of educational data mining techniques, to identify academ-
ically successful students early enough to act and reduce the failure rate; (ii) the impact
of data preprocessing is analyzed; (iii) the important variables underlying the predictive
model of better performance are unveiled. Thus, an approach to the presented work is
associated with the works of [23,29,34], where the authors have examined the characteristics
and impact of the best-performing algorithm. The rest of the paper is organized as follows:
in Section 2, a literature review is carried out; in Section 3, the methodology used in this
work is explained; in Section 4, the main results obtained by applying machine learning are
presented; in Section 5, the discussion is presented; in Section 6, the relevant conclusions,
in Section 7, limitations; and finally, in Section 8 future work are described.

2. Literature Review

In the cited literature, there are works related to the study of machine learning in
higher education and its impact on the prediction of academic performance or success.
In prediction, the purpose is to predict the target variable (class) of a dataset. The works
cited in Table 1 employ supervised classification algorithms that focus on obtaining the
predictive model.
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Table 1. Summary of papers related to the prediction of academic performance or success of univer-
sity students.

Objective Inst. 1 Feat. 2 Class DPM 3 Accuracy Citation Scope

Performance 6948 55 2 Data preprocessing
methods 82% [35] Higher Education

Performance 3830 27 2 Data transformation,
Discretization 83% [36] Higher Education

Prediction 1854 4 2 75% [37]
Academic Success

Assessment 731 12 2 Extraction Feature,
Imbalanced Dataset 78% [6] Higher Education

Achievement 339 15 3 Extraction Feature 69.3% [23] Higher Education

Performance 32,593 31 4 Extraction Feature,
Imbalanced Dataset 72.73% [38] Higher Education

Prediction 9652 68 2 Extraction Feature,
Imbalanced Dataset 75.43% [24] Higher Education

Prediction 3225 57 2 Extraction Feature,
Imbalanced Dataset 79.5% [28] Higher Education

Prediction 300 18 2 Extraction Feature 63.33% [34] Higher Education

Prediction 1491 13 2 Extraction Feature,
Imbalanced Dataset 75.78% [5] Higher Education

Prediction 7936 29 2 Extraction Feature 69.3% [30] Higher Education
Prediction 4413 2 [18] Higher Education

Prediction 6690 21 3
Selection Feature,

Selection Instance, Data
imbalanced

81% Our
proposal Higher Education

1 Number of instances. 2 Number of features. 3 Data preprocessing methods.

Among other works, the use of machine learning techniques to predict the success or
failure of university courses or degrees stands out. The use of the recommender system
proposed by [35] suggests to computer science students the subjects they can take, in
addition to the prediction of success or failure based on the previous experience of other
university students. In the work, data preprocessing and example balancing techniques
were applied. Then, the preprocessed data were used as input for the classification algo-
rithms to learn and obtain the prediction model from the test data. The results achieved
provide guidelines for university administrators to enhance educational quality. In this
sense, the early provision of useful information to predict a given event in the student body
is valuable. Hence, the study of academic performance is a relevant contribution in higher
education. Helal [36], in his work, predicted the academic performance of the student
body; the data used in his work were divided into groups, and each subgroup of data was
evaluated with different classification algorithms to predict academic performance. Their
results suggest that external students and female students performed well in the prediction.

The work of Bertolini [29] set out to examine different classification algorithms to
predict final exam grades with reasonable accuracy, considering midterm grades. Similarly,
Alyahyan [23] proposed the use of decision trees to predict students’ academic performance
and generate an early warning when low performance is detected. Different decision tree
approaches as well as relevant feature extraction were employed to obtain a simpler model
for decision making by academic experts. In line with this, refs. [29,34] also examined high-
impact features in the data to fit representative variables with respect to college retention
and dropout, to develop interventions to help improve student academic success.

Similarly, in Beaulac [39], the prediction of the academic success of university students
has been studied by applying the random forest and decision tree algorithms, the latter
being very intuitive for decision making; the authors propose the use of these techniques
to know if at the end of the first two semesters the student would achieve the university
degree. Their results have indicated that there is a strong relationship between underper-
forming grades and the likelihood of succeeding in a degree program, although this did
not necessarily indicate a causal connection.
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Several of the related articles reveal the variety of work linked to improving the
educational system. The approach of Guerrero-Higueras [7], which proposes the use of the
GIT version control system as an evaluation methodology to observe the frequency and use
of the tool to help predict the student’s academic success, stands out. The variables studied
describe the student’s ability with tasks related to the development of the computer science
subject. This methodology as introduced differs from the rest given the adaptation of the
GIT version control platform and the issues specific to the computer science area.

The literature cited above emphasizes gradualism to achieve features that achieve
high accuracy in the algorithms and obtain a simple and readable model. The lack of salient
features prevents obtaining an effective prediction model. This is because of the ambiguity
or irrelevance of the variables [40]. On the other hand, of significant importance is the
reduction of outliers in the data due to duplicate observations or overlapping data [41–43].
It is understood, of course, that all of this leads to the application of each stage suggested
in the CRISP-DM [26], methodology that allows obtaining a reliable model at the end. The
validity of the model obtained is checked by the performance metrics of the classification
algorithms. Based on what has been presented in this section, it was observed in the
literature that the work focuses mainly on two fronts: identifying significant attributes to
predict student performance, success, or failure in higher education, and finding the best
prediction method to improve the accuracy of the predictive model achieved.

3. Materials and Methods
3.1. Context

The Institution of Higher Education (IES) is geographically located in the Munici-
pality of Quevedo, Province of Los Ríos, Ecuador. Its coordinates are set at: 1◦00′46′′ S
79◦28′09′′ W/−1.012778, −79.469167. According to the policies of the IES and its minimum
requirements, each university course is taught in face-to-face mode, and in addition, each
academic year of the university course must be passed. In this case, each academic year
consists of two academic cycles (semesters). Students must enroll in the university degree
program and obtain grades in each subject, with a minimum grade of seven on a scale
of zero to ten. As a result of the academic activities performed and their permanence
in the university degree, the academic status of the student body is determined (depen-
dent variable/class). Academic statuses are established in three categories. The first is
“Passed”, when the student has completed and passed all academic courses. The second is
“Change”, when the student passes courses other than the initial degree. And finally, third
is “Dropout”, when the student leaves the university completely.

3.2. Data Collection

Data collection was performed using SQL server scripts. The data were extracted from
the university’s information system database server. The dataset used in this work consisted
of two parts: student body and faculty, which were subsequently merged. It should be
noted that the criterion for the merger was the classes taught in the first year by the faculty
in the teaching process for the university degree. Thus, the first part of the information
referring to the students dealt with academic and socioeconomic data, while that relating to
the teaching staff referred to degrees obtained, age, and academic experience, among others.
Among the diversity of professors in charge of university teaching of first-year students,
there were full, associate, and occasional professors, totaling 286 professors selected for
this study.

On the other hand, the number of regular students was 6690. Although the number
of professors and students does not coincide, it is necessary to clarify that a professor can
teach different subjects. The students selected were those who were enrolled and had
completed the first year of all university courses. In short, all of the above was framed
within a retrospective of six complete academic years of each university degree, that is,
ten calendar years. It should also be noted that any identifying reference to both faculty
and students was eliminated to obtain an anonymous dataset. Among other things, the
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information extracted for this work had the endorsement and permission of the competent
authority of the higher education institution detailed in the Institutional Review Board
Statement section. The database with the raw data had 21 variables and 6690 records (see
Appendix A, Table A1 for a description of the variables used).

