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Abstract: This study introduces a novel sensitivity analysis approach to assess the resilience and
susceptibility of hydrologic systems to the stresses of climate change, moving away from conventional
top-down methodologies. By exploring the hydrological sensitivity of the upper Kızılırmak River
basin using the Variable Infiltration Capacity (VIC) hydrologic model, we employed a sensitivity-
based approach as an alternative to the traditional Global Climate Model (GCM)-based methods,
providing more insightful information for water managers. Considering the consistent projections of
increasing temperature over this region in GCMs, the hydrologic system was perturbed to examine
gradients of a more challenging climate characterized by warming and drying conditions. The
sensitivity of streamflow, snow water equivalent, and evapotranspiration to temperature (T) and
precipitation (P) variations under each perturbation or “reference” climate was quantified. Results
indicate that streamflow responds to T negatively under all warming scenarios. As the reference
climates become drier, streamflow sensitivity to P increases, indicating that meteorological drought
impacts on water availability could be exacerbated. These results suggest that there will be heightened
difficulty in managing water resources in the region if it undergoes both warming and drying due
to the following setbacks: (1) water availability will shift away from the summer season of peak
water demand due to the warming effects on the snowpack, (2) annual water availability will likely
decrease due to a combination of warming and lower precipitation, and (3) streamflow sensitivity to
hydroclimatic variability will increase, meaning that there will be more extreme impacts to water
availability. Water managers will need to plan for a larger set of extreme conditions.

Keywords: hydrologic sensitivity; variable infiltration capacity model; climate change

1. Introduction

Freshwater is a critical resource for all life forms; however, its availability in space
and time is being affected by climate change, often in detrimental ways. For example, in
snowmelt-dominant watersheds, warming-induced depletions of the seasonal snowpack
result in a shift of water availability away from the summer season of peak water use [1–3].
Also, Adam et al. [4] concluded that projected losses in the snowpack and warm-season
runoff are linked to warming temperatures in snow-dominated regions. These studies of
hydrological impacts of climate change were studied by many authors in the past [5–8].

To analyze the hydrological risks caused by climate change, the model’s climate
information is collected from Global Climate Models (GCMs), which generally have coarse
spatial resolutions (150–200 km). The necessity to convert inputs to a hydrological model,
which runs at a higher spatial resolution than GCMs, is one of the major challenges for
such studies. For example, modeling a watershed in regions with complex topography can
result in significant uncertainties even though downscaling techniques are utilized. Due
to the uncertainties of GCM-based analyses, hydrological models have been run based on
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some reference climates (please see the hydrological impact figures of simulated change at
1.5 ◦C, 2 ◦C, and 4 ◦C reference climates in the IPCC 6th Assessment Report [9]). Hydrological
projection studies using such reference climates adopt the general results of GCMs. Using
climate information as an input or using GCMs as a contribution to climate information in
risk analysis reveals two different approaches. Two methods, “top-down” and “bottom-up”,
generally used in the hydrological risk analysis, are briefly mentioned below.

The methods of “top-down” and “bottom-up” have been used to assess the hydrologi-
cal vulnerability of basins by employing climate projections. The top-down method, also
known as the scenario-led or GCM-based approach, selects one or more GCMs based on
multiple greenhouse gas emission scenarios and uses downscaling methods and hydrologi-
cal models to predict changes and potential vulnerabilities of water resource systems. This
method has some limitations because of the significant uncertainties associated with GCMs,
downscaling techniques, and greenhouse gas emissions. Wilby & Dessai [10] demonstrate
that there is an expanding envelope of uncertainty that arises in the top-down approach,
as the uncertainty increases from understanding the role of the future society in climate
change to adaptation responses. Hallegatte [11] states that this degree of uncertainty makes
it difficult for decision-makers to adapt to climate change through long-term investments.
Moreover, because of the computational requirements associated with running a large set
of GCMs under different greenhouse gas scenarios, it is impractical to examine the full
range of possible future climatic conditions.

