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Abstract: Magnesium (Mg) is considered an attractive option for orthopedic applications due to
its density and elastic modulus close to the natural bone of the body, as well as biodegradability
and good tensile strength. However, it faces serious challenges, including a high degradation rate
and, as a result, a loss of mechanical properties during long periods of exposure to the biological
environment. Also, among its other weaknesses, it can be mentioned that it does not deal with
bacterial biofilms. It has been found that making composites by synergizing its various components
can be an efficient way to improve its properties. Among metal oxide nanoparticles, magnesium
oxide nanoparticles (MgO NPs) have distinct physicochemical and biological properties, including
biocompatibility, biodegradability, high bioactivity, significant antibacterial properties, and good
mechanical properties, which make it a good choice as a reinforcement in composites. However, the
lack of comprehensive understanding of the effectiveness of Mg NPs as Mg matrix reinforcements
in mechanical, corrosion, and biological fields is considered a challenge in their application. While
introducing the role of MgO NPs in medical fields, this article summarizes the most important results
of recent research on the mechanical, corrosion, and biological performance of Mg/MgO composites.

Keywords: magnesium; magnesium oxide nanoparticles; composite; biological characteristics;
mechanical properties; corrosion behavior

1. Introduction

Collagen fibers with a hydroxyapatite (HAP) crystalline matrix form the natural com-
ponents of bone and are considered as porous biological nanocomposites. Collagen fibers
(organic phase) are flexible materials with high toughness, and HAP crystals (inorganic
phase) are brittle materials with high hardness. The combination of these two materials
with different properties turns bone into a natural biological nanocomposite [1].

Typically, metals such as platinum (Pt), titanium alloys, and stainless steels, which are
also compatible with the body, are used as implants in orthopedic surgery [2–8]. Secondary
surgery to remove the implant, which causes physical and mental pain for the patient,
as well as the phenomenon of stress shielding on the tissue surrounding the implant,
was always a challenge for researchers [9,10]. But the new generation of implants is
biodegradable: as tissues heal, the biodegradable material dissolves and forms a harmless
oxide, which is excreted in urine. The group of biodegradable metals includes Mg, zinc
(Zn), and iron (Fe) [11]. A summarized quantitative comparison of some physical and
mechanical properties of common biodegradable metals, in addition to the characteristics
of natural bone tissues, is given in Table 1.

Bioengineering 2024, 11, 508. https://doi.org/10.3390/bioengineering11050508 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering11050508
https://doi.org/10.3390/bioengineering11050508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-8176-9310
https://orcid.org/0000-0002-5278-8958
https://orcid.org/0000-0002-3593-9400
https://doi.org/10.3390/bioengineering11050508
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering11050508?type=check_update&version=2


Bioengineering 2024, 11, 508 2 of 17

Table 1. Comparison of the mechanical properties and degradation rates of bone tissues with
biodegradable metallic materials.

Tissue/
Material

D
(g/cm3)

E
(GPa)

UTS
(MPa)

YS
(MPa)

FT
(MPa m1/2)

ε

(%)

MH
(HV)

(kgf/mm2)

UCS
(MPa) D.R Ref.

Natural bone 1.7–2.1 3–30 35–283 70–100 3–6 1–4 35–40.4 164–200 NBR [12,13]

Pure Mg 1.74 41–45 135–285 130–250 15–40 5–40 42 65–100 0.8–2.7 [14–16]

Pure Fe 7.8 213 300–540 120–150 25–60 37.5 150 560 0.1 [13,14,17]

Pure Zn 7.1 78–121 97–150 21–30 35–120 0.3–2 32–44 30–100 0.1–0.3 [11,18]

D: density; E: Young’s modulus; UTS: ultimate tensile strength; YS: yield strength; FT: fracture toughness;
ε: elongation; MH: microhardness; UCS: ultimate compressive strength; D.R: degradation rate; NBR: natural
bone remodeling.

Compared to Fe and Zn, Mg has the closest elastic modulus to natural bone at
41–45 GPa. This parameter avoids the phenomenon of stress shielding in the tissues
surrounding the Mg implant [19–21]. In addition, Mg with a density of 1.7 gr/cm3 has the
closest density among metals to natural bone with a density of 1.8–2.1 gr/cm3 [11]. The
benefits of Mg for orthopedic applications are shown in Figure 1. All of these similarities
make Mg a suitable candidate for orthopedic applications. Mg is the second most abundant
intracellular cation and is known as an important and effective cofactor in more than
300 types of enzymatic reactions, including energy metabolism and protein and nucleic
acid production [22–24]. Scientific evidence indicates that Mg in the body is distributed in
such a way that half is found in soft tissues and half in the bones. The recommended intake
of Mg is about 240 to 420 mg/day, which is about 17 to 50 times more than the intake of iron
and zinc (15 mg) and about 70 times more than that of strontium and manganese (about
5 mg). Mg deficiency can cause weakness, tremors, seizures, and heart rhythm disorders.
Taking extra Mg through medication will lead to hypomagnesaemia, leading to chronic
kidney failure and low blood pressure [24,25]. Not long after the discovery of Mg by Sir
Humphrey Davy in 1808, the idea of making biodegradable Mg implants was proposed.
Edward C. Haas, as a physician, was the first to use Mg wires to stop bleeding in the form of
a ligature [26]. However, the main problem of Mg is its low corrosion resistance and rapid
degradation rate in human body fluids, which has limited its use as an implant material
in medicine. Such rapid and uncontrolled corrosion significantly reduces the mechanical
properties of the biological implant and leads to premature failure [27,28]. During body
movement, bones are subjected to complex stresses, including shear, tensile, compressive,
and tensional stresses. If the implants are in a load-bearing position, they will experience
more pressure; all of this necessitates the consideration of mechanical parameters in bi-
ological terms. The mechanical and degradation behavior of Mg are seriously affected
by the presence of alloying elements and reinforcing materials [21,29,30]. As a result, the
determination of alloying elements and reinforcing particles in Mg-based composites is
of particular importance. Nanoparticle-reinforced composites have been investigated by
many researchers worldwide in recent years due to their promising properties for a large
number of functional and structural applications. Reducing the size of the reinforcing
phase to the nanoscale means that the interaction of particles with dislocations becomes
of considerable importance and, alongside other reinforcing effects commonly found in
conventional metal-matrix composites, leads to significant improvements in mechanical
properties. In addition, it has been found that it can accelerate the activation of effective
biological mechanisms. Recently, Mg NPs have been considered as reinforcements in Mg-
based composites due to their unique physicochemical and biological properties, including
biocompatibility, biodegradability, non-toxicity of degradation products, and suitable bioac-
tivity with the surrounding tissue. Although there are review articles that introduce the
intrinsic properties of MgO NPs and their applications, to date, we have not found any
review articles that specifically and comprehensively study the presence of MgO NPs
as reinforcements in Mg-based composites for orthopedic applications. Therefore, while
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introducing MgO NPs and its applications in biomedical science, the latest experimental
research on the effectiveness of MgO NPs as reinforcements on the mechanical, corrosion,
and biological behavior of Mg-based composites is discussed.
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Figure 1. Advantages of Mg metal for orthopedic applications.

