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Abstract: Recent advancements in computational modeling offer opportunities to refine total knee
arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator
external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model.
Calibration of the external actuation required to achieve measured patient-specific joint loading and
motion was completed for nine patients with telemetric implants during gait, stair descent, and deep
knee bend. The study also compared two EBC scenarios: activity-specific hip AP motion and pelvic
rotation (that was averaged across all patients for an activity) and patient-specific hip AP motion
and pelvic rotation. Including patient-specific data significantly improved reproduction of joint-level
loading, reducing root mean squared error between the target and achieved loading by 28.7% and
highlighting the importance of detailed patient data in replicating joint kinematics and kinetics. The
principal component analysis (PCA) of the EBCs for the patient dataset showed that one component
represented 77.8% of the overall variation, while the first three components represented 97.8%. Given
the significant loading variability within the patient cohort, this group of patient-specific models can
be run individually to provide insight into expected TKA mechanics variability, and the PCA can be
utilized to further create reasonable EBCs that expand the variability evaluated.

Keywords: computational modelling; statistical modelling; total knee replacement

1. Introduction

Total knee replacement (TKR) surgery is a common procedure that is used to treat
osteoarthritis of the knee. The goal of TKR is to relieve pain, improve function, and re-
store range of motion. TKR is a very successful procedure, with most patients reporting
significant improvement in their quality of life [1,2]. However, there is a small percentage
of patients who experience complications following TKR [3,4]. Complications such as
implant loosening, instability, and wear are often investigated through physical simulator
testing. Several experimental knee simulators have been developed to understand the
mechanics of implant design or alignment, for example, on joint mechanics, including kine-
matics/stability or wear. The Stanmore knee simulator is a fixtured testing rig (no cadaveric
tissue is present) that is typically used to assess wear in the tibiofemoral (TF) joint [5]. More
recently, the AMTI VIVO simulator (AMTI, Boston, MA, USA) was developed primarily as
a fixtured test bed for wear evaluation, but the six-degree-of-freedom control has enabled
many other studies of joint mechanics [6]. The VIVO has also been modified to include
quadriceps loading for whole-knee joint testing [7]. Another class of physical simulators
are Oxford-style rigs that frequently use cadaveric tissue and apply loading at a simulated
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hip and ankle, such as the Kansas knee simulator (KKS), an electrohydraulic whole-joint
knee simulator [8].

However, physical experiments have associated time, labor, and financial expenses,
which restrict the number of evaluations that can be feasibly performed. To address this
limitation, computational simulators, namely, explicit dynamic finite element models, have
been developed to complement these physical experiments. Computational models of the
Stanmore knee simulator have been used to predict kinematics, wear, and contact mechan-
ics [9,10]. Advancing beyond the Stanmore knee simulator, a computational model of the
AMTI vivo joint simulator was developed and validated [11]. Halloran et al. developed
a computational representation of the KKS, while Baldwin et al. adapted it to perform
deep knee bend (DKB) and validated both patellofemoral (PF) and tibiofemoral (TF) kine-
matics [8,12,13]. Fitzpatrick et al. (2014) developed a proportional-integral-derivative
(PID)-controlled lower limb model that improved upon prior computational KKS models
by incorporating additional actuators to better reproduce the physiological loading or
kinematics at the knee [14]. Computational constructs like these can be used to evaluate
TKR performance in a variety of conditions, including those that are difficult or impossible
to simulate experimentally. For example, computational models can be used to incorporate
variability more efficiently in implant geometry or alignment, or perform population-based
studies, as complementary physical experiments may require new fixturing, manufacturing
of physical parts, or may be unable to accommodate the desired changes, such as with mod-
ification to ligament properties. Unfortunately, it is still relatively common to include only a
single loading condition per activity, or a single implant alignment, essentially representing
a single average patient. To address these limitations, researchers have recently been devel-
oping population-based analyses, including the impact of variation in loading conditions
on implant wear simulation [15], or incorporating intersubject anatomical variation in
assessing implanted patellofemoral joint kinematics and contact mechanics [16].