The bottom-up method, also known as the sensitivity-based approach, identifies the
most sensitive conditions of water resource systems to determine critical conditions and
predict how water resource systems will respond to a wide range of possible climatic
conditions. With this method, a wider range of future climate forecasts can be identified
from climate projections. Then, at the end of the sensitivity analysis, decision-makers
can observe climatic conditions under which the coping thresholds of the water resource
system will be strained. As an alternative to the GCM-based approach in the analyses of risk
assessments, Brown & Wilby [12] elaborate on the advantage of the better insight that the
sensitivity analysis method provides to decision-makers. A comparison of the limitations
and the advantages of these two methods was provided by Nazemi & Wheater [13].

Vano et al. [14] applied the sensitivity-based approach to examine streamflow response
to changes in precipitation and temperature in the Colorado River basin. They compared
these sensitivities for multiple altered “reference” climates and found that these sensitivities
change as a function of reference climate, indicating that climate change can affect not only
mean streamflow values but also how sensitive they are to climate variations. As a follow-
on study, Vano & Lettenmaier [15] compared a sensitivity-based (bottom-up) approach
to the GCM-driven (top-down approach) to understanding streamflow vulnerability to
climate change and argued that the sensitivity-based approach produces viable first-order
predictions that can easily be applied to newly released climate information.

Using the top-down approach as described above, the study area, the Kizilirmak
River basin (KRB) has been analyzed by several climate projections and hydrological
model analyses. Using a regional climate model (RegCM3) [16], Önol et al. [17] spatially
downscaled climate projections from three GCMs under the scenarios of A2, A1FI, and
B1, to the end of the 21st century over the Black Sea and eastern Mediterranean regions.
Also, using dynamic downscaling methods (RegCM4), a study on the climate projections of
the KRB was carried out by the Turkish General Directorate of Water Management under
a project on the impact of climate change on water resources in Turkey’s rivers [18,19].
Overall, the study revealed that the basin would be affected by climate change, driven by
the projected increase in temperature and, notably, the projected variations in precipitation,
encompassing both increases and, more prominently, decreases. As an alternative, this
sensitivity-based (i.e., “bottom-up”) approach can provide decision-makers more insight
into risk assessments.
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In this study, the sensitivity framework established by Vano et al. [14] was applied
to assess the risks caused by climate change to water management in the headwater
section of the Kizilirmak River. This river drains the second largest area of all basins
in Turkey and is an important water source for the energy, water, and food needs of
approximately 5 million inhabitants [20]. This watershed, being a snowmelt-dominant
system, is potentially vulnerable to a warming climate since warming can cause more
precipitation to fall as rain and earlier snowmelt, therefore shifting water availability
away from the summer season of peak water demand. Unfortunately, Global Climate
Models (GCMs) are projecting warming temperatures and reduced annual precipitation in
this region, both of which will exacerbate existing management challenges or create new
conditions of water scarcity, particularly during the summer [21]. This study focuses on the
headwater section of the KRB, the Upper Kızılırmak River basin (UKRB), because much of
the water supply is generated from the UKRB, which is snow-dominant.

In this study, we adopted a novel sensitivity analysis approach rather than the con-
ventional top-down method to examine the impact of climate change on the hydrologic
system. Through this method, we aimed to understand how resilient or susceptible the
hydrologic system is to various strains induced by climate change. Given the absence of
the prior application of the hydrological sensitivity analysis approach within the specified
region, two research questions were posed:

(1) What are the long-term hydrologic effects of realistic ranges of projected temperature
and precipitation changes in the UKRB?

(2) How does the hydrological sensitivity of the basin vary across changes in temperature
and precipitation (i.e., across reference climates)?

To address these questions, we performed the following tasks to answer these ques-
tions: implement, calibrate, and evaluate a semi-distributed hydrological [22] model over
the UKRB; investigate the sensitivity of the UKRB hydroclimatology to possible future
changes in temperature and precipitation; quantify the UKRB streamflow sensitivity to
precipitation and temperature for multiple reference climates; and discuss the implications
of the UKRB hydrologic changes and sensitivities to water resource management in the
entire basin.