2. Magnesium Oxide Nanoparticles (MgO NPs)

The discovery of nanoscale materials creates new opportunities to expand research
into innovative nanosystems and the production of nanocomposites. Many metal oxide
nanoparticles have many advantages in the medical field, including MgO NPs. They have
antibacterial and anti-cancer properties. MgO NPs are used in the fabrication of biosensors,
in cancer diagnosis, and in treatment planning consultation using medical imaging due
to their active catalytic properties, high reactivity, and high absorption capacity. Bioactive
glass is being developed for applications in surgery, dentistry, bacterial inhibition, bone
repair, and tissue engineering. Due to their many properties, such as being antibacterial,
anti-cancer, biocompatible, non-toxic, biodegradable, and low-cost, research results support
the addition of MgO NPs to a variety of useful compounds [31–33]. In the Figure 2, a
graphic of the uses of MgO for medical applications is shown. In this section, the most
important intrinsic properties of MgO NPs in medical applications are briefly mentioned.

MgO NPs as an antibacterial: Previously, humans used antibiotics to eliminate harm-
ful bacteria. But due to the unnecessary use of antibiotics, bacteria have become resistant to
a large number of antibiotics over time [34,35]. Recently, inorganic antimicrobials are in-
creasingly used for decontamination and the prevention of biodegradation. MgO, calcium
oxide (CaO), and ZnO exhibited strong antibacterial activity. MgO and CaO powders show
significant antibacterial effects on both Gram-positive and Gram-negative bacteria. ZnO
powder inhibited the growth of Gram-positive bacteria more strongly than Gram-negative
bacteria [36]. MgO NPs are a metal oxide with antibacterial properties. Its properties
depend on its shape and size. Nano dimensions for MgO provide better antibacterial
activity against E. coli and S. aureus bacteria. MgO NPs have dose-dependent antibacterial
activity. MgO NPs can be metabolized well in the body compared to heavy metal oxide
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nanoparticles (Ag and Zn), so it is easy to remove degraded ions. MgO NPs show unique
antibacterial properties against several common food pathogens. Their contact with bacte-
rial cells leads to cell membrane leakage and induces oxidative stress and cell death [37].
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MgO NPs’ role in cancer therapy: Cancer is a genetic disease caused by genes that
regulate cellular processes, including growth and division. Nanoparticles smaller than
100 nm can interact with proteins, nucleic acids, and lipids inside and outside cells, which
can facilitate cancer diagnosis and treatment. MgO NPs induce lung cancer cell toxicity,
possibly due to elevated ROS levels when the mitochondrial membrane potential is altered,
triggering the apoptotic process and ultimately leading to cell death. Cytotoxicity testing
confirmed that the generated nanostructures were not toxic to healthy red blood cells. MgO
nanorods have potential applications as a potent chemotherapeutic agent for the rapid
detection and identification of all types of cancer [38–40].

MgO NPs’ role in tissue engineering: Tissue engineering is the combined use of
cells, material engineering methods, and appropriate biochemical agents to enhance or
replace biological tissues. Tissue engineering involves using tissue scaffolds to create new
living tissue, all of which provide a three-dimensional environment for cell growth and
communication. Hickey et al. [41] investigated the effects of adding MgO NPs to poly
(L-lactic) and hydroxyapatite. The results showed that MgO NPs enhance the adhesion
and proliferation of osteoblasts on PLLA-HA nanocomposite materials. Furthermore,
osteoblasts cultured in the supernatant of the degradable nanocomposite showed enhanced
proliferation in the presence of Mg, indicating that the increased alkalinity of the solution
containing the MgO nanocomposite did not have a toxic effect on the cells.

MgO NPs’ role in dental implantation: Recently, it has been reported that nanomateri-
als may have new preventive and therapeutic applications in dental caries. Studies show
the effectiveness of Mgo NPs in reducing and controlling plaque biofilm, improving the
antibacterial properties of dental materials, and restoring primary dental caries. Passos
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et al. [42] found that toothpaste containing Mg hydroxide can protect tooth enamel against
moderate acid corrosion, but not against severe acid corrosion. Therefore, toothpaste con-
taining Mg hydroxide may be a valuable method of reducing the effects of corrosion. Passos
et al. [43] reported that MgO NPs have antibacterial and anti-biofilm effects against various
microorganisms, including oral bacteria such as the carcinogenic species S. mutans. Two
types of bacteria commonly isolated from the human oral cavity are S. mutans and Strepto-
coccus, and they are recognized as the main cariogenic bacteria. Nanoparticles can affect
bacteria in a variety of ways, and bacteria are less likely to be resistant to nanoparticles.

MgO NPs for bioactive glass: Bioceramics are artificial materials that have a good
biological interaction with human tissues, and for this reason, they are good candidates
in medicine for repairing defects and replacing damaged tissues. Among bioceramics,
bioactive glasses (BGs) are a sought-after biomaterial in the field of tissue engineering.
BGs have the ability to bond with living tissues of the body by forming a layer at their
contact surface with living tissues. Reports show that the production of an HA layer at
the interface of BGs and biological tissue is the main reason for this connection between
them [44]. In the literature, it is seen that some researchers, in addition to CaO from various
metal oxides (MO) such as ZnO and MgO in the structure, have used bioactive glasses
based on SiO2-CaO-P2O5. It was determined that BG-MO nanocomposite material can
increase the biological activity and antibacterial activity of bioactive glass. Because of the
important functions of the element Mg in human bone metabolism, such as osteoblast
differentiation and osteogenic gene expression, oxides based on this element are considered
suitable substitutes for application in the structure of bioactive glasses to improve biological
activity. It should be noted that MgO is introduced into the preparation of BGs in various
ways. In recent studies, MgO was added as a new component to the conventional ternary
composition (SiO2-CaO-P2O5) [45,46].