So far, one of the main differences in algorithms between machine learning (ML) and
traditional statistical methods lies in their purpose, as the former is still focused on the
ability to capture complex relationships between features and make predictions as accurate
as possible, while the latter, especially linear regression (LR), logistic regression (LOR),
generalized mixed models and relevance-based prediction and others, aim at inferring
relationships between variables. However, the key difference between traditional statistical
approaches and ML is that, in ML, a model learns from examples rather than being pro-
grammed with rules. For a given task, examples are provided in the form of inputs (called
features or attributes) and outputs (called labels or classes) [44,45].

In this work, we used the Cross-Industry Standard Process for Data Mining (CRISP-
DM) methodology proposed by [26], which comprises seven phases: understanding the
problem, understanding the data, data preparation, modeling, evaluation and implemen-
tation; the data preparation or data preprocessing is a stage that gained importance and
became a key stage, since its function is related to data preparation. In other words, the
objective is to reduce the complexity of the original dataset to obtain a readable predic-
tive model with useful variables. Therefore, the work is based on the best practice for
data preprocessing suggested in [46–48]. For this reason, Appendixes B and Cdetail the
results of the various methods used for data preprocessing using feature filtering, instance
selection, and class balancing. The main advantage of efficient data preprocessing was
the transfer of suitable data to classification algorithms for simple and accurate learning.
First, the compacted data were cleaned and transformed and then analyzed with visual-
ization techniques that allowed, among other things, the location of trajectories, overlaps
and data behavior. Second, the data were stratified into two subsets of data: training and
test. Then, the training set was filtered for relevant instances and features to balance the
data using different methods. The already balanced dataset was used as input data for the
classification algorithms, together with the test data that were used to obtain the predictive
model. Finally, this model was evaluated with the metrics proposed in this work. Figure 1
shows the activities that were performed.
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3.3. Metric Assessment

The metrics referred to in this section are used to evaluate the performance of the
set of algorithms used to obtain predictive models. In Equation (4), the term α represents
P(Tp) = Sensitivity, and (1 − β) represents P(Tn) = Specificity [49].

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Sensitivity = Recall =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

AUC =∑
{
(1 − βi.∆α) +

1
2
[(1 − β).∆α]

}
(4)

Precision =
TP

TP + FP
(5)

Cohen′s Kappa =
Pr(a)− Pr(e)

1 − Pr(e)
(6)

LogLoss = − 1
N

N

∑
i=1

M

∑
j=1

yi,j log
(

pi,j
)

(7)

3.4. Data Exploratory

The importance of data exploration is that it serves to understand the activity and
behavior of the data. Visualization techniques have been used that detected significant
information in the data; specifically, variables were examined according to each category of
the class using graphs (Figure 2).

3.5. Data Preprocessing

The importance of data preprocessing is to synthesize and achieve expeditious data.
This fact has an important consequence for classification algorithms since the integrity
of the data is gradually assessed by the hit rate, i.e., the number of true positives that
the prediction algorithm can detect. Within this context, the aim is to obtain the set of
features and instances that are close to a reasonable hit rate. The problem around which the
data preprocessing revolves is the different search strategies such as sequential, random, and
complete that are proposed for this task. The evaluation criterion is set with filtering (distance,
information, dependency, and consistency), hybrid and wrapper methods [50–54].

The data preprocessing was divided into four phases. First, missing values in the
data were replaced using the k-nearest neighbor’s algorithm KNN_MV [55]. Second, unre-
presentative instances were excluded using the “NoiseFiltersR” algorithm. Third, feature
selection was studied with different algorithms and functions that have evaluated feature
quality. Finally, data balancing was applied to avoid bias in the prediction model due to
the small amount of minority class data.

3.6. Missing Values

Data in their original form contain inconsistent data and often have missing values.
That is, when the value of a variable is not stored, it is considered missing data. Multiple
techniques have been developed to replace missing values. In general, statistical techniques
of central tendency are usually used; for numerical values, the mean or median is used,
while for nominal values, the “mode” is usually used. Another common technique is to
remove the entire record from the dataset. Deletion can cause significant loss of information.
Frequent techniques are easy to use and solve the problem of missing values, although, in
data mining practice, there is a tendency to implement algorithms that solve this problem
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by examining the entire dataset. Specifically, in this work, we have used the “rfImpute”
function, which replaced missing values by the nearest neighbor technique that takes the
class (target variable) as reference.
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Figure 2. Undirected graph calculated from the correlation matrix (Pearson’s method). Both the arcs
and the adjacency matrix were filtered with cut-off points obtained from the weighted mean of the
nodes (Pass = 0.0007804694, Dropout = 0.0061971, Change = 0.01684287). The graphs had weights
associated with each of the arcs, and this weight fixed their density. Three groups of subfigures
were separated according to the target variable (pass, dropout, change). Subfigure (a) showed
three subgroups of variables (8, 5, 5) where a common variable overlaps. Cluster (b) showed three
subgroups of variables (8, 3, 8); this subfigure lacks overlap. Group (c) showed four subgroups of
variables (6, 7, 4, 2) overlapped by three common variables. On the other hand, red lines indicate a
lower degree of association, while black lines and thickness indicate their strength of association.

3.7. Instance Selection

Instance selection was also key in the data preprocessing, since poor-quality examples
were eliminated by using the NoiseFiltersR algorithm [41], which filtered out the 5% of
examples that were not within the data standard. In other words, when a value is at an
unusual distance from the rest of the values in the dataset, it is considered an outlier or noise.
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3.8. Feature Selection

There is an important distinction to be made in this section since the generality and
accuracy of the predictive model will depend on the quality of the variables. Therefore,
it is crucial to decide which variables are relevant to include in the study. For this, we
used nine feature selection algorithms among them: “LasVegas-LVF”, “Relief” [56], “selec-
tKBest”, “hillClimbing”, “sequentialBackward”, “sequentialFloatingForward”, “deepFirst”,
“geneticAlgorithm”, and “antColony”. On the other hand, the algorithms used distinct
functions to value the attributes. Among the functions, we had “mutualInformation” [57],
“MDLC” [58], “determinationCoefficient” [59], “GainRatio” [60], “Gini Index” [61], and
“roughsetConsistency” [62,63]. The group of algorithms used for the study of significant
characteristics obtained subgroups of variables that have been evaluated and are shown in
Table 2 and Appendix C Table A3.

Table 2. Feature filtering by the “Relief” algorithm using different k and bestk filters. The lowest fea-
ture selection and the highest accuracy achieved by the C4.5 classification algorithm were established
with the “bestk” filtering (10 variables).

Filter Variable Value Accuracy Kappa Sensitivity Specificity Precision Recall F1

k = 9 11 −0.002 0.75 0.56 0.83 0.85 0.79 0.83 0.80
k = 7 11 −0.001 0.76 0.5 0.82 0.85 0.78 0.82 0.80
k = 5 11 −0.003 0.74 0.52 0.80 0.83 0.77 0.80 0.78
k = 3 14 −0.001 0.76 0.56 0.82 0.85 0.79 0.82 0.80
bestk 10 0.062 0.79 0.62 0.85 0.87 0.81 0.85 0.83

3.9. Data Balancing

Sample balancing is another important step in data preprocessing. Currently, there are
several techniques for data balancing or resampling using Python software 3.9 and its scikit-
learn library [33]. In this work, the following techniques have been studied: oversampling,
combined, undersampling and ensemble. The first used the methods “Smote” [28] and
“KMeansSMOTE” (oversampling with SMOTE, followed by undersampling with edited
nearest neighbors) [64]. The second used both “Smote-ENN” and “Smote-Tomek” (over-
sampling with SMOTE) [65]. The third technique used was subsampling with the “RUS”
method [66]. Finally, the ensemble technique used “EasyEnsemble” [67] and “Bagging”.
Specifically, new balanced training datasets were generated. All of this was from the initial
training set, in which the different techniques and methods were used to balance the data
(See Table 3).