2. Materials and Methods
2.1. Study Area
2.1.1. Upper Kızılırmak River Basin (UKRB)

The study area (Figure 1) constitutes a drainage area of about 16,500 km2, which is
mostly in the Upper Kızılırmak River basin (UKRB). The river originates from Kızıldağ, east
of Sivas, and flows first to the west and then to the southwest until Avanos and then heads
to the northwest [23] (Figure 1). The study area’s drainage basin extends to the vicinity of
the Yamula Dam, which was constructed and opened in 2005. Behind the Dam, there is a
streamflow observation station whose data was used for hydrological model calibration
and evaluation, as illustrated in Figure 1. The UKRB belongs to continental climate zones,
and the precipitation during the winter season is not as much as in the spring, while most
of the annual total precipitation occurs in these two seasons since, during the summertime,
a tropical dry and hot air mass coming from the south controls Central Anatolia [23].

From a hydrological perspective, streamflow is dominated by winter and spring
precipitation, which occurs mostly as snow in high altitudes and is the source of the spring
freshet that is responsible for most of the river’s annual streamflow (Figure 2). As Sağdıç
and Koç [23] reported, the number of days with snow cover significantly decreases in
April when streamflow reaches its maximum rate. As shown in Figure 2, precipitation and
streamflow reached maximum values (3.2 mm/day and around 228.7 cms (cubic meter per
second)) in April. From autumn until the end of winter, precipitation and streamflow values
increased from about 1.62 mm/day (17.64 cms) to 2.1 mm/day (49 cms). Streamflow values
decreased after mid-April and reach their lowest values (15.52 cms) during the summer.
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Figure 1. Map of study domain. Solid line boundary: the Kızılırmak River basin; dashed line
boundary: the Upper Kızılırmak River basin, which is the study area; the brown gradient color of the
main plot shows the elevation; and the inset plot with gradient blues show the RSR ratio (ratio of
snow contribution to runoff—see Section 2.4 for Methods).

2.1.2. Previous Research Activities on Climate Impact over KRB

The coarse resolution CMIP5 (Coupled Model Intercomparison Project) projections
indicate that in Turkey, by the end of the 21st century (relative to the means of 1986–2005),
an increase of the surface temperature is expected to be between 0.5 and 1 ◦C and 4 and 5 ◦C
degrees for the RCP4.5 (Representative Concentration Pathways) and RCP8.5 scenarios,
respectively. At the same time, precipitation is projected to decrease by up to 10 percent
and 30 percent for RCP4.5 and RCP8.5, respectively [27–29].

When the region of the KRB is specifically analyzed from the simulation maps in
the studies, by 2100, the surface temperatures for all seasons are estimated to increase,
according to all emission scenarios and three climate models [16,17]. In addition, the
models agree that winter precipitation will increase along the coast of the Black Sea in
the basin. Summer precipitation will decrease significantly throughout most of the basin.
There will be a decrease in precipitation in the inland areas where the continental climate
is dominant.

In the KRB, projections for temperature, precipitation, and surface runoff were made
at a resolution of 10 × 10 km for RCP4.5 and RCP8.5 scenarios by dynamically downscaling
three GCMs (HadGEM2-ES, MPI-ESM-MR, and CNRMCM5.1) using RegCM4.3 [18,19].
Based on the reference years of 1971–2000, increases in basin-average temperature for
the years 2041–2050 are between 1.1 and 2.3 ◦C degrees for RCP4.5 and 1.5 and 2.8 ◦C
for RCP8.5. Precipitation is projected to change between 5.8% and −3.4% for RCP4.5
and between 2.8% and −2.5% for RCP8.5. Among all 30-year averages, for the period of
2041–2070, the decrease in the total surface runoff in the basin is projected to be maximum
at 54%.
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Figure 2. Monthly average of daily precipitation and observed streamflow across the Upper Kızılır-
mak River from 1986 to 2001 (a), as well as the annual average precipitation and observed streamflow
for the basin during the same period (b). The observed streamflow is obtained from “DSİ General
Directorate—Streamflow Observation Annuals” [24], and precipitation data were computed from the
global meteorological forcing dataset [25] and multiplied by the orographic correction factor for the
study area (1.45). The correction factors are globally available [26].

As seen from the projection studies mentioned in this section, the GCMs’ projections
of temperature and precipitation vary substantially. In the GCM-based method (the top-
down method), the risk assessment relies on the accuracy of the projections; however, in
the sensitivity-based approach (the bottom-up method), it is more important to analyze
hydrologic sensitivities under potentially harmful warming and drying climatic conditions.
Therefore, for this study, temperatures are increased up to 1.5 ◦C, and precipitation is
decreased by up to 70%.