MgO NPs in medical imaging: Molecular imaging, a non-invasive method of imag-
ing body tissues, is a relatively new and exciting field of diagnostic imaging that can be
described as the identification and measurement of biological processes at the cellular and
molecular level within the body. For example, molecular imaging can be used for detailed
examination and diagnosis of cardiovascular diseases such as arrhythmia, blood clot forma-
tion in blood vessels, and atherosclerosis [47–49]. This method allows for rapid diagnosis
of a disease and more accurate prediction of the level of disease. One of the most important
parameters of magnetic nanoparticles is their size, as their diameter affects the strength of
signal amplification [50]. Nanoparticles smaller than 50 nanometers with a lipophilic coat-
ing have a strong ability to cross cell membranes, making magnetic nanoparticles around
50 nanometers in diameter an ideal choice for drug delivery and imaging [51,52]. Magnetic
nanoparticles improve image contrast and enable higher-resolution scans, enabling more
accurate diagnosis and treatment [53]. The magnetic properties of MgO NPs and their
ability to remain in the bloodstream for long periods of time have made them ideal contrast
agents for MRI [54]. MgO NPs are non-toxic, have no side effects, are biocompatible, and
readily penetrate the human body, making their use vast [55].

3. Mg/MgO NP Composites

As mentioned, despite the unique properties of Mg that make it an attractive candidate
for medical implants, the high degradation rate of Mg and its low mechanical strength
under load are serious obstacles for widespread clinical applications. It has been shown
that surface polymer coatings, although they improve corrosion resistance and delay
degradation, do not cause any serious mechanical effects on implants [28,56,57]. The
development of composites is a reliable solution to improve the corrosion and mechanical
behavior of Mg [58–62]. In general, reinforcing phases usually belong to the family of
carbon or ceramic materials that are added to improve mechanical properties and corrosion
resistance. Carbon materials, including carbon nanotubes and graphene nanosheets, have
been used as reinforcements in Mg-based composites due to their unique structure and
very high Young’s modulus [21,63,64]. Due to the small diameter and very high mechanical
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hardness of CNTs, if they are densely placed on the surface of the medical instrument,
the obtained lotus effect can provide protection against corrosion as well as bacteria and
viruses [65,66]. Abazari et al. [27] showed that the continuous distribution of graphene
oxide (GO) reinforcement has a positive effect on the microstructure, mechanical properties,
and corrosion resistance of the Mg matrix, while the O-containing groups in GO also
promote the deposition of the corrosion product layer [27]. However, the non-degradable
nature of graphene has limited its application in the human body as implants [67]. The
mechanical performance is significantly increased by adding ceramic particles such as SiC
and Al2O3. But it has a negative effect on corrosion resistance [68,69]. Zhang et al. [70]
showed that micro galvanic corrosion in AZ91/SiC composites leads to rapid matrix
corrosion. Bakkar et al. [69] reported that the corrosion resistance decreases with the
non-uniform distribution of Al2O3. But on the other hand, bioactive ceramics have the
ability to improve the performance of Mg alloys. Campo et al. [71] showed that Mg/HA
composites have high microhardness but lower compressive strength than the matrix.
However, HA has disadvantages such as a low melting point, poor bonding strength
between HA/metals, and limitations in preventing the aggregation of HA particles during
the manufacturing process, which eventually leads to loosening of the implant [72,73]. To
overcome these problems, bioactive ceramics such as TiO2, ZrO2, and MgO powders, which
have higher chemical stability than apatite structures, have been added to the composite
matrix to improve the biological activity and mechanical properties and reduce implant
corrosion [72–74]. MgO has remarkable antibacterial properties and is one of the main
components of bioglass. On the other hand, MgO is very suitable as a reinforcement for
making biological composites because it can release Mg2+ to be incorporated into the human
metabolism [75]. It is known that adding a certain amount of MgO nanoamplifiers can
significantly improve the performance of the matrix. Useful research is being carried out to
find the optimal amount to achieve greater efficacy in terms of mechanical, biodegradable,
biological, and antibacterial effects. These are considered separately below.

3.1. Mg/MgO NP Mechanical Properties

In the 1960s, researchers discovered that the presence of a second phase in metals
increases the elastic modulus and wear resistance and improves other mechanical properties.
The properties of metal-matrix composites (MMCs) depend on many factors such as
the manufacturing method, chemical composition, and microstructure, including matrix
structure, grain size, precipitation behavior, and lattice defects. Regarding the secondary
phase, the volume fraction, physical and mechanical characteristics of reinforcements, size
and dimensions, and its distribution method and orientation are considered to be effective
factors [76,77]. In this section, theories and strengthening mechanisms that can be effective
on Mg/MgO composites are introduced separately, and then the results of experimental
research are presented.

The role of morphology of reinforcements: Based on the morphology of the reinforce-
ment, MMCs are usually divided into three types of reinforcement— (1) reinforcements
with spherical particles (PRMMCs), (2) reinforcements with short fibers (SFMMCs), and
(3) reinforcements with continuous fibers (CFMMCs)—as well as cross-linked (IPC) classifi-
cation. Among these three categories, PRMMCs are considered the most common type of
composite due to their balanced combination of strength, stiffness, wear resistance, and
isotropic properties. How to evaluate their mechanical performance is relatively simple
due to the presence of almost isotropic reinforcing particles [78,79].

Load transfer mechanism: The direct strengthening method transfers the charge from
the soft phase to the harder phases, which, in this case, are ceramic nanoparticles. Load
transfer from matrix to reinforcement is usually the most common mechanism in reinforcing
MMCs. To transfer the load from the matrix to the reinforcement, the elastic modulus of
the reinforcement must be higher than the matrix; on the other hand, the load transfer
depends on the bond strength between the reinforcement and the matrix, as well as the
volume fraction [13,78].
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Residual stresses: Indirect strength is caused by thermal and structural mismatches that
prevent the movement of dislocations. The applied loads are also affected by the residual
stresses created in the MMCs during the manufacturing process. Residual stress is a self-
equilibrium stress that exists without an applied stress and is caused by a natural shape
mismatch between two parts, regions, or phases. Since MMCs are manufactured at high
temperatures, differences in the CTE of the metal matrix and ceramic reinforcement can create
large internal stresses in the individual phases of the composite. When external loads are
applied, residual processing stresses within the MMC can add to or subtract from the applied
stresses and can have significant effects on the composite’s mechanical response [78,80,81].