In our prior work, PID control was interfaced with dynamic finite element (FE) lower
limb simulations to operate multiple actuators simultaneously and produce telemetrically
measured in vivo loading conditions at the joint [14]. The PID-controlled model was
able to successfully recreate the flexion angle, compressive joint load, medial–lateral (ML)
load distribution or varus–valgus (VV) torque, internal–external (IE) torque, and anterior–
posterior (AP) force for deep knee bend, chair rise, stance-phase gait, and step-down
activities. The external actuator loading conditions developed for this patient can be
subsequently used in further studies of implant mechanics, but again only represent a
single patient.

The objective of the current study is to further develop external boundary conditions
for a cohort of nine telemetric TKA patients [17] using the prior PID-controlled lower
limb model [14], and to quantify the variability in external boundary conditions required
for simulation.

2. Methods
2.1. Lower Limb Finite Element Model

A previously developed FE model of the lower limb with integrated PID control was
used in this study, and for completeness will be briefly described here [14]. The lower
limb model includes femoral, tibial, patellar, and pelvic bones, TKR implants (INNEXTM

System, Type FIXUC; Zimmer GmbH, Winterthur, Switzerland), two-dimensional TF
ligaments, the patellar ligament, and quadricep and hamstring muscles (Figure 1). TF
soft tissue included representations of the medial and lateral collateral ligaments, the
popliteofibular ligament, the anterior lateral capsule, and the posterior capsule [12,16,18].
These structures, and the patellar ligament, were modeled with two-dimensional fiber-
reinforced membrane elements, with ligament pre-tension, stiffness, and attachments
sites optimized to match previously published cadaveric laxity data [16]. The quadricep
muscles were represented by four muscle bundles (rectus femoris, vastus intermedius,
vastus medialis, and vastus lateralis) with lines of action of each muscle bundle estimated



Bioengineering 2024, 11, 503 3 of 14

from the Visible Human dataset [19]. The hamstring muscles were represented by four
point-to-point muscle actuators (semimembranosus, semitendinosus, and long and short
heads of the biceps femoris).
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Figure 1. Schematic of the control algorithm and actuation of the lower limb simulator, with ham-
string muscles and physiological quadricep muscle paths. Blue arrows denote axis of applied
actuator loading.

The ankle was free in all rotational DOFs and ML translation and fixed in AP and
superior–inferior (SI) translational DOFs. The hip was free in all rotational DOFs and
SI translation, fixed in ML translation, and AP hip motion was kinematically prescribed.
Actuators in the model were used to apply a vertical hip load to the femoral head, muscle
loads to the quadriceps and hamstrings, and ML load, IE, and flexion–extension torque to
the ankle. TF and PF joints were kinematically unconstrained in all 6-DOFs. Knee flexion
in the lower limb model was achieved through a combination of vertical hip force and
muscle force. Vertical hip force and hamstring force served to flex the knee, while the
quadriceps force extended the knee. Knee flexion was controlled by a balance of these
two factors. Using a PID controller to calculate the required actuator loads, vertical hip
force was applied to achieve a target TF compressive force profile, while quadricep (knee
flexion) and hamstring (knee extension) forces were applied to achieve a target knee flexion
profile [14]. Additionally, controlled actuator loads created specified IE, AP, and VV TF
joint loads.

2.2. Telemetric Implant Patient Data

Telemetric implant and kinematic data for nine TKA patients were adopted from the
Orthoload database [15]. This provided 6-DOF loads acting on the tibial tray, as well as
knee flexion, pelvic rotation, patient weight and height, and implant orientation. Three
activities were included: DKB, step-down (SD), and stance-phase gait (Figure 2). Data
was available for all nine patients in DKB and SD, however one patient was missing gait
data. Raw data for the hip AP motion was not included in the original dataset; however,
this data was extracted from a video of the patients using manual post-processing. This
was accomplished by finding the hip center and extracting its relative position to the knee
center and ankle center for each frame of the video. Patient profiles for each activity were
created containing flexion, compressive and AP load, VV and IE torque, pelvic rotation,
and hip AP motion.
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set with only activity-specific pelvic rotation and hip AP motion. Activity-specific-only 
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Figure 2. Joint loads for all patients (dashed lines) with shaded regions representing +/−1 standard
deviation of the mean; (1(a)–1(e)) step-down kinematics = blue; (2(a)–2(e)) stance phase gait kinemat-
ics = red; (3(a)–3(e)) deep knee bend kinematics = green; (forces with respect to the tibia: +anterior;
+internal; +varus; and −compressive).