Table 3. The table displays the distribution of data per class using different data balancing techniques,
along with the corresponding imbalance ratio (IR) between the majority and minority classes. A
higher IR indicates a more severe class imbalance problem.

Classes

Algorithms Used Dropout Change Pass Overall IR

Origin data (not use algorithm) 3.346 466 2.080 5.892 7.180
Over (SMOTE) 2.826 5.652 8.478 16.956 3

Over (KMeansSMOTE 5.655 8.481 2.829 16.965 2.997
Combined (SMOTE-ENN) 5.365 2.822 4.164 12.351 1.901

Combined (SMOTE-Tomek) 5.360 2.826 7.894 16.080 1.472
Under (RUS) 355 1.065 710 2.130 3

Under (Tomelinks) 2.439 4.229 3.874 10.542 1.733
Ensembles (EasyEnsemble) 2.826 5.017 4.662 12.505 1.775

Ensembles (Bagging) 2.826 5.017 4.662 12.505 1.775
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3.10. Classification Algorithms

The use of supervised classification techniques aims to achieve a prediction model
that is highly accurate. Hence, several algorithms have been created that use different
mathematical models to achieve the model. In this section, we detail the types of algorithms
and a provide a brief description of how each works.

• Decision Trees: Consists of building a tree structure in which each branch represents
a question about an attribute. New branches are created according to the answers to
the question until reaching the leaves of the tree (where the structure ends). The leaf
nodes indicate the predicted class; see [35].

• Support Vector Machine (SVM): A relatively simple supervised machine learning
algorithm used in regression or classification related problems. In many cases, it is
used for classification, although it is preferably useful for regression. Basically, SVM
creates a hyperplane with boundaries between data types in a two-dimensional space;
this hyperplane is nothing more than a line. In SVM, each datum in the dataset is
plotted in an N-dimensional space, where N is the number of features/attributes of
the data; see [68].

• Neural Network: Multilayer perceptrons (MLP) are the best known and most widely
used type of neural network. They consist of neuron-like units, multiple inputs, and
an output. Each of these units forms a weighted sum of its inputs, to which a constant
term is added. This sum is then passed through a nonlinearity, usually called an
activation function. Most of the time, the units are interconnected in such a way that
they form no loop; see [69].

• Random Forest: A combination of tree predictors, where each tree depends on the
values of a random vector sampled independently and with the same distribution for
all trees in the forest. The use of random feature selection to split each node produces
error rates that compare favorably with “Adaboost” but are more robust with respect
to noise. The internal estimates control for error, strength, and correlation, and are
used to show the response to increasing the number of features used in the split.
Internal estimates are also used to measure the importance of variables; see [70].

• Gradient Boosting Machine: Gradient boosting is a machine learning technique used
to solve regression or classification problems, which builds a predictive model in the
form of decision trees. It develops a general gradient descent “boosting” paradigm
for additive expansions based on any fitting criteria. Gradient boosting of regression
trees produces competitive, very robust, and interpretable regression and classification
procedures, especially suitable for the extraction of not-so-clean data; see [71].

• XGBoost: XGBoost is a distributed and optimized gradient boosting library designed to
be highly efficient, flexible, and portable. It implements machine learning algorithms
under the Gradient Boosting framework. XGBoost provides parallel tree boosting
(also known as GBDT, GBM) that solves many data science problems in a fast and
accurate manner; see [72].

• Bagging: Predictor bagging is a method of generating multiple versions of a predictor
and using them to obtain an aggregate predictor. Bagging averages the versions when
predicting a numerical outcome and performs plural voting when predicting a class.
Multiple versions are formed by making bootstrap replicas of the learning set and
using them as new learning sets. Tests on real and simulated datasets show that
bagging can provide a substantial increase in accuracy; see [73].

• Naïve Bayes: A probabilistic machine learning model used for classification tasks. The

core of the classifier is based on Bayes’ theorem: P(A
∣∣∣B) = P(B|A)P(A)

P(B) , which is the
probability of A occurring, given that B has occurred. Here, B is the evidence, and
A is the hypothesis. The assumption made here is that the predictors/features are
independent. That is, the presence of a particular feature does not affect the other;
see [74].
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4. Results

In response to the research questions posed, different data preprocessing algorithms
have been employed to reduce the dimensionality of the dataset, so that the classification
algorithms obtain a simple and accurate predictive model. In the following sections, we
study data preprocessing for feature selection first. Second, we study data balancing using
different data balancing algorithms and, finally, the results using the metrics calculated
from the confusion matrix where the performance of the algorithms was evaluated.

4.1. Data Preprocessing
4.1.1. Feature Selection

Prior to preprocessing, the dataset was separated into two parts: 75% of the total was
selected for training data, and the other 25% for testing. The latter were used to evaluate
the predictive model achieved by the classification algorithms, while the training set was
subjected to preprocessing techniques to reduce dimensionality and obtain adequate data.
In this sense, the work has focused on achieving simplicity and improving the accuracy of
the predictive model, for which different feature and filter selection methods have been
configured. Table 2 shows the results of the algorithm that obtained the lowest features; the
rest of the runs of other algorithms and their results can be found in Appendix C.

In view of the cited works, in the studies of [15,28], relevant features in the data were
examined to improve the predictive model, in line with these. Table 2 presents the results
for the pre-selected feature set, where each evaluative filter and method rated the variables
according to the performance metric. Specifically, the Relief method together with the
“bestk” evaluative filter achieved better efficiency, i.e., higher accuracy with fewer variables.
Based on these results, a new dataset with the new characteristics was established and used
as input data for the data balancing phase described in the next section.

4.1.2. Data Balancing

The importance of data balancing is fundamental to classification algorithms since
the disparity of examples between one class and another can lead to bias in the prediction
model. There are two common techniques for data balancing. The first is the oversampling
of examples technique, in which the data are balanced to the same number of examples
in the majority class. The second is to reduce the other classes to the same number of
examples in the minority class. Both techniques, although not very efficient, are useful for
obtaining primary results since the redistribution of the data is achieved with the judgment
and experience of the data analyst. To some extent, this personalized judgment is avoided by
the intervention of algorithms that perform data balancing. The algorithms augment, reduce
or equalize the examples depending on the technique applied. From the above, Table 3 shows
the data imbalance index according to the algorithms used. Thus, each algorithm generated a
new balanced dataset that was used to train the classification algorithms.

4.2. Classification Algorithms

In this section, we examine the effectiveness of the set of classification algorithms
proposed for this work, which is related as a multiclass problem, that is, a dependent
variable (class) with three types of outputs: Dropout, Change and Passed. For this reason,
and as is common in supervised classification problems, two datasets have been used: the
first, for the algorithms to learn and obtain a prediction model; and the second, to evaluate
the effectiveness of the model obtained. Hence, we worked with two types of analysis: the
first with the original data (without data preprocessing) and the second with the different
datasets generated from the preprocessing techniques used.