Hall Patch effect: Due to the difference in the melting point of ceramic reinforcements
and the matrix, they can help to reduce the size of grains as nucleators, resulting in smaller
grains in nanocomposites. The relationship between grain size reduction and mechanical
strength increase was identified as the Hall Patch effect: σy = σ0 + k

√
d, where σy is the

yield strength, σ0 is a constant, k is a material-dependent constant, and d is the grain
size [82–84]. This relationship was established based on the observation that the grain
boundaries prevent the movement of dislocations, and the amount of dislocations inside
the grain also affects the stress generation. Therefore, by changing the grain size, the
accumulation of dislocations in the grain and thus the yield strength can be affected [13,85].

Interaction between the second phase and dislocations: On the other hand, the distri-
bution of the second-phase particles dispersed in the metal can interact with the mobile
dislocations and increase the strength of the material. Second-phase particles can delay
dislocation motion in two distinct ways. If the second phase is small or soft, the dislocations
will separate the particles and change their shape. The Orowan mechanism can be used
to explain the increase in strain hardening in the presence of incoherent deposits in the
metal matrix. In this case, the dislocations bypass the particles and pass through them by
bending the dislocation line. Due to the formation of dislocation rings around the grains,
the accumulation of dislocations occurs, and for this reason, in a precipitate-hardened
crystal, the strain hardening increases suddenly and in the early stages of deformation.
Most part strength theories in the second phase are based on spherical particles. Significant
studies have shown that the presence of MgO particles in the Mg matrix composite can
improve the mechanical parameters [85].

Goh et al. [86] synthesized a Mg/1% MgO composite by melt deposition followed by
hot extrusion. An increase in the thermal stability, hardness, tensile strength, and modulus
of the nanocomposite was observed compared to the matrix. There was also good surface
adhesion between Mg and MgO. In the study by Wang et al. [87], MgO (1–4 wt%)/AZ31
honeycomb matrix composites prepared by low-energy milling followed by extrusion
were investigated. The MgO/AZ31 composite consists of a coarse-grained zone and a
fine-grained zone. The submicron MgO-rich fine-grained zone forms a honeycomb-like
structure, and the MgO-free coarse-grained zone is filled within the unit cells. MgO/AZ31
composites show a good combination of strength and elongation. Honeycomb structures
can increase strength [87]. Sadoughi et al. [88] investigated the effect of size and the amount
of MgO reinforcement on the properties of Mg. They used reinforcing powders in different
sizes and volume fractions: 60 µm, 20 nm, and 1.5, 3, and 5 vol. %, respectively. Specifically,
Mg powder and reinforcing materials were mixed in a planetary ball mill for 1 h and
then produced at 450 ◦C for 20 min under a pressure of 600 MPa. The results showed
that as the reinforcement content increased, the relative density of the prepared samples
decreased. In contrast, the microhardness, wear resistance, and compressive strength
increased. The hardness of the nanocomposite containing 5% MgO was 14% higher than
its micron counterpart. The wear rate of the nanocomposite containing 5%wt MgO was
45% lower than the same micron composite. The compressive strength of the Mg-5MgO
nanosample and Mg-5MgO micro sample exceeded that of the Mg sample by 57% and 54%,
respectively. In Table 2, the effect of adding MgO on the mechanical parameters of Mg
matrix composites is presented in detail.
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Table 2. Effect of MgO on mechanical properties of Mg matrix composites.

Materials Method Microhardness 0.2%YS
(MPa)

UTS
(MPa)

UCS
(MPa)

FS
(%) Ref.

Mg (99.9% purity) DMD-HEXT 45 ± 1 126 ± 7 192 ± 5 - - [86]

Mg–0.5MgO DMD-HEXT 47 ± 1 151 ± 3 233 ± 5 - - [86]

Mg–0.75MgO DMD-HEXT 53 ± 1 158 ± 5 213 ± 4 - - [86]

Mg–1.0MgO DMD-HEXT 54 ± 2 169 ± 8 223 ± 8 - - [86]

Mg–27.5%HA PM - - - 237 ± 6 4.2 ± 0.4 [89]

Mg–20%HA–5%MgO PM - - - 202 ± 11 4.4 ± 0.6 [89]

Mg–12.5%HA–10%MgO PM - - - 198 ± 9 11.5 ± 2.1 [89]

Mg–5%HA–15%MgO PM - - - 183 ±14 11.8 ± 1.7 [89]

Mg-3Zn-1Mn SPM-EXT 51.6 HV - - 295.6 ± 20.4 - [90]

Mg-3Zn-1Mn/CNTs SPM-EXT 74.5 - - 404.8 ± 16.1 - [90]

Mge3Zn-1Mn/MgO-CNTs SPM-EXT 83.4 HV - - 429 ± 15 - [90]

AZ31 LEM-EXT - 231.9 332.8 - 17.6 [87]

1MgO/AZ31 LEM-EXT - 246.2 344.1 - 21.5 [87]

2MgO/AZ31 LEM-EXT - 253.1 351.9 - 18.5 [87]

4MgO/AZ31 LEM-EXT - 265.3 361.2 - 15.4 [87]

Pure Mg ECAE 41.7 ± 2.3 - - 135 2.56 [91]

Mg + 10% MgO ECAE 44.9 ± 0.5 - - 185 1.80 [91]

Mg + 20% MgO ECAE 49.3 ± 2.2 - - 172 1.93 [91]

Mg + 30% MgO ECAE 52.6 ± 2.5 - - 160 2.23 [91]

Mg-3Zn-0.2Ca As-extruded 53.89 ± 1.98 - 378.46 ± 7.35 16.84 ± 0.81 [92]

Mg-3Zn-0.2Ca/0.6MgO As-extruded 58.29 ± 2.15 - 409.12 ± 4.86 14.10 ± 0.41 [92]

Mg-3Zn-0.2Ca/0.6MgO 1-pass ECPed 60.30 ± 3.08 - 362.35 ± 9.33 26.31 ± 0.37 [92]