2.2. Model Descriptions

The Variable Infiltration Capacity (VIC) model, a macroscale hydrological model that
integrates the parameters of meteorological, vegetation, and soil properties to solve water
and energy balances in space and time, has been used in this study (version 4.1.2) [22,30,31].
Detailed descriptions of the model structure, equations, and snowpack-related hydrological
processes can be found in [4,22,30,32,33]. To understand the critical consequences of climate
change on water resources and to evaluate the hydrological effects of climate change on
a wide range of watersheds, the VIC model has been updated and improved during the
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last decades (detailed information can be found at https://vic.readthedocs.io/en/master/,
accessed on 1 January 2024). VIC has been applied at regional scales [1,34–37] and global
scales [4,38,39]. It has also been coupled with a crop model (VIC-CropSyst) to assess the
agricultural impacts of climate change [40–43]. In addition, it has been used for hydrological
sensitivity analyses [15,44–48].

2.3. Data Sources

Soil data, estimated using the VIC model studies; leaf area index, estimated using
radiative transfer models; and vegetation library were obtained from global datasets
available at https://vic.readthedocs.io/en/master/Datasets/Datasets/, accessed on 1
January 2024 [49–51] (please also see data availability statement). These data have been
updated and rendered at a finer spatial resolution of 0.25◦ × 0.25◦ by Justin Sheffield
(https://hydrology.soton.ac.uk/, accessed on 1 January 2024) [39], which we used for this
study. Daily meteorological input data (maximum temperature (Tmax), minimum temper-
ature (Tmin), wind speed, and precipitation) were obtained from Justin Sheffield [25,52].
Sheffield et al. published the global meteorological dataset, which has been utilized in
numerous climate and hydrological studies [53–55]. The dataset combines global obser-
vational meteorological data with NCEP-NCAR (National Centers for Environmental
Prediction–National Center for Atmospheric Research) reanalysis, addressing biases in
precipitation and near-surface meteorology. Corrections use observation-based data for
precipitation, temperature, and radiation, as well as adjusting rain day statistics. Wind-
induced underestimation of solid precipitation is fixed with WMO (World Meteorological
Organization) findings. Precipitation data were spatially downscaled using the GPCP
(Global Precipitation Climatology Project) daily product.

Due to the prevalence of mountainous terrain in the UKRB, precipitation data were
multiplied by a correction factor of 1.45 to account for orographic effects. This correction
was made to compensate for potential deficiencies in observed precipitation amounts due
to the topographic complexity of the basin. Adam et al. published these correction factors
globally [26]. Digital elevation information needed for the routing model was obtained
from the Shuttle Radar Topography Mission (SRTM) at a 90 m resolution.

2.4. Calibration

After the routing process, calibration and evaluation processes were performed sequen-
tially. The calibration period ranged from 1950 to 1975, while the evaluation period spanned
from 1976 to 2001. The automated multi-objective optimization calibration (“MOCOM-
UA”) was implemented to calibrate the watershed [56]. The optimization of model pa-
rameters, namely bi (variable infiltration curve), Ds (velocity of baseflow), Ws (fraction
of maximum soil moisture where non-linear baseflow occurs), and Dsmax (maximum
velocity of baseflow), was conducted within the framework of MOCOM-UA (Table 1; [57]).
Six metrics/objectives were selected: (1) Nash-Sutcliff model efficiency coefficient (NSE)
(Equation (1)); (2) Nash–Sutcliffe efficiency with logarithmic values (Ln NSE; (3) relative
bias; (4) coefficient of determination r2; (5) absolute average peak flow difference; and
(6) root mean square error (RMSE) (Appendix A). After obtaining the Pareto optimal solu-
tions, we selected the soil parameter set with maximum NSE as the final calibration product.
The calibration was carried out using streamflow observations from the observation station
located in the village of Yamula, near the Yamula dam (station code: E15A001, latitude:
38.888◦, longitude: 35.257◦) (Figure 1). The period for the calibration was 1950–1975, during
which no human-made upstream reservoirs existed (Figure 3 and Table 2). As listed in
Table 2, some reservoirs were opened during the evaluation period (1976–2001), which may
affect the evaluation results. Table 1 provides parameter ranges and the final calibration
parameter values used for VIC, as well as the descriptions of the parameters. Detailed infor-
mation about the soil parameter calibration and the calibration ranges of the soil parameters
can be accessed at https://vic.readthedocs.io/en/vic.4.2.d/Documentation/CalibrateSoil/,
accessed on 1 January 2024.