It is difficult not to appreciate the importance of data preprocessing, as it provides
classification algorithms with balanced and clean datasets. Obtaining the predictive model
requires the algorithm to learn from the provided data (training set), as the effectiveness
of the model will depend on it. Therefore, for the algorithm to achieve adequate learning,
the cross-validation technique k-fold cross-validation (CV) was applied; this approach
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randomly subdivided the training set into 10 folds with approximately equal size, and each
fold, in turn, was fragmented into two sections: training and test. This was done so that at
the end of training, the mean prediction was obtained from among the folds. On the other
hand, to check what was learned by the algorithms, the metrics proposed in the section
of methodology were used, which helped to discriminate the most effective predictive
models. While it is true that effectiveness is fundamental to evaluate the predictive model,
the comprehensibility of the model obtained is also important, since the experts evaluate
the simplicity of the model.

Here, we present the best result of the classification algorithms that were achieved
using the dataset balanced by the “EasyEnsemble” algorithm and the performance assess-
ment of the classifiers using the ROC curve presented in Figure 3. The rest of the results
with different datasets derived from the application of the data balancing algorithms are
presented in Appendix B, Table A2.
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Figure 3. Performance of the group of algorithms by plotting the area under the AUC curve. On the
ordinate axis is the true positive rate, and on the abscissa axis the false positive rate. The classifier
lines above the diagonal (dashed line) represent good classification results (better than random),
while those below represent bad results (worse than random). The best performance in classifying the
test data examples was obtained by the XGBoost algorithm; two algorithms had an AUC above 0.87,
the rest performed below 0.86. This performance clearly indicates the effectiveness of the predictive
model against the test set.
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In view of the results, Table 4 (raw data) and Table 5 (preprocessed data) show dif-
ferences in the performance of the algorithms. Negative values −0.0214 and −0.0222 for
precision and AUC, respectively, are evident. This negative effect between raw data and
preprocessed data is a consequence of preprocessing, so data preprocessing should be
interpreted not as a contradictory process but as an improvement of the predictive model
by using fewer variables from the original set. Therefore, the advantage of applying data
preprocessing has been observed.

Table 4. Preliminary results for the original dataset, omitting data preprocessing.

Algorithms Accuracy Kappa Sensitivity Specificity Precision Recall F1 AUC LogLoss

XGBoost 0.8133 0.6617 0.8492 0.8861 0.8456 0.8492 0.8462 0.8997 0.3736
RandomForest 0.8163 0.6664 0.8523 0.8873 0.8428 0.8523 0.8468 0.8978 NA

Gbm 0.8062 0.6473 0.8460 0.8800 0.8352 0.8460 0.8401 0.8930 0.3925
Bagging 0.8008 0.6379 0.8423 0.8769 0.8291 0.8423 0.8351 0.8781 NA

C4.5 0.7822 0.6039 0.8378 0.8642 0.8033 0.8378 0.8193 0.8308 NA
NaiveBayes 0.6549 0.3847 0.5215 0.8025 0.7622 0.5215 0.5059 0.8168 NA
SvmRadial 0.7284 0.4934 0.7781 0.8218 0.7673 0.7781 0.7709 0.7973 NA
SvmPoly 0.7165 0.4687 0.7571 0.8132 0.7685 0.7571 0.7616 0.7754 0.5484

MLP 0.6895 0.4501 0.7673 0.8143 0.7471 0.7673 0.7511 0.7621 0.5378

Table 5. Evaluation results of the predictive models obtained by the classification algorithms. The
training set was balanced with the “EasyEnsemble” technique. Model validation was performed on
the test dataset. The data were sorted according to the AUC column.

Algorithms Accuracy Kappa Sensitivity Specificity Precision Recall F1 AUC LogLoss

XGBoost 0.7949 0.6299 0.8425 0.8753 0.8214 0.8425 0.8306 0.8775 6.3430
RandomForest 0.7925 0.6269 0.8444 0.8747 0.8205 0.8444 0.8305 0.8744 NA

Gbm 0.7752 0.5923 0.8318 0.8605 0.8043 0.8318 0.8171 0.8606 5.6340
Bagging 0.7752 0.5933 0.8268 0.8617 0.8088 0.8268 0.8168 0.8591 NA

C4.5 0.7644 0.5803 0.8334 0.8594 0.7964 0.8334 0.8110 0.8249 NA
SvmPoly 0.6861 0.4094 0.7347 0.7919 0.7466 0.7347 0.7384 0.7679 4.1072

SvmRadial 0.6814 0.4073 0.7460 0.7920 0.7321 0.7460 0.7377 0.7676 NA
MLP 0.6539 0.4059 0.7620 0.8013 0.7462 0.7620 0.7360 0.7446 3.2832

NaiveBayes 0.6389 0.3850 0.6348 0.8022 0.7879 0.6348 0.6442 0.8018 6.3015

It should be noted that the logloss was lower with the original data than with the
preprocessed data. The increase with the latter was due to the smaller imbalance between
classes. That is, the smaller the imbalance between classes, the greater the logloss, due to
the smaller proportion of observations in the minority class. Table 3 shows the imbalance
index between the original set and the dataset preprocessed with “EasyEnsemble” (column
IR: 7.18 and 1.775 respectively).

In Table 6, the confusion matrix of the best-scoring algorithm (XGBoost) aimed to
explain the predicted values of the test dataset, and the prediction model obtained by the
algorithm was established. First, the type II error or β type error was analyzed, where
(a) the “Dropout” class had predicted values of 868 cases, of which 741 were correct,
and 127 cases were classified as “Pass”; (b) the “Change” class had 126 cases, of which
115 were correct and 11 were classified as “Pass”; (c) the “Pass” class of the 679 predicted
cases had 474 that were correct, four cases were classified as “Change”, and 201 were
classified as “Dropout”. Secondly, the type I error or type α error was analyzed, where
(a) the class “Dropout” had 942 cases, of which 741 were correct and 201 “Pass”; (b) the class
“Change” had 119 cases, of which 115 were correct and four were classified as “Pass”; (c) the
class “Pass” had 612 cases, of which 474 were correct, 11 were classified as “Change”, and
127 were classified as “Dropout”.
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Table 6. Confusion matrix of the XGBoost algorithm. Here, the actual values (rows) are shown versus
the values predicted by the classifier (columns).

Actual
Prediction Dropout Change Pass Total Error Type II (β)

Dropout 741 0 127 868 0.8536
Change 0 115 11 126 0.9126

Pass 201 4 474 679 0.6980
Total 942 119 612 1673 µ = 0.8214

Error Type I (α) 0.7866 0.9663 0.7745 µ = 0.8431

Overall, a more efficient predictive model was obtained with the XGBoost classification
algorithm. In the work of [75], they highlight that the random forest algorithm obtained a
better result in accuracy (ACC: 0.81) using only 10 features of the original dataset, pointing
out the importance of improving academic performance and increasing the graduation
rate of the students of the educational center. Consequently, it is necessary to consider that
the accuracy of the model increases, and its complexity needs to be explainable as well. In
this context, we looked for a way to apply a simple and readable method. The decision
tree provides a simple rule-based model that improves comprehensibility. The use of the
decision tree, although less efficient, is very easy to interpret. Figure 4 shows the decision
tree generated from the training data and Figure 5 shows the important variables.
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Figure 4. The decision tree drawn is based on the rules obtained. The nodes represent the class.
The three decimal values within the node represent the probability of each class with respect to the
evaluation of the rule. In turn, the total percentage of cases for the rule (cover) is shown. Below the
node, the condition of the rule is displayed.