Mg-3Zn-0.2Ca/0.6MgO 4-pass ECPed 67.58 ± 2.31 - 379.06 ± 14.20 34.05 ± 0.85 [92]

Mg-3Zn-0.2Ca/0.6MgO 8-pass ECPed 71.55 ± 2.80 - 405.77 ± 12.51 34.18 ± 0.99 [92]

Mg-0.3Sr-0.3Ca VSC, HEXT 50 ± 2.5 174 (TYS)
68 (CYS) 233 300 7.4 (TFS)

15.2 (CFS) [93]

Mg-0.3Sr-0.3Ca/0.2GNPs VSC, HEXT 53 ± 3 213 (TYS)
90 (CYS) 235 303 10.2 (TFS)

16.9 (CFS) [93]

Mg-0.3Sr-0.3Ca/0.2GNPs +
1.5MgO VSC, HEXT 63 ± 3 224 (TYS)

96 (CYS) 239 330 13.8 (TFS)
18.3 (CFS) [93]

Mg pure PM-HEXT - 127 ± 5 205 ± 4 - - [94]

Mg-0.1MgO PM-HEXT - 141± 8 213 ± 4 - - [94]

Mg-0.2MgO PM-HEXT - 146 ± 8 206 ± 8 - - [94]

Mg-0.3MgO PM-HEXT - 148 ± 6 208 ± 8 - - [94]

Mg-0.4MgO PM-HEXT - 137 ± 3 192 ± 4 - - [94]

Pure Mg PBM 46.54 - - 109.7 - [88]

Mg-1.5vol.% MgO- micro PBM 49.28 - - 119.4 - [88]

Mg-3vol.% MgO- micro PBM 50.18 - - 127.6 - [88]

Mg-5vol.% MgO- micro PBM 56.3 - - 141.5 - [88]

Mg-1.5vol.% MgO- nano PBM 55.96 - - 136.9 - [88]

Mg-3vol.% MgO- nano PBM 59.88 - - 152.3 - [88]

Mg-5vol.% MgO- nano PBM 65.26 - - 168.4 - [88]

Mg-3Zn-0.2Ca HSMC-HA-
HEXT - 257.4 298 - 16.5 [95]

Mg-3Zn-0.2Ca HSMC-HEXT - 243.5 289 - 20 [95]

Mg-3Zn-0.2Ca-0.1MgO HSMC-HEXT - 263.7 301 - 19.2 [95]



Bioengineering 2024, 11, 508 9 of 17

Table 2. Cont.

Materials Method Microhardness 0.2%YS
(MPa)

UTS
(MPa)

UCS
(MPa)

FS
(%) Ref.

Mg-3Zn-0.2Ca-0.2MgO HSMC-HEXT - 277.6 309 - 15.1 [95]

Mg-3Zn-0.2Ca-0.3MgO HSMC-HEXT - 289 317 - 14.6 [95]

Mg-3Zn-0.2Ca-0.5MgO HSMC-HEXT - 300 329 - 14.1 [95]

YS: yield strength; UTS: ultimate tensile strength; UCS: ultimate compressive strength; FS: fracture strength; DMD:
disintegrated melt deposition technique; HEXT: hot extrusion; LEM: low-energy milling; EXT: extrusion; PM:
powder metallurgy; ECAE: equal channel angular extrusion (ECAE); VSC: via stir casting; TFS: tensile fracture
strength; CFS: compressive fracture strength; PBM: planetary ball mill.

3.2. Mg/MgO NPs’ Corrosion Behavior

The premature loss of mechanical integrity before the healing of damaged tissues is
due to the rapid degradation of Mg. The rapid degradation rate causes the production
of excessive amounts of hydrogen and subsequent alkalinization of the environment
around the damaged tissue [96]. Therefore, a serious challenge in Mg implants has been to
create a rate of degradation proportional to bone growth. The main advantage of using
MMCs as a biomaterial is that the mechanical properties and corrosion resistance can be
tuned by careful selection of alloy elements and material reinforcements for the metal
matrix. Many researchers added various particles of reinforcements to the Mg matrix and
evaluated them. Some composites, especially those containing particles of hydroxyapatite
(HA) or β-tricalcium phosphate (β-TCP), exhibit severe particle agglomeration due to
unfavorable interfaces between Mg/reinforcement and heterogeneous distribution. This
leads to severe localized pitting corrosion and a subsequent loss of mechanical properties.
To overcome these problems, some bioactive ceramics with high chemical stability (ZrO2,
TiO2, and MgO) are more suitable as reinforcements for the Mg matrix. MgO is one
of the main components of bioglass with excellent thermal and mechanical properties.
Furthermore, MgO can be completely degraded to produce the same products as Mg
in vivo [97]. Zamani Khalajabadi et al. [89] studied Mg/HA/MgO nanocomposites with
pure Mg and various amounts of hydroxyapatite and periclase nanoparticles added using
the powder metallurgy method. The corrosion resistance of nanocomposites increases
from 0.25 kω2 cm2 to 1.23 kω cm2 by adding MgO at 10%wt. In addition, a decrease in
the value has been shown from 27.5 to 12.5 wt %; composite surface corrosion products
are primarily Mg(OH)2, HA, and CA3 (PO4)2. During immersion in the SBF solution, the
growth of Mg(OH)2 on the surface of the nanocomposites creates a barrier oxide layer
between the SBF solution and the substrate and disrupts the corrosion process for some
time [89]. Tang et al. [67] fabricated a Mg-3Zn-0.2Ca-0.3MgO (wt.%, ZX0.3) composite
by the hot extrusion method for biological applications. The results of the degradation
tests showed that the MgO NPs in the composites not only promoted the formation of the
Mg(OH)2 layer but also effectively prevented crack propagation in the corrosion product
layer. It prevents corrosive liquids from penetrating the matrix, significantly increasing the
density of the corrosion product layer and increasing its durability. The corrosion rate of
the ZX0.3 composite was reduced by 30% to 0.79 mm/year compared to that of the Mg-3Zn-
0.2Ca (ZX) alloy. Furthermore, the lower corrosion rate provides a safe environment for cell
adhesion and differentiation, thereby improving the biocompatibility of ZX0.3 compared to
the ZX alloy [67]. Figure 3 shows SEM and EDS images of cross-sections of the ZX alloy and
ZX0.3 composites exposed to SBF solution on different days. By identifying the distribution
of O, Ca, and P elements, the thickness of the corrosion product layer can be measured
at different times. The distribution of the C element represents the position of the resin
used to mount the specimen. A relatively dense Ca-P corrosion product layer formed on
the ZX0.3 surface after 7 days of immersion with a depth of 48 µm; the thickness of the
corrosion product layer after 15 and 30 days was measured to be 96 and 196 µm. On the
other hand, there is a corrosion product layer on the surface of ZX, but the EDS results
show that the Ca-P layer is very thin and has low density. Therefore, it cannot exert a good
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protective effect on the matrix [67]. In Table 3, the effect of MgO addition on the corrosion
parameters of Mg matrix composites is presented in detail.
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Figure 3. Cross-sectional SEM and EDS micrographs after vitro immersion tests: (a–c) ZX after 7, 15,
and 30 days of immersion; (d–f) ZX0.3 after 7, 15, and 30 days of immersion [67].