https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/master/Datasets/Datasets/
https://hydrology.soton.ac.uk/
https://vic.readthedocs.io/en/vic.4.2.d/Documentation/CalibrateSoil/
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Table 1. Calibration parameters used for VIC and their descriptions (the ranges are from Maurer et al. [57]).

Calibration
Parameters Description of the Parameters Parameter

Range
Calibrated

Value

b-infilt (unitless) Used to define the shape parameter of the VIC curve.
Higher values will produce more runoff. 0.001 to 0.3 0.16

Ds (fraction) Ds represents the fraction of the Dsmax parameter at which non-linear
baseflow occurs.

1 × 10−5 to
<1

0.69

Ds,max (mm/day) Ds,max is the maximum velocity of baseflow for each grid cell. 0.01 to 30 14.40

Ws (fraction) Ws is the fraction of maximum soil moisture where non-linear baseflow
occurs. An increase of Ws will delay runoff peaks. 0.05 to 1 0.63
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Figure 3. Reservoirs (active storage capacities—hm3) with their object ids (see Table 2 to check their
associated names inside study area) in the KRB. The location of the observation station and the
study area are shown in the figure. The reservoir information was received from the DSI (Turkish
Directorate General for State Hydraulic Works).

Table 2. Shows the reservoirs upstream of the observation station used for calibration. The reservoirs
with the asterisk sign were built during the model evaluation period (i.e., 1976–2001). (Note: no
reservoirs were constructed before or during the model calibration period (i.e., 1950–1975).

Reservoir Name (Obj. ID) Open Year Active Capacity
(Million Cubic Meters)

* Aksaklı-Karaçalı (16) 1994 9.4
Kayapınar (17) 2013 3.0
Sarıoğlan (20) 2006 20.4
Çermikler (37) 2013 6.9
* Gazibey (38) 1992 21.3
Karacalar (41) 2008 39.6

* Maksutlu (42) 1982 1.6
Pusat Özen (43) 2009 89.3
* Yapı Altın (44) 1986 10.6

Imranlı (39) 2003 57.3
4 Eylül (45) 2006 80.4
Yamula (21) 2005 2076.0
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To evaluate VIC model results, NSE (Nash and Sutcliffe [58] and RMSE (root mean
square error) observations standard deviation ratio (RSR) (Singh et al. [59] were used. NSE
is defined by (Equation (1)):

NSE = 1 − ∑T
t=1

(
Ŷt

i − Yt
o
)2

∑T
t=1

(
Yt

o − Yo
)2 (1)

where NSE is the Nash–Sutcliffe coefficient; Ŷt
i is simulated flow; Yt

o is the observed stream-
flow; and Yo is the annual average observed streamflow. RSR is defined by (Equation (2)):

RSR =
RMSE

STDEVobs
=

[√
∑n

i=1
(
Yobs

i − Ysim
i

)2
]

[√
∑n

i=1
(
Yobs

i −Ymean)2
] (2)

where RSR is RMSE observations standard deviation ratio; Yobs
i is observed flow; Ysim

i is
simulated flow; and Ymean is the average flow. The calibration and evaluation statistics are
provided in the Results, Section 3.1.

2.5. Quantification of Ratio of Snowmelt Contribution to Runoff Generation (RSR)

To examine the dependence of the runoff on snowmelt in the UKRB, a ratio of snowmelt
contribution to runoff generation (RSR) was quantified for each water year (Equation (3)) [60,61]:

RSR =
SWEmelt

∑N
t=1 Rt

(3)

where R is runoff (mm/day), and N is 365 (nonleap year) or 366 (leap year); t = 1 marks 1
October of the given year; and SWEmelt is calculated as (Equation (4)):

SWEmelt = SWEmax − SWEmin (4)

where SWEmax is the maximum snow water equivalent of the year, and SWEmin is the
minimum snow water equivalent of the year. Snow water equivalent and total runoff are
the outputs of the VIC simulation for the years between 1950 and 2016, and the average
RSR was calculated during these years.