4.3. Static Comparison of Several Classifiers

Formally, statistical significance is defined as a probability measure to assess experi-
ments or studies. Ronald Fisher promoted the use of the null hypothesis [76], establishing
a significance threshold of 0.05 (1/20) to determine the validity of the results obtained in
empirical tests. In this way, it is guaranteed that the provenance of their results is not due
to chance coincidences. In the work of Demšar [77], the statistical significance of different
classification algorithms and real-world datasets was validated by different empirical tests.
In this context, the nonparametric Friedman and Wilcoxon tests were used, which are
suitable for this type of analysis because they both do not skimp on the normal distribution
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of the data or on the homogeneity of variances, making them suitable for studies with data
of a real or unmanipulated nature.
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Figure 5. The importance of the variable is calculated by summing the decrease in error when divided
by a variable. Thus, the higher the value, the more the variable contributes to improve the model, so
the values are bounded between 0 and 1.

Prior to the calculation of the nonparametric tests, the results matrix of the group
of algorithms and the datasets was organized, using the area under the curve (AUC, see
Appendix D Table A6) as the metric. The significance threshold was set at 0.05 for the
Friedman and Wilcoxon tests to determine if there were significant differences between
more than two dependent groups. To perform the empirical tests, we used the null hy-
pothesis H0: there are no significant differences between the groups of algorithms, and the
alternative hypothesis, Ha: there is at least one significant difference between the groups
of algorithms. The results of the Friedman test yielded a chi-square (χ2) of 52.305 with
8 degrees of freedom and a p-value of 1.47 × 10−8 (See Appendix D, Table A4). Since the
p-value was below the threshold, the null hypothesis was rejected, and the alternative
hypothesis was accepted, confirming the existence of significant differences. Next, a pair-
wise comparison of algorithms will be performed using the Wilcoxon test to assess the
significance of these differences.

The above analysis established that there were significant differences, so a test was
performed for each pair of algorithms using the Wilcoxon test, which is a Friedman post
hoc test and is presented in Table 7, where the p-values obtained are shown.

According to the results, significant differences were found in RF vs. Gbm (0.063);
C4.5 vs. NaiveBayes (0.612); SVMRadial vs. SVMPoly (0.398); SVMRadial vs. MLP (0.091);
and SVMPoly vs. MLP (0.128) (See Appendix D, Table A5 for detailed results). In [78–80],
opinions on statistics and significance tests have been discussed, because they are often
misused, either by misinterpretation or by overemphasizing their results. It should be
stated that statistical tests provide some assurance of the validity and non-randomness of
the results [77].
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Table 7. Wilcoxon signed rank test.

XGBoost RF Gbm Bagging C4.5 NaiveBayes SvmRadial SvmPoly

RF 0.018 -
Gbm 0.018 0.063 * -

Bagging 0.018 0.018 0.018 -
C4.5 0.018 0.018 0.018 0.018 -

NaiveBayes 0.018 0.018 0.018 0.018 0.612 * -
SvmRadial 0.018 0.018 0.018 0.018 0.028 0.018 -
SvmPoly 0.018 0.018 0.018 0.018 0.028 0.018 0.398 * -

MLP 0.018 0.018 0.018 0.018 0.043 0.018 0.091 * 0.128 *

* Reject the null hypothesis.

5. Discussion

This paper explores and discusses three research questions related to machine learning
techniques that are applied to achieve a predictive model with greater accuracy and read-
ability, in addition to the study of factors that lead to the academic success of university
students when they finish the first course. The answers to the questions posed are detailed.

RQ1: Which balancing and feature selection technique is relevant for supervised
classification algorithms? In general, it is evident that with the increase in variables, the
accuracy of the model increases, and so does its complexity, since the classification algo-
rithms improve performance, although the readability of the model decreases. Against this
in the work of Alwarthan [24], they apply recursive feature elimination (RFE) with Pearson
correlation coefficient, RFE with mutual information and GA to find relevant features, in
addition to class balancing using SMOTE-TomekLink to build the final prediction model.
The relevant variables were related to English courses and GPA, as well as students’ social
variables. Alwarthan [24] used 68 features and achieved 93% accuracy with the initial
results, while feature filtering detected 44 relevant variables and 90% accuracy. On the
other hand, they analyzed eight relevant characteristics that achieved 77% accuracy; the
variables were directly related to the academic performance of the student body.

In [6], the filtering of characteristics using the Gini index was proposed, from which
seven characteristics were selected, achieving 79% accuracy using the random-forest algo-
rithm. These results were very similar to ours, but far from being explainable, due to the
bias derived from the imbalance of the data. In the proposal made in this study, different
data processing techniques were used to obtain an expeditious dataset. On the one hand,
the instance filtering method was considered to reduce duplicate or noisy observations by
5%. On the other hand, for feature group filtering, six methods were used, and five filters
were applied, with which an accuracy between 58% and 78% was achieved. On the other
hand, when applying the “ReliefF” method, 10 features were obtained with an accuracy
of 79% (algorithm C4.5). In contrast, with the literature presented, the analyzed datasets
had accuracy values below 84% and 32 features on average. The difference with what is
proposed in this work is greater than 5% in accuracy, initially attractive. However, the
handling of 22 additional features generates a robust and poorly explainable model for
decision support.

Consequently, data balancing as part of data preprocessing was crucial to achieve a
robust predictive model. The literature reviewed generically posits data balancing as a step
prior to feature filtering. The approach taken so far is to obtain a filtered dataset (instances
and features) and then apply data balancing. Among the best classification accuracies
achieved by the data balancing methods, a range between 73% and 79% was obtained. The
“EasyEnsemble” method obtained the best accuracy, AUC and logloss. The latter was far
from the original data, as the imbalance rate was high. For example, the imbalance rates
(IR) of the original data (7.35 IR) for undergraduate academic statuses (dropout, change
and pass) were 57%, 7% and 36%, while for the balanced data (1.75 IR), they were 23%, 40%
and 37% with synthetic observations. The accuracy of the XGBoost model with balanced
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data was approximately 80%. In summary, the proposed data preprocessing made the
dataset unbiased and the predictive model simple and explainable.

RQ2: Which predictive model best discriminates students’ academic success? Cur-
rently, there are several supervised algorithms used in higher education to predict different
educational contexts in higher education. Specifically, the best discrimination was per-
formed by the XGBoost algorithm. This criterion was based first on the values collected
with the predictive model, where the accuracy value was 79.49% and the AUC was 87.75%.
Sensitivity = 84.25%, which indicated the rate of positive examples that the algorithm was
able to classify, while specificity = 87.53% for negative examples. Next, the logloss metric
measuring computational cost had 0.3736 and an imbalance rate of 7.18 with the original
dataset. However, the logloss value went to 6.34 with the preprocessed dataset and an
imbalance rate of 1.775, i.e., lower computational cost and a higher data imbalance rate
were inversely proportional to the performance of the predictive model. Although the
predictive model obtained using XGBoost is poorly explainable due to its high complexity,
it performed better by classifying examples from the test set. Explainability of the predictive
model was obtained when the decision tree was applied to the training set to obtain a
predictive model based on rules (If, Then) and readable for decision makers.