2.3. Optimization of Control Parameters and Estimation of Actuator Loading

As described previously, the PID control parameters for each patient were tuned
independently. The proportional and integral gains for each axis were determined by
uniformly varying these values, choosing the best fit as the lowest root mean square error
(RMSE) between the model result and desired implant loading [14].
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As the hip motion measured for the patient cohort included significant variability,
two versions of each patient’s data were analyzed to evaluate the impact of this variation:
one set with patient- and activity-specific pelvic rotation and hip AP motion and another
set with only activity-specific pelvic rotation and hip AP motion. Activity-specific-only
data pertain to average motion across all patients. Applying each set independently and
tuning the PID to best fit the desired tibial loads enabled an understanding of the impact of
patient-specific hip movement on the ability to properly reproduce patient loading. Once
each model was tuned to best represent patient loading, the RMSE between the target and
achieved loading was calculated for each axis. The average and standard deviation RMSE
across all patients were calculated for both data sets to compare the control schemes.

2.4. Principal Component Analysis

To understand interdependency between the actuator loads, principal component
analysis (PCA) was applied to identify any relationships between actuator loads. The
input data for the PCA consisted of the actuator load profiles for each patient, across the
activity cycle. The primary modes of variation (PC scores) were extracted and visualized to
explain how loading profiles varied with one another. This data allowed us to generate
new loading profile instances for all DOFs that maintained relationships between actuator
loads, with the potential to sample for future studies based on this population.

3. Results

Calibration of external simulator actuation to achieve the measured patient-specific
joint loading and motion was completed for all nine patients. The RMSE differences
between joint load targets and those achieved by the controlled simulations were calculated
for all patients and activities (Table 1; Figure 3). Including patient-specific hip AP motion
and pelvic rotation reduced the RMSE by an average of 28.7% compared with using activity-
specific pelvic rotation and hip AP motion. The largest reduction was seen in the DKB
activity, where the RMSE went from 39.95 N to 31.17 N, 1.15 N-m to 0.65 N-m, 189.07 N
to 44.37 N, 1.67 N-m to 0.81 N-m, and 1.69◦ to 1.63◦, for AP load, IE torque, compressive
load, VV torque, and flexion angle, respectively (Table 1). Patient-specific hip and pelvic
actuation was most impactful in reducing RMSE in compressive load in DKB (reduced by
76%). Overall, RMSE errors for the patient-specific hip and pelvic motion models were
28.56 N, 0.65 N-m, 97.72 N, 1.88 N-m, and 1.44◦ for AP load, IE torque, compressive load,
VV torque, and flexion angle, respectively.

Table 1. Average and standard deviation of RMSE difference between target and achieved joint loads
with and without patient-specific hip AP motion.

Average Hip AP and Pelvic Rotation Activity and Patient-Specific Pelvic Rotation and Hip AP Motion

AP Force IE Torque Compressive
Load VV Torque Flexion AP Force IE Torque Compressive