Table 3. Effect of MgO on corrosion parameters of Mg-based composites.

Samples Method Electrolyte CR (mm/year) Ecorr
(V/SCE)

Icorr
(µA/cm2) Ref.

Mg–27.5%HA PM SBF 4.28 −1.4873 187.4 [89]

Mg–20%HA–5%MgO PM SBF 4.65 −1.4346 203.6 [89]

Mg–12.5%HA–10%MgO PM SBF 1.06 −1.2582 46.8 [89]

Mg–5%HA–15%MgO PM SBF 1.94 −1293.8 85.2 [89]

Mg-3Zn-1Mn SPM-EXT SBF 2.77 −1.53 121.34 [90]

Mge3Zn-1Mn/CNTs SPM-EXT SBF 2.32 −1.47 101.56 [90]

Mge3Zn-1Mn/MgO-CNTs SPM-EXT SBF 1.98 −1.43 86.73 [90]

Pure Mg ECAE NaCl solution 1.66 −1.4173 201 [91]

Mg + 10% MgO ECAE NaCl solution 14.18 −1.3881 23.1 [91]

Mg + 20% MgO ECAE NaCl solution 28.21 −1.4442 64.6 [91]

Mg + 30% MgO ECAE NaCl solution 39.21 −1.5442 84.6 [91]

Mg-0.3Sr-0.3Ca VSC, HEXT SBF 1.832 7.373 [93]
Mg-0.3Sr-0.3Ca/0.2GNPs VSC, HEXT SBF 1.776 6.980 [93]

Mg-0.3Sr-0.3Ca/0.2GNPs + 1.5MgO VSC, HEXT SBF 1.800 9.279 [93]

Pure Mg PBM NaCl solution 2.168 −2196.71 58.6 [88]
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Table 3. Cont.

Samples Method Electrolyte CR (mm/year) Ecorr
(V/SCE)

Icorr
(µA/cm2) Ref.

Mg-1.5vol.% Mgo—micro PBM NaCl solution 8.897 −1921.06 131.6 [88]

Mg-3vol.% Mgo—micro PBM NaCl solution 19.679 −1336.71 321.8 [88]

Mg-5vol.% Mgo—micro PBM NaCl solution 28.456 −1314.16 461.7 [88]

Mg-1.5vol.% Mgo—nano PBM NaCl solution 5.642 −2103.67 89.5 [88]

Mg-3vol.% Mgo—nano PBM NaCl solution 12.714 −1719.83 182.1 [88]

Mg-5vol.% Mgo—nano PBM NaCl solution 17.561 −1695.12 241.3 [88]

Mg-3Zn-0.2Ca HSMC-HA-HEXT SBF 6.44 ± 0.65 −1.749 84.9 [95]

Mg-3Zn-0.2Ca HSMC-HEXT SBF 4.45 ± 0.21 −1.729 40.4 [95]

Mg-3Zn-0.2Ca-0.1MgO HSMC-HEXT SBF 3.92 ± 0.45 −1.669 33.5 [95]

Mg-3Zn-0.2Ca-0.2MgO HSMC-HEXT SBF 3.10 ± 0.2 −1.659 16.4 [95]

Mg-3Zn-0.2Ca-0.3MgO HSMC-HEXT SBF 3.55 ± 0.42 −1.689 24.5 [95]

Mg-3Zn-0.2Ca-0.5MgO HSMC-HEXT SBF 5.40 ± 0.3 −1.729 69.3 [95]

PM: powder metallurgy; SPM: semi-powder metallurgy; ECAE: equal channel angular extrusion; VSC: via stir
casting; PBM: planetary ball mill; HSMC: high-shear melt conditioning; HA: homogenizing annealing; HEXT:
hot extrusion.

3.3. Mg/MgO NPs’ Biological Properties

In bone, where Mg is present in the highest concentrations, Mg cations are located at
the edges of apatite minerals and directly influence the size and density of the mineral—an
important element contributing to the unique mechanical properties of bone. In addition,
these Mg ions indirectly influence mineral metabolism through the activation of alkaline
phosphatase. Beyond its cooperative role with HA in maintaining bone health, Mg ions play
an important role in mediating the functions of all cells in the body, particularly through
the activation of integrins. Divalent Mg+2 (and Ca+2) ions initiate the conformational
activation of integrins for ligand binding by binding to sites on the alpha chain of integrins,
thereby leading to cellular functions such as binding, proliferation, and migration [98].
Therefore, incorporating MgO into tissue engineering constructs may improve cell–scaffold
interactions. On the other hand, nanotechnology produces different types of nanoparticles
that can cause fundamental changes in materials such as small particle size, variable shape,
and higher surface-to-volume ratio, as well as biological, mechanical, and physical changes,
among others; it seems to be developing more and more in the fields of biomedicine and
biomaterials [99]. Among the types of metal oxide nanoparticles, MgONPs have attracted a
lot of attention due to their unique biocompatibility, non-toxicity, high stability in harsh
conditions, and diverse and significant applications, especially in the field of biomedicine.
MgONPs have several useful physicochemical properties, such as high ionic character,
large surface area, unusual crystal morphology, and oxygen vacancies, which enable them
to easily interact with several biological systems [100,101].