Similarly, [6,16–19,24,75] converge in their predictions on higher education data using
classifiers such as Random Forest (RF), SVM, Neural Networks and decision trees. Likewise,
linear regression or logistic regression was used to obtain predictive models that detect
failure, success, or academic performance early enough [1,81], or in turn, semi-supervised
learning to obtain patterns in students who managed to pass the courses for a university
degree [22]. Being the main objective to achieve very attractive and reliable accuracies, un-
doubtedly, accuracy always comes hand in hand with the quantity and quality of the data.
For example, Gil [38] obtained accuracy rates with “random forest” of 77%, 91% and 94%
with features of 30, 44 and 68, respectively, where the positive correlation between number of
features and accuracy was evidenced. That said, in our results, accuracies very close to 80%
were achieved with only 10 features and a completely readable model (10 rules).

RQ3: Which factors are determinants of students’ academic success? As part of the
development of this study, variables that play a significant role in the academic success of
students were found. Specifically, the variables ChangeDegree, RateApproval, Average, and
Degree were determinants for the prediction model obtained. These findings are close to the
results obtained by Alturki [34], where individual results from the third and fourth semester
were examined, both with accuracies of 63.33% (six variables) and 92.6% (nine variables),
respectively. The influential variables were grade point average, number of credits taken
and academic assessment performance, applying the selection of characteristics for each
academic semester. Similarly, Alyahyan [23] identified variables related to GPA and key
subjects that detect student performance early enough. As detailed by Beaulac [39] in their
study, they identified variables associated with undergraduate degree completion as a first
group of variables, whereas the second group of variables was related to the type of major.
In summary, the first-year students opt for computer and English related subjects to reach
their academic achievement, i.e., characteristics related to academic performance.

Specifically, data preprocessing provides as input an expedited dataset for classification
algorithms to achieve an adequate predictive model. Although the results in the reviewed
literature resemble ours, and these can be improved by inducing endogenous or exogenous
variables for the model to achieve more optimal results, the results can also be improved
by over-fitting parameters in the algorithms. It is also worth mentioning that, for example,
Ismanto [82] obtained an RF prediction model with an accuracy higher than 90% without
preprocessing the data, which resulted in a complex predictive model due to its explainability.
Therefore, even if the model obtains the highest accuracy, the prediction bias can also be
extended if the parameters are over-fitted or the data preprocessing phase is omitted.

Kaushik [83] has defined feature selection as increasing the quality in the data to
facilitate better results, all according to the proposed method set of techniques for feature
selection in educational data. What is applied in this paper fits with Kaushik’s perspective.
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It is important to anticipate early enough and with general quality characteristics to take
effective countermeasures, providing timely warnings to students to achieve academic
success. In this way, the percentage of underachieving students can be reduced, and
appropriate counseling and intervention can be provided to them by the college.

The results provide conclusive support for the anticipation of college completion [84–86],
which is essential to assist students in the learning process and ensure their academic
success. Thus, taking advantage of the fact that predictions made early enough by machine
learning manage to reveal possible difficulties or improvements from students’ historical
data, its effective use requires building specific strategies [84]. Consequently, the application
of the knowledge obtained from the data is leveraged, for example, in constant monitoring
or continuous tracking that acts as a tool to assess progress in academic performance, class
attendance, extracurricular activities and other key indicators [87]. Other strategies include
personalized tutorial support or intervention plans, remediation and other resources for
students who have demonstrated compelling needs [88,89]. Machine learning, along with
other data analysis techniques, offers valuable suggestions for targeted interventions for the
benefit of students, with the goal of helping them achieve academic success in the shortest
possible time. The results presented support the authenticity of the analyses performed,
as the information is not based on mere coincidences, but on real data. In this context,
significant tests were performed using statistical methods such as the nonparametric
Friedman and Wilcoxon test, which are widely recognized for comparing the performance
of machine learning algorithms [77,90,91]. Although these tests are not recommended for
a comprehensive study, due to the need to conform to other assumptions, some authors
have deepened their analysis and proposed alternatives to the tests [92,93]. In summary,
significant tests are essential for a solid and objective interpretation of the results obtained.

6. Conclusions

In response to the research questions, the effectiveness of the prediction model lies
in the good practice conducted in the data preprocessing phase. Hence, the importance
of obtaining an expeditious dataset is crucial. Unlike the methodologies reviewed in the
literature, our applied methodology avoided bias in the accuracy rates of the predictive
model, as well as in the academic status (class). In fact, both the robust predictive model
achieved by means of XGBoost as well as the simplified decision tree model proved to be
effective. The simplified predictive model was able to detect students with high potential
for academic success in seven out of ten cases, while the robust model detected them in
eight out of ten cases. The simplification and explainability of the model were based on
a set of rules obtained from the decision tree used, to make them understandable and
provide them to academic experts as suggestions for decision making. Overall, this study
provides valuable information on the factors underlying college students’ academic success
expectations and highlights the importance of effective data preprocessing and model
simplification techniques for making accurate, meaningful, and understandable predictions
about college students’ academic success.

7. Limitations

The main limitation of this work was the absence of variables that help to have
consistent measurements in the classification algorithms in terms of gender, scholarships,
and financial aid, since it is important to analyze the evaluation of equity and discrimination
aspects in the decisions made by the algorithms to build the predictive model.

8. Future Work

Looking ahead, we intend to explore how the knowledge extracted in this work and
the university practices applied with this knowledge can influence classroom manage-
ment, with the aim of improving students’ academic outcomes and reducing the disparity
in educational opportunities. To this end, we propose studies related to (i) examining
how the personalization of predictive models can be adapted to the phenotype (charac-
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teristics) of the student body, where the objective is to examine the use of fuzzy logic to
make uncertainty flexible and how the fuzzy model can manage the university context;
(ii) designing early warning systems to intervene early and prevent failure or dropout; and
(iii) other approaches, such as longitudinal studies, that aid evaluation and effectiveness
over time to adjust the models as needed.
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Appendix A

This section presents the information used in the work. The dataset used consists of
data such as career, class attendance, students’ academic performance and socioeconomic
information. Numerical and categorical data are according to each variable.

Table A1. Description of the dataset used for the study.

Variable Names Values Description Type

Faculty 1–5 Names of the faculties. Categorical

Degree 1–27 Names of the university degrees. Categorical

Sex 1. Male,
2. Female Sex of students. Categorical

Age Entrance 16–50 Age at entrance to university. Numeric

Support 1. Public
2. Private

Type of financial support from the high school where
the student completed high school. Categorical

Localization
1. Local,

2. Outside of Quevedo,
3. Other Province

The geographical area of the school where the student
finished high school. Categorical

AveragePre 0–10 Average of the grades of the university leveling
program (Pre-university/Admission/Selectivity). Numeric
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Table A1. Cont.

Variable Names Values Description Type

Housing

1. Own housing,
2. Rental,

3. Mortgaged,
4. Borrowed.

This variable is related to the usufruct of the housing
where the student and his family live. Categorical

ChangeDegree 1. Yes,
2. No.