Figure 4 presents a flowchart that illustrates the stages and components of the study.
To see how perturbed the forcing data and related formulations please check Section 2.7.

2.6. Generation of Reference Climate for Sensitivity Analysis

We applied the sensitivity framework described by Vano et al. [14], in which we
sought to quantify streamflow sensitivity to precipitation and temperature for multiple
reference climates to see how climate change impacts not only mean streamflow but
also its sensitivity to weather variations. Thus, precipitation data were perturbed by
multiplying the precipitation values by 70%, 80%, 90%, 100%, and 110%, respectively, and
the temperature (Tmin and Tmax concurrently) was perturbed by increasing 0, 0.5, 1, and
1.5 ◦C, respectively. For each reference climate, streamflow values (Qre f ) were obtained by
running VIC using the perturbed climate data for each reference climate.
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2.7. Formulations of Precipitation Elasticity and Temperature Sensitivity

Following the nomenclature of Vano et al. [14], two terms were used in the sensi-
tivity analysis: εQ for streamflow (Q) elasticity to precipitation (Equation (5)) and SQ for
streamflow sensitivity to temperature (Equation (6)). εQ and SQ can be defined as how an
incremental change (or perturbation) in precipitation and temperature results in a percent
change in streamflow.

εQ =

Qre f+∆−Qre f
Qre f

∆P(%)
(5)

SQ =

Qre f+∆−Qre f
Qre f

∆T(◦C)
(6)

For each of the reference climates described in Section 2.5, we calculated both εQ
and SQ by very small increments (which are referred to as ∆) of P and T. For ∆, we use
0.1 ◦C for T and 1% for P to examine the sensitivity of streamflow to small increments
while avoiding computational artifacts that occur if ∆ is too small. The minimum and
maximum temperature values were increased by the same amount (i.e., ∆ = 0.1 ◦C). In
Appendix B, Tables A1 and A2 show the perturbations made to T and P (respectively) for
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each reference climate and incremental change conditions to calculate Qre f and Qre f+∆,
needed for Equations (5) and (6). Using the same methodology as was performed for
streamflow, we also calculated the precipitation elasticity of snow water equivalent (SWE)
and evapotranspiration (ET) (εSWE and εET), as well as the temperature sensitivity of SWE
and ET (SSWE and SET). This was performed by replacing Q with either SWE or ET in
Equations (5) and (6). For more details, please see Appendix B.

2.8. Budyko Curve

The Budyko curve was employed to examine whether temperature conditions influ-
ence the dryness of the conditions. According to Budyko et al. [62], there is a relationship
between the evaporative index (the ratio of annual actual ET to annual P) and the aridity
index (the ratio of annual potential ET to annual P). The Budyko curve, a semi-empirical
expression of the coupled water-energy balance, is widely used in the hydrological analysis
of catchments [63,64]. The Budyko equation is defined by (Equation (7)) [62]:

Ea

P
=


(

Ep

P

)
tanh

 1(
Ep
P

)
(

1 − exp−(
Ep
P )

)
0.5

(7)

where Ea is annual actual ET (AET), Ep is annual potential ET (PET), P is annual P. In order
to see results related to the Budyko curve, please check Section 3.4.

2.9. Formulation of Coefficient of Variation

Increases in streamflow sensitivities to temperature and precipitation may result in
more variable streamflow in response to changing climate conditions. To examine this
variability, The coefficient of variation (CV) was calculated for each reference climate on a
monthly basis (Please see Section 3.5). CV is a useful statistical measure in comparing the
degree of variation from one data series to another. CV is calculated by (Equation (8)):

CV =
σ

µ
(8)

where σ is the standard deviation, and µ is the mean. In this study, for each reference
climate, CV is calculated by dividing the standard deviation of the monthly mean values of
each year over the entire period (1971–2000) by the mean of the monthly average values of
each year over the entire period (1971–2000).