Load VV Torque Flexion

Gait 52.22 ±
45.16 N

0.89 ± 0.90
N×m

223.81 ±
118.80 N

4.20 ± 3.95
N×m

0.69 ± 0.16
Deg

29.35 ±
11.81 N

0.74 ± 0.20
N×m

151.54 ±
55.48 N

2.77 ± 0.64
N×m

0.61 ± 0.09
Deg

SD 23.46 ±
22.71 N

0.81 ± 0.47
N×m

185.48 ±
46.73 N

2.69 ± 0.61
N×m

2.11 ± 0.39
Deg

25.16 ±
18.69 N

0.57 ± 0.34
N×m

97.26 ± 53.82
N

2.07 ± 0.58
N×m

2.08 ± 0.45
Deg

DKB 39.95 ±
29.40 N

1.15 ± 1.22
N×m

189.07 ±
98.88 N

1.67 ± 0.73
N×m

1.69 ± 0.40
Deg

31.17 ±
19.63 N

0.65 ± 0.54
N×m

44.37 ± 22.03
N

0.81 ± 0.32
N×m

1.63 ± 0.37
Deg
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Figure 3. Representative subject target and achieved joint loads during SD (Patient 7), gait (Patient 3),
and DKB (Patient 8)—subject selected based on RMSE most closely matching average; (a) anterior–
posterior (A–P) force; (b) internal–external (I–E) torque; (c) compressive load; (d) varus–valgus (V–V)
torque; (e) flexion; (forces with respect to the tibia: +anterior; +internal; +varus; −compressive; target
joint load as measured by the telemetric implant; achieved applied joint load in the FE model, as
generated via the PID-controlled actuators at the hip, ankle, and muscles).

Significant variability in the measured joint-level loading data was seen for this patient
cohort, and this resulted in a correspondingly large variability in the simulation actuators.
The average standard deviation of the measured joint loading across patients was 121 N,
3.52 N-m, 12.3 N-m, 655 N, and 15.4◦ for AP, IE, VV, compressive load, and flexion,
respectively. Peak standard deviations were seen in the measured joint load of the SD
activity (809 N) and the AP load of the DKB activity (185 N). The actuator response to
this variability in the joint-level loading created an average standard deviation of 467 N,
4.69 N-m, 330 N, 0.064 N-m, 772 N, 73.2 mm, 20.3◦ for the AP, IE, compressive load, VV,
quadriceps load, hip AP, and pelvic rotation actuators, respectively (Figure 4). Peak actuator
standard deviations were seen in the quadriceps actuator (953 N) in SD, and in the AP
loading actuator (651 N) during the DKB activity (Figure 4).
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Figure 4. Joint simulator actuator input for all patients (dashed lines) with shaded regions represent-
ing +/−1 standard deviation of the mean; (1(a)–1(g)) step-down actuator inputs = blue; (2(a)–2(g))
stance phase gait actuator inputs = red; (3(a)–3(g)) deep knee bend actuators inputs = green; (forces
with respect to the tibia: +anterior (ankle extending); +internal; +varus; and −compressive).

Principal component analysis (PCA) was employed to understand interdependencies
between simulator actuation (Figure 4) using the more accurate actuator loading derived
from including the patient-specific hip AP and pelvic motion. The PCA showed that the
first three PCs accounted for approximately 97.8% of the variability in the actuator loading.
PC1 (responsible for 77.8% variation) indicated a relationship between vertical hip load,
and the AP and IE force required to achieve target joint loads, with increasing compressive
load at the hip actuator, increased ankle flexion–extension torque and tibial IE torques are
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required to achieve target joint loads (Figure 5). PC2 and PC3 accounted for 15.8% and
4.2%, respectively, of the variability in the actuator loading.
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Figure 5. Effect of primary PC modes on the mean actuator load; (1(a)–1(d)) step-down PC
modes = blue; (2(a)–2(d)) stance phase gait PC modes = red; (3(a)–3(d)) deep knee bend PC
modes = green; (forces with respect to the tibia: +anterior (ankle extending); +internal; +varus,
and −compression).

4. Discussion

This work developed external simulator loading conditions required to reproduce joint-
level loading for a cohort of nine patients with telemetric implants. This was completed
through the use of a previously developed PID-controlled lower limb FE model [14] coupled
with the Orthoload database [15]. Controllers were integrated with FE model actuators and
used to determine the simulator actuator loading required to best reproduce the measured
joint-level loading. The resulting patient-specific models with calibrated loading conditions
are a forward-dynamic platform for use in subsequent knee implant design and evaluation,
including associated mechanics of interest, such as the impact of post-operative ligament
balancing. Given the ease with which computational boundary conditions are imposed,
these nine patient-specific models can be run directly, or a larger probabilistic computational
study can be performed through sampling within the PCA representation to evaluate a
larger range of potential boundary conditions.