The antibacterial properties of MgO NPs are of interest for medical use. The high pH
of MgO NPs (alkaline pH) may contribute to their antibacterial activity [102]. Despite the
complexity and unknown antibacterial mechanisms in metal oxides, the main antibacterial
mechanisms for metal oxides, including Mg NPs, can be classified as follows: (1) physical
damage to the bacterial cell wall as a result of the electrostatic interaction of the sharp edges
of nanomaterials with the cell wall membrane; (2) the production of ROS; (3) the entrap-
ment of bacteria in aggregated nanomaterials; (4) the disruption of bacterial glycolysis;
(5) oxidative stress; (6) DNA damage; (7) the perturbation of proteins and cell structure,
leading to the release and interaction of metal cations and alkaline effects; and (8) metal
ion release [103–106].
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In the study by Abazari et al. [90], Mg-3Zn-1Mn(ZM31)/CNTs and ZM31/MgO NP-
CNT composites were prepared by semi-powder metallurgy followed by hot extrusion.
Cell viability was higher in ZM31/CNTs and ZM31/MgO-CNT composite extracts than in
the Mg alloy extract, and the cell activity increased with culture time. These results showed
that the surface of MgO-conjugated CNTs significantly improved the biocompatibility of
Mg-based composites. Cells cultured on ZM31/MgO-CNT compounds showed stronger
ALP staining than cells cultured on Mg alloys, but ZM31/CNTs complexes had lower ALP
activity than ZM31/MgO-CNT complexes. These results showed that the response of Mg
alloy cells was improved by using CNTs incorporated in MgO. In the same culture time, MG-
63 cells cultured on ZM31/MgO-CNT composites showed slightly higher cell attachment
than the Mg alloy. This was probably due to faster degradation and alkalinization of
the surface, which could have prevented MG-63 adhesion and caused cell membrane
disruption due to oxidative damage (Figure 4) [90].
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Figure 4. (a) Cell viability and (b) ALP activity of MG-63 cells cultured for various amounts of
time on ZM31 alloys, ZM31/CNTs, and MgO-ZM31/CNT nanocomposites, and SEM images of the
morphology and adhesion of these MG-63 cells and fluorescent DAPI staining of these cells grown on
(c,f) ZM31 alloy, (d,g) ZM31/CNTs and (e,h) ZM31/MgO-CNT nanocomposites for 3 days (* p < 0.05
and ** p < 0.01) [90].
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4. Summary and Future Road Maps

Mg appears to be an attractive option for fracture fixation implants and temporary
stents in orthopedics due to its density and elastic modulus close to bone, as well as
its fully biodegradable products. However, serious challenges facing Mg have limited
the development of its applications. Among others, we can mention its high rate of
degradation and, as a result, the loss of its mechanical properties. It seems that the smart
development of Mg-based nanocomposites, in addition to improving the mechanical
and corrosion behavior, can have a significant effect on the bioactive performance of
the Mg matrix. Metal oxide nanoparticles have a distinct and irreplaceable position in
the category of nanomaterials, which today have found a variety of applications due to
their unique chemical and physical properties and wide applicability in various fields,
including biomedical technology. MgO NPs are distinguished from other metal oxide
nanoparticles in terms of biocompatibility, biodegradability, bioactivity, and antibacterial
properties. Some research shows that the presence of Mg NPs as a reinforcement in the Mg
matrix significantly improves the mechanical performance. To justify this effect, causes and
mechanisms such as (1) the role of the morphology of reinforcements, (2) the load transfer
mechanism, (3) residual stresses, (4) the Hall patch effect, and (5) interactions between
the second phase and dislocations are mentioned in detail in the literature. On the other
hand, it has been found that MgO NPs in SBF solution facilitate the formation of Mg(OH)2
layers and also increase the thickness of Ca-P surface layers. However, it seems that to
prevent pitting and galvanic corrosion, the uniform distribution of the second phase and
determining the optimal amount are effective factors. Incorporation of MgO into tissue
engineering constructs may improve cell–implant interactions. However, it appears that
the cytotoxic effects of MgO NPs on normal cells and living organs should be investigated.
In vivo and clinical scientific data, especially in biological and antibacterial aspects, are
very limited. Therefore, there is a serious need for comprehensive in vitro and in vivo
applied research in order to investigate the effectiveness of MgO NPs as reinforcements of
Mg-based composites in order to provide useful results to the scientific community.
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83. Kubásek, J.; Vojtěch, D.; Pospíšilová, I.; Michalcová, A.; Maixner, J. Microstructure and Mechanical Properties of the Micrograined
Hypoeutectic Zn–Mg Alloy. Int. J. Miner. Metall. Mater. 2016, 23, 1167–1176. [CrossRef]

84. Hansen, N. Hall-Petch Relation and Boundary Strengthening. Scr. Mater. 2004, 51, 801–806. [CrossRef]

https://doi.org/10.1016/j.triboint.2023.108891
https://doi.org/10.1016/j.jallcom.2020.154709
https://doi.org/10.1016/j.jma.2023.09.006
https://doi.org/10.1007/s12540-020-00877-5
https://doi.org/10.1016/j.jallcom.2021.163422
https://doi.org/10.1016/j.jmapro.2022.10.012
https://doi.org/10.1016/j.jallcom.2023.168824
https://doi.org/10.1002/aisy.202300366
https://doi.org/10.3390/coatings12091279
https://doi.org/10.3390/nano14090737
https://www.ncbi.nlm.nih.gov/pubmed/38727331
https://doi.org/10.1016/j.matchemphys.2023.127380
https://doi.org/10.1016/j.jallcom.2019.04.080
https://doi.org/10.1016/j.corsci.2006.07.002
https://doi.org/10.1149/2.0631514jes
https://doi.org/10.1016/j.jmbbm.2014.07.014
https://doi.org/10.1016/j.ceramint.2013.11.119
https://doi.org/10.1016/j.ceramint.2011.12.056
https://doi.org/10.1016/j.matdes.2014.11.028
https://doi.org/10.1016/j.matdes.2020.108612
https://doi.org/10.1016/j.jallcom.2020.155274
https://doi.org/10.1016/j.actbio.2013.03.035
https://www.ncbi.nlm.nih.gov/pubmed/23542554
https://doi.org/10.1016/j.msea.2022.142973
https://doi.org/10.1016/j.enganabound.2024.01.025
https://doi.org/10.1016/j.jallcom.2020.155923
https://doi.org/10.1007/s11666-013-9976-x
https://doi.org/10.1016/j.matpr.2023.05.193
https://doi.org/10.1007/s12613-016-1336-7
https://doi.org/10.1016/j.scriptamat.2004.06.002