3. Results
3.1. Model Performance during Calibration and Evaluation Periods

Figure 5 depicts the model performance of simulated monthly streamflow during
calibration (for the period of 1950–1975; Figure 5a,c) and evaluation (for the period of
1976–2001; Figure 5b,d) periods. The NSEs are 0.78 and 0.53, and the RSRs are 0.47 and 0.69
for the calibration and evaluation periods, respectively. As shown in Table 2, the reservoirs
Aksaklı, Gazibey, Yapıaltın, and Maksutlu were constructed during the evaluation period;
these reservoirs have a total capacity of 42.9 million cubic meters. However, this only
accounts for roughly 2% of the total annual streamflow; therefore, it is unlikely to have any
significant effect on the model performance metrics during the evaluation period.

Both calibration and evaluation results show an underestimation of the magnitude of
the snowmelt peak, and the evaluation results also show a mismatch in the timing of the
snowmelt peak. Although the regulated streamflow by human-made reservoirs during the
evaluation period might partially explain this underestimation and the shifting of the peak
during the evaluation period, these biases are most likely due to an underestimation of
snowfall [65] and precipitation over mountainous areas since most weather stations are lo-
cated at lower elevations [26]. Although a correction factor for orographic precipitation [26]
was applied in this study, we did not utilize a gridded precipitation dataset that includes
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corrections to the gauges themselves. Nevertheless, according to the criteria of [66], NSEs
and RSRs are “satisfactory” for this study.
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Figure 5. Comparison between observed and VIC modeled streamflow from the UKRB during both
the calibration (1950–1975) and evaluation (1976–2001) periods, with panels (a,b) representing yearly
and panels (c,d) representing monthly mean streamflow.

3.2. Monthly Water Balance and Effects of Climate Perturbations

Figure 6a shows the average monthly water fluxes (P, ET, and Q) as well as the
hydrological state (SWE) during 1971–2000. Precipitation is above 1.6 mm/day except
for July–September, its peak is in April with 3.1 mm/day, and its minimum is in August
with 0.43 mm/day. ET is higher than 1 mm/day during March–July and lower than
0.5 mm/day during December–Feb. The lowest and highest monthly ET is in January, with
0.057 mm/day, and in May, with 4.53 mm/day, respectively. Streamflow (runoff + baseflow)
increases starting from February, peaks in March (1036 mm/day), and decreases to a
minimum in August and September (0.083 mm/day). SWE peaks in February (74.65 mm)
and significantly decreases after March, which contributes substantial snowmelt to Q
during March–April.

3.2.1. Impacts of Precipitation Perturbations

Figure 6b shows the response of the hydrologic fluxes and SWE to P perturbations
of +10, −10, −20, and −30%. Because P was adjusted as a percent, the absolute change in
the summer months (July–August) is much less than other months, which have higher P
(Figure 6b). Peak Q always occurs in March with 0.36, 0.50, 0.72, 1.03, and 1.22 mm/day
under 70%, 80%, 90%, 100%, and 110% reference P, respectively. Nevertheless, as the P
perturbation decreases from 110 to 70%, the differences in Q from March to June are becom-
ing less. The minimum Q occurs between August, September, and January, depending on
the reference P (Figure 6b). SWE and ET are positively correlated with the reference P; i.e.,
higher P is generally associated with higher SWE and ET. Overall, Q significantly decreases
as the reference P reduces, particularly during springtime when the streamflow peaks.
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changes in the reference climates. SWE, P, ET, and Q represent snow-water equivalent, precipitation, 

Figure 6. Sensitivities of modeled basin-average hydrologic fluxes (right axis) and SWE (left axis) to
changes in the reference climates. SWE, P, ET, and Q represent snow-water equivalent, precipitation,
evapotranspiration, and streamflow (i.e., runoff plus baseflow), respectively. Historical averages of
the fluxes and SWE are shown in subfigure a. The averages are from 1971–2000 for months from
October to September. Values are averages across all basin grid cells (not routed streamflow, although
this is a small enough watershed that routing time is small and the routed flows are nearly identical
to the sum of runoff and baseflow for each month). Values in the lower two rows represent changes
from precipitation perturbations (b) of 70, 80, 90, and 110% (second row) and temperature increases
(c) of 0.5, 1, and 1.5 ◦C (bottom row).