Although based on a small cohort of patients, the joint-level loading varied substan-
tially within the experimental dataset, with peak standard deviations up to 809 N. Although
a wear test may be reasonably performed based on an overall ‘worst-case’ loading condi-
tion for a composite of activities, evaluations of joint mechanics are better served through
an understanding of the potential response in the population. This work represents an
evolution in that direction, as well as a process for continuing to add patient data as it
becomes available.

Tuning of the controllers enabled a good reproduction of the desired loading condi-
tions, especially with the inclusion of patient-specific AP position and pelvic rotation. The
patient-specific data substantially improved joint loading accuracy compared with using
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generic, activity-specific values for these variables. The resulting average RMSE for the
patient-specific cohort was comparable with that of the previously published RMSE for a
single patient (17 N, 0.8 N-m, 65 N, and 0.5◦, for AP load, I–E torque, compressive load, and
flexion, respectively) [14] and was significantly improved over other previously published
boundary condition studies [20,21]. Given the sensitivity of the joint-level loading to the
hip AP and pelvic rotation inputs, physical lower limb simulators may consider including
these as additional actuators or at least variable static alignments in the future.

Peak actuator standard deviations were found in the quadriceps (approaching 1000 N)
and AP (651 N) actuators, which were, surprisingly, larger than the vertical loading actuator
variability. Further study should ideally incorporate patient whole-body kinematics and
habitus for this cohort to better understand how individual mechanics drive these variations.

The PCA identified preliminary interdependencies between simulator boundaries
conditions (actuator loads) across activities. Notably, the increased compressive load at
the vertical hip actuator was associated with larger ankle flexion torque and tibial internal
torque. This analysis can provide guidance for new combinations of simulator boundary
conditions that are compatible with one another to create physiological joint loading
conditions. While we have established this methodology here, a more comprehensive
dataset will be necessary to verify if these relationships hold across a broader sample of the
patient population.

There are several study limitations that should be considered. The sample size in
this study was relatively small (n = 9), which does limit the ability to generalize to the
full population. Patient-specific bony geometry was not available, and hence generic
attachment sites, measured in prior cadaveric work [19], were applied across all simulations.
Similarly, while the dataset did provide some patient demographics (body weight and
height) and joint alignment, it did not have information on the pre-/post-implantation
soft tissue state. As such, the soft tissue representation was adopted from prior work [19]
across all simulations, although variable soft tissue conditions could be included in a
future probabilistic study. The study focused on only three activities of daily living (gait,
SD, and DKB). However, these activities included both the most common (gait) and more
demanding (SD, DKB) tasks, and so provided a reasonable activity spectrum across which to
evaluate TKR mechanics. Although the implanted position was known, the post-operative
ligamentous state was not, and the ligament representation was consistent for each patient.
Additionally, this study did not have access to any PF data for the patients nor a line of
action of the quadriceps during activity, and representation of the quadricep and hamstring
muscles was simplified to be controlled as a group rather than individual muscles.

This study developed patient-specific external boundary conditions for TKA simu-
lations. The approach utilized a PID-controlled lower limb FE model coupled with the
Orthoload database to replicate measured joint loads in nine patients. The resulting models
can be used to evaluate implant designs and associated mechanics, including, but not
limited to, alignment techniques or post-operative ligament balancing. Patient-specific
data significantly improved model accuracy, as shown by including the hip AP posi-
tion and pelvic rotation. These models achieved a similar RMSE to previously reported
single-patient studies, while improving upon them by increasing patient population and
associated loading variability. Analysis of actuator loads revealed significant variations
across patients, with the highest in quadriceps and AP actuators. PCA identified interde-
pendencies between boundary conditions, enabling broader probabilistic studies beyond
the variability included in this patient cohort.
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