This variable describes whether the student has
changed degrees when repeating the first year. Categorical

Class
1. Dropout,
2. Change,

3. Pass.

Variable with the student’s academic status at the end
of the university degree. Categorical

AttendancePre 0–100 Pre-university attendance percentage. Numeric

Average 0–10 Average of the subjects taught in the first year. Numeric

Attendance 0–100
Average of the student’s attendance percentage in all
subjects enrolled. Must meet the minimum attendance

percentage of 70%.
Numeric

TimeApproval 1–3 Number of enrollments used by the student to pass
the first course. Numeric

RateApproval 0–3
Weighting of the effort in the exams to pass the

subjects; the first exam (recovery) has a value of 0.25,
while the second one has a value of 0.75.

Numeric

CounterDegree 0–2 The number of college courses in which the student
was enrolled. Numeric

StructureFamily

1. I am independent
2. Only with mom,
3. Only with dad,
4. Both parents,

5. Couple,
6. Other relative.

Variable associated with the student’s family structure. Categorical

Job

1. Does not work,
2. Full time,
3. Part-time,

4. Part-time by the hour,
5. Occasionally.

This variable is linked to the student’s work or
occupational situation. Categorical

Financing

1. Family support, with
1 or 2 children studying.

2. Self-employed
(own account).

3. Family support, with more
than three children studying.

4. Loan, scholarship, or
current credit.

This variable is related to the student’s economic
disposition to pay for the academic year. Categorical

Zone

1. Outside of Quevedo,
2. Urban,
3. Slum,
4. Rural.

Describes the geographic district where the student
lives. Categorical

Income

1. More than $400,
2. Between $399 and $200,
3. Between $199 and $100,

4. Less than or equal to $99.

Monthly cash income (approximate) of the family
nucleus. Categorical
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Appendix B

Table A2 presents various results from the calculation of the metrics applied to the
group of classification algorithms. The results presented in this appendix are complemen-
tary trainings, as six different balancing techniques were used to generate new datasets that
were contributed to train and achieve effective predictive models. Each technique applied
balancing methods related to oversampling, undersampling and combined balancing based
on the SMOTE algorithm. The “EasyEnsemble” data balancing was the best performing
of the algorithms and has been presented in the Results section as part of the data input
supply for the group of classification algorithms to obtain the predictive model.

Table A2. Performance results of the classification algorithms that trained and tested the predictive
models using new datasets constructed using the data balancing algorithms.

Bal. Algorithms Acc. Kappa Sensi. Speci. Preci. Recall F1 AUC LogLoss

SM
O

TE

XGBoost 0.7878 0.6214 0.8472 0.8740 0.8237 0.8472 0.8318 0.8743 6.7890

RF 0.7812 0.6118 0.8418 0.8720 0.8143 0.8418 0.8229 0.8671

Gbm 0.7723 0.5984 0.8446 0.8679 0.8105 0.8446 0.8205 0.8575 5.0183

Bagging 0.7687 0.5887 0.8315 0.8633 0.8045 0.8315 0.8135 0.8546

C4.5 0.7639 0.5771 0.8248 0.8577 0.8008 0.8248 0.8101 0.7936

SvmPoly 0.6999 0.4740 0.7819 0.8242 0.7618 0.7819 0.7631 0.7640 5.8172

SvmRadial 0.6970 0.4681 0.7835 0.8215 0.7587 0.7835 0.7630 0.7649

MLP 0.6545 0.4190 0.7779 0.8087 0.7552 0.7779 0.7350 0.7512 5.0928

NaiveBayes 0.6198 0.3802 0.7478 0.7990 0.7817 0.7478 0.6957 0.8040 5.0538

K
M

ea
ns

.S
M

O
T

E

XGBoost 0.7956 0.6366 0.8565 0.8802 0.8262 0.8565 0.8367 0.8702 6.3079

RF 0.7794 0.6080 0.8420 0.8702 0.8125 0.8420 0.8226 0.8600

Gbm 0.7693 0.5929 0.8396 0.8660 0.8060 0.8396 0.8160 0.8515 5.1901

Bagging 0.7681 0.5860 0.8228 0.8620 0.8049 0.8228 0.8103 0.8467

C4.5 0.7663 0.5828 0.8259 0.8605 0.8036 0.8259 0.8113 0.7979

SvmPoly 0.6946 0.4613 0.7751 0.8187 0.7548 0.7751 0.7584 0.7616 5.8277

SvmRadial 0.6892 0.4499 0.7717 0.8139 0.7492 0.7717 0.7551 0.7591

MLP 0.6712 0.4229 0.7703 0.8045 0.7353 0.7703 0.7452 0.7424 4.9865

NaiveBayes 0.6067 0.3644 0.7505 0.7933 0.7804 0.7505 0.6862 0.7970 5.0905

SM
O

TE
.T

om
ek

XGBoost 0.7914 0.6278 0.8474 0.8766 0.8241 0.8474 0.8320 0.8665 6.5445

Bagging 0.7747 0.5970 0.8269 0.8656 0.8090 0.8269 0.8148 0.8468

Gbm 0.7741 0.6029 0.8430 0.8705 0.8137 0.8430 0.8199 0.8577 4.9046

RF 0.7717 0.5922 0.8295 0.8639 0.8050 0.8295 0.8139 0.8562

C4.5 0.7579 0.5639 0.8088 0.8526 0.7947 0.8088 0.8001 0.7623

SvmPoly 0.6975 0.4722 0.7822 0.8242 0.7627 0.7822 0.7619 0.7634 5.7663

SvmRadial 0.6910 0.4579 0.7749 0.8182 0.7550 0.7749 0.7565 0.7633

MLP 0.6724 0.4459 0.7885 0.8182 0.7631 0.7885 0.7483 0.7592 4.8305

NaiveBayes 0.6372 0.4053 0.7622 0.8079 0.7805 0.7622 0.7104 0.7959
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Table A2. Cont.

Bal. Algorithms Acc. Kappa Sensi. Speci. Preci. Recall F1 AUC LogLoss

SM
O

TE
.E

N
N

XGBoost 0.7478 0.5573 0.8216 0.8542 0.7933 0.8216 0.7988 0.8335 5.9690

Gbm 0.7406 0.5481 0.8239 0.8519 0.7923 0.8239 0.7965 0.8230 5.2251

RF 0.7394 0.5492 0.8285 0.8534 0.7962 0.8285 0.7972 0.8192

Bagging 0.7352 0.5387 0.8179 0.8485 0.7908 0.8179 0.7926 0.8165

C4.5 0.7310 0.5274 0.8109 0.8429 0.7828 0.8109 0.7888 0.7548

SvmRadial 0.6880 0.4590 0.7846 0.8198 0.7594 0.7846 0.7589 0.7511

SvmPoly 0.6880 0.4598 0.7809 0.8206 0.7608 0.7809 0.7568 0.7490 5.5081

MLP 0.6665 0.4398 0.7875 0.8169 0.7661 0.7875 0.7436 0.7650 4.7577

NaiveBayes 0.6186 0.3810 0.7615 0.7989 0.7428 0.7615 0.6858 0.7764 4.2434

R
U

S

Gbm 0.7346 0.5346 0.8188 0.8455 0.7861 0.8188 0.7938 0.8102 5.1165

XGBoost 0.7328 0.5344 0.8205 0.8466 0.7886 0.8205 0.7931 0.8173 4.4343

RF 0.7304 0.5303 0.8187 0.8450 0.7868 0.8187 0.7914 0.8153

Bagging 0.7197 0.5062 0.8034 0.8346 0.7731 0.8034 0.7813 0.7962

C4.5 0.6987 0.4954 0.8131 0.8387 0.7957 0.8131 0.7667 0.7764

SvmRadial 0.6629 0.4081 0.7634 0.7992 0.7249 0.7634 0.7368 0.7360

SvmPoly 0.6605 0.4040 0.7622 0.7976 0.7275 0.7622 0.7374 0.7348 4.3219

MLP 0.6402 0.3871 0.7610 0.7950 0.7320 0.7610 0.7251 0.7304 2.9982

NaiveBayes 0.6031 0.3575 0.7428 0.7907 0.7773 0.7428 0.6827 0.7841

Appendix C

This table presents the results of the filtering of characteristics using the different
methods proposed in the study. Each method, according to its nature, filtered the group of
variables that best represented the data. Then, the group of variables was evaluated with
the C4.5 classification algorithm.