Bioengineering 2024, 11, 508 17 of 17

85. Carneiro, Í.; Simões, S. Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Review. Metals
2021, 11, 1613. [CrossRef]

86. Goh, C.S.; Gupta, M.; Wei, J.; Lee, L.C. Characterization of High Performance Mg/MgO Nanocomposites. J. Compos. Mater. 2007,
41, 2325–2335. [CrossRef]

87. Wang, C.; Ren, F.; Liu, H.; Li, Q.; Sun, B. Achieving High Strength and High Ductility in Submicron-MgO/AZ31 Composites with
an Innovative Honeycomb-like Structure. J. Mater. Res. Technol. 2023, 23, 5212–5220. [CrossRef]

88. Sadooghi, A.; Rahmani, K.; Hashemi, S.J. Effects of Nano and Micro Size of MgO on Mechanical Properties, Wear, and Corrosion
of Magnesium Matrix Composite. Strength Mater. 2021, 53, 983–997. [CrossRef]

89. Khalajabadi, S.Z.; Abdul Kadir, M.R.; Izman, S.; Ebrahimi-Kahrizsangi, R. Fabrication, Bio-Corrosion Behavior and Mechanical
Properties of a Mg/HA/MgO Nanocomposite for Biomedical Applications. Mater. Des. 2015, 88, 1223–1233. [CrossRef]

90. Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Keshavarz, M.; Kehtari, M.; Ramakrishna, S.; Berto, F. MgO-Incorporated
Carbon Nanotubes-Reinforced Mg-Based Composites to Improve Mechanical, Corrosion, and Biological Properties Targeting
Biomedical Applications. J. Mater. Res. Technol. 2022, 20, 976–990. [CrossRef]

91. Rahmani, K.; Nouri, A.; Bakhtiari, H.; Sadooghi, A.; Ghofrani, A.; Nikolova, M.P.; Salmani, F. Mechanical and Corrosion Properties
of Mg–MgO and Mg–Al2O3 Composites Fabricated by Equal Channel Angular Extrusion Method. Smart Mater. Manuf. 2023, 1,
100010. [CrossRef]

92. Zhang, S.; Liu, Z.; Xin, Y.; Cai, Y.; Han, J. Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Performance
of Innovative Nano MgO-Added Mg-Zn-Ca Composite as a Biomaterial. Mater. Lett. 2021, 304, 130604. [CrossRef]

93. Ramezanzade, S.; Ebrahimi, G.R.R.; Torabi Parizi, M.; Ezatpour, H.R.R. Synergetic Effect of GNPs and MgOs on the Mechanical
Properties of Mg–Sr–Ca Alloy. Mater. Sci. Eng. A 2019, 761, 138025. [CrossRef]

94. Goh, C.S.; Wei, J.; Lee, L.C.; Gupta, M. Characterization of Mg/MgO Nanocomposites Synthesized Using Powder Metallurgy
Technique. In Proceedings of the ASME international Mechanical Engineering Congress and Exposition, Orlando, FL, USA,
5–11 November 2005; pp. 25–28. [CrossRef]

95. Lin, G.; Liu, D.; Chen, M.; You, C.; Li, Z.; Wang, Y.; Li, W. Preparation and Characterization of Biodegradable Mg-Zn-Ca/MgO
Nanocomposites for Biomedical Applications. Mater. Charact. 2018, 144, 120–130. [CrossRef]

96. Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M. Alternative Conversion Coatings to Chromate for the Protection of
Magnesium Alloys. Corros. Sci. 2014, 84, 135–146. [CrossRef]

97. Lei, T.; Ouyang, C.; Tang, W.; Li, L.-F.; Zhou, L.-S. Enhanced Corrosion Protection of MgO Coatings on Magnesium Alloy
Deposited by an Anodic Electrodeposition Process. Corros. Sci. 2010, 52, 3504–3508. [CrossRef]

98. Thakur, N.; Ghosh, J.; Pandey, S.K.; Pabbathi, A.; Das, J. A Comprehensive Review on Biosynthesis of Magnesium Oxide
Nanoparticles, and Their Antimicrobial, Anticancer, Antioxidant Activities as Well as Toxicity Study. Inorg. Chem. Commun. 2022,
146, 110156. [CrossRef]

99. Abdel-Aziz, M.M.; Emam, T.M.; Elsherbiny, E.A. Bioactivity of Magnesium Oxide Nanoparticles Synthesized from Cell Filtrate of
Endobacterium Burkholderia Rinojensis against Fusarium Oxysporum. Mater. Sci. Eng. C 2020, 109, 110617. [CrossRef] [PubMed]

100. Vijai Anand, K.; Anugraga, A.R.; Kannan, M.; Singaravelu, G.; Govindaraju, K. Bio-Engineered Magnesium Oxide Nanoparticles
as Nano-Priming Agent for Enhancing Seed Germination and Seedling Vigour of Green Gram (Vigna radiata L.). Mater. Lett. 2020,
271, 127792. [CrossRef]

101. Verma, S.K.; Nisha, K.; Panda, P.K.; Patel, P.; Kumari, P.; Mallick, M.A.; Sarkar, B.; Das, B. Green Synthesized MgO Nanoparticles
Infer Biocompatibility by Reducing in Vivo Molecular Nanotoxicity in Embryonic Zebrafish through Arginine Interaction Elicited
Apoptosis. Sci. Total Environ. 2020, 713, 136521. [CrossRef]

102. Sharifian, S.; Loghmani, A.; Nayyerain, S.; Javanbakht, S.; Daneii, P. Application of Magnesium Oxide Nanoparticles in Dentistry:
A Literature Review. Eur. J. Gen. Dent. 2023, 12, 1–6. [CrossRef]

103. Ramezani Farani, M.; Farsadrooh, M.; Zare, I.; Gholami, A.; Akhavan, O. Green Synthesis of Magnesium Oxide Nanoparticles and
Nanocomposites for Photocatalytic Antimicrobial, Antibiofilm and Antifungal Applications. Catalysts 2023, 13, 642. [CrossRef]

104. Nandhini, S.N.; Sisubalan, N.; Vijayan, A.; Karthikeyan, C.; Gnanaraj, M.; Gideon, D.A.M.; Jebastin, T.; Varaprasad, K.; Sadiku, R.
Recent Advances in Green Synthesized Nanoparticles for Bactericidal and Wound Healing Applications. Heliyon 2023, 9, e13128.
[CrossRef] [PubMed]
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