Table A3. Selection of characteristics used for the evaluation of the best group of variables. The best
group of variables was selected by the RelefFbestK algorithm.

Filter Var. Method Value Acc. Kappa Sensi. Speci. Preci. Recall F1

Roughset
consistency 11 Las Vegas 1.00 0.68 0.39 0.53 0.79 0.65 0.53 0.56

9 SelectKBest 0.02 0.67 0.36 0.47 0.78 0.47
8 HillClimbing 1.00 0.62 0.21 0.41 0.73 0.41
9 Sequential Backward 1.00 0.67 0.36 0.47 0.78 0.47

9 Sequential Floating
Forward 1.00 0.67 0.36 0.47 0.78 0.47

10 Genetic Algorithm 1.00 0.67 0.34 0.47 0.78 0.47
20 AntColony 1.00 0.78 0.60 0.83 0.86 0.81 0.83 0.82

Determination
coefficient 13 Las Vegas 0.48 0.72 0.46 0.60 0.82 0.70 0.60 0.62

9 SelectKBest 0.06 0.67 0.36 0.47 0.78 0.47
20 HillClimbing 0.48 0.78 0.60 0.83 0.86 0.81 0.83 0.82
20 Sequential Backward 0.48 0.78 0.60 0.83 0.86 0.81 0.83 0.82

20 Sequential Floating
Forward 0.48 0.78 0.60 0.83 0.86 0.81 0.83 0.82

20 Genetic Algorithm 0.48 0.78 0.60 0.83 0.86 0.81 0.83 0.82
20 AntColony 0.48 0.78 0.60 0.83 0.86 0.81 0.83 0.82
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Table A3. Cont.

Filter Var. Method Value Acc. Kappa Sensi. Speci. Preci. Recall F1

Gini index 11 Las Vegas 1.00 0.68 0.39 0.53 0.79 0.65 0.53 0.56
9 SelectKBest 0.51 0.67 0.36 0.47 0.78 0.47
8 HillClimbing 1.00 0.62 0.21 0.41 0.73 0.41
9 sequentialBackward 1.00 0.67 0.36 0.47 0.78 0.47

9 sequential Floating
Forward 1.00 0.67 0.36 0.47 0.78 0.47

11 Genetic Algorithm 1.00 0.62 0.21 0.41 0.73 0.41
20 AntColony 1.00 0.78 0.60 0.83 0.86 0.81 0.83 0.82

Mutual
information 12 Las Vegas 1.27 0.72 0.46 0.56 0.82 0.69 0.56 0.58

9 SelectKBest 0.16 0.67 0.36 0.47 0.78 0.47
6 HillClimbing 1.27 0.58 0.09 0.37 0.69 0.37
8 Sequential Backward 1.27 0.62 0.21 0.41 0.73 0.41

8 Sequential Floating
Forward 1.27 0.62 0.21 0.41 0.73 0.41

4 GeneticAlgorithm 1.27 0.67 0.34 0.47 0.78 0.47
20 AntColony 1.27 0.78 0.60 0.83 0.86 0.81 0.83 0.82

Gain ratio 7 Las Vegas 0.10 0.59 0.15 0.39 0.71 0.39
9 SelectKBest 0.13 0.67 0.36 0.47 0.78 0.47
7 HillClimbing 0.10 0.59 0.15 0.39 0.71 0.39
11 SequentialBackward 0.10 0.68 0.39 0.53 0.79 0.65 0.53 0.56

11 Sequential Floating
Forward 0.10 0.68 0.39 0.53 0.79 0.65 0.53 0.56

1 GeneticAlgorithm 0.10 0.59 0.15 0.39 0.71 0.39
19 AntColony 0.10 0.72 0.48 0.60 0.82 0.71 0.60 0.62

Appendix D

This section presents the results of the nonparametric Friedman and Wilcoxon tests
performed. For this purpose, the value of the AUC metric was used. The calculation was
performed using the R statistical program. Table A4 presents the values obtained from the
calculation of the Friedman test. Table A5 presents the matrix of the Wilcoxon test results,
both the Z-value on the left and the p-value on the right. Table A6 is the matrix used for the
calculation of the tests.

Table A4. Average Rankings of the algorithms.

Algorithm Ranking

XGBoost 0.9999999999999998
RandomForest 2.2857142857142856

Gbm 2.714285714285714
Bagging 3.999999999999999

C4.5 5.999999999999999
NaiveBayes 5.428571428571429
SvmRadial 7.428571428571429
SvmPoly 7.571428571428571

MLP 8.571428571428571
Friedman statistic considering reduction performance (distributed according to chi-square with 8 degrees of
freedom: 52.3047619047619 p-value computed by Friedman test: 1.474479383034577 × 10−8.
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Table A5. Z Score and significance on Wilcoxon test (Z/p-value, within table).

Algorithms XGBoost RF c Gbm Bagging C4.5 NaiveBayes SvmRadial SvmPoly

RF −2.366 a/0.018 -
Gbm −2.366 a/0.018 −1.859 a/0.063 * -

Bagging −2.371 a/0.018 −2.366 a/0.018 −2.366 a/0.018 -
C4.5 −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 -

NaiveBayes −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −0.507 b/0.612 * -
SvmRadial −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.197 a/0.028 −2.366 a/0.018 -
SvmPoly −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.197 a/0.028 −2.366 a/0.018 −0.845 a/0.398 * -

MLP −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.366 a/0.018 −2.028 a/0.043 −2.366 a/0.018 −1.690 a/0.091 * −1.521 a/0.128 *

a Based on positive rankings. b Based on negative rankings. c Random Forest. * Reject the null hypothesis.

Table A6. AUC value metrics with different classifiers and dataset.

DataSet
Algorithms

XGBoost RF Gbm Bagging C45 NaiveBayes SvmRadial SvmPoly MLP

RawData 0.8997 0.8978 0.8930 0.8781 0.8308 0.8168 0.7973 0.7754 0.7621
EasyEnsemble 0.8775 0.8744 0.8606 0.8591 0.8249 0.8018 0.7676 0.7679 0.7446

SMOTE 0.8743 0.8671 0.8575 0.8546 0.7936 0.8040 0.7649 0.7640 0.7512
KmeansSMOTE 0.8702 0.8600 0.8515 0.8467 0.7979 0.7970 0.7591 0.7616 0.7424
SMOTETomek 0.8665 0.8562 0.8577 0.8468 0.7623 0.7959 0.7633 0.7634 0.7592
SMOTEENN 0.8335 0.8192 0.8230 0.8165 0.7548 0.7764 0.7511 0.7490 0.7650

RUS 0.8173 0.8153 0.8102 0.7962 0.7764 0.7841 0.7360 0.7348 0.7304
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