3.2.2. Impact of Temperature Perturbations

Figure 6c shows the response of the hydrologic fluxes and SWE due to T perturbations
of 0.5, 1, and 1.5 ◦C, respectively. Warming leads to a reduction in Q during March–
May, while it increases during January–February; thus, there is a small shift from early
summer/later spring to late winter/early spring. Peak Q (always March) is 1.04, 0.95, 0.86,
and 0.76 mm/day under 0, 0.5, 1, and 1.5 ◦C perturbations, respectively. The decrease
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in SWE under warming is substantial during January–March when the average SWE is
high. ET increases in response to warming in the springtime before May, while it decreases
afterward because of early soil moisture depletion (Figure 6c).

3.3. Elasticities of Q, SWE, and ET to Precipitation and Temperature

Figure 7 shows Q, SWE, and ET elasticities to P under each P reference climate (i.e.,
70, 80, 90, 100, and 110% of the historical average). As the reference climates become drier,
the elasticities of Q, ET, and SWE to P all increase. However, the shape of this response
is different in each case: moving towards the driest reference climates, the change in Q
elasticity becomes flat, and the change in ET elasticity becomes higher, while the increase
in SWE elasticity stays constant across the P perturbation gradient from wetter to drier. As
the climate becomes dryer, ET will be more water-limited (see Section 3.4) and, therefore,
more sensitive to changes in P.

Hydrology 2024, 11, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 7. Streamflow, snow water equivalent, and evapotranspiration elasticities to the precipitation 
over reference precipitations (70, 80, 90, 100, and 110%) for the basin average. Values on the y-axis 
are elasticities. For example, if ε is 3, a 10% decrease in precipitation would result in a 30% decrease 
in streamflow. The figure shows delta perturbations and the resulting change in elasticities where 
percentages relate to differences in reference climate from historical. 

Figure 8 shows Q, SWE, and ET sensitivities to T for each of the T reference climates. 
Q and SWE respond to temperature negatively, while ET is positive under all warming 
scenarios. Increasing T normally results in elevated ET unless the water is limiting, and 
thus, a decrease in Q. Similarly, an increase in T results in less snowfall, thereby reducing 
SWE accumulation. Unlike the monotonic response to P, the response of Q, ET, and SWE 
to warming is non-monotonic. There is a “tipping point” at the 0.5 °C reference climate, 
which is associated with the highest (most negative) SWE sensitivity and the lowest (least 
negative and positive, respectively) Q and ET sensitivities. SWE is playing a major role in 
causing this tipping point. We hypothesize that the warming is just enough to reduce the 
number of winter days near the 0 °C isotherm to cause the snowpack to be highly sensitive 
to any additional warming but not any further since not enough snowpack is left to re-
spond to T perturbations. This would cause the maximum negative sensitivity of SWE to 
T at the 0.5 °C reference climate. Similarly, ET is least sensitive to warming in this reference 
climate. Because of the heightened SWE sensitivity at this tipping point, any additional 
available energy would be utilized for melting SWE rather than for increasing ET (making 
ET less sensitive). Beyond the 0.5 °C reference climate, however, ET sensitivity increases 
with warming. This is likely due to a lengthening of the warm season, thus increasing the 
potential ET. 

Figure 7. Streamflow, snow water equivalent, and evapotranspiration elasticities to the precipitation
over reference precipitations (70, 80, 90, 100, and 110%) for the basin average. Values on the y-axis
are elasticities. For example, if ε is 3, a 10% decrease in precipitation would result in a 30% decrease
in streamflow. The figure shows delta perturbations and the resulting change in elasticities where
percentages relate to differences in reference climate from historical.

Figure 8 shows Q, SWE, and ET sensitivities to T for each of the T reference climates.
Q and SWE respond to temperature negatively, while ET is positive under all warming
scenarios. Increasing T normally results in elevated ET unless the water is limiting, and
thus, a decrease in Q. Similarly, an increase in T results in less snowfall, thereby reducing
SWE accumulation. Unlike the monotonic response to P, the response of Q, ET, and SWE
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to warming is non-monotonic. There is a “tipping point” at the 0.5 ◦C reference climate,
which is associated with the highest (most negative) SWE sensitivity and the lowest (least
negative and positive, respectively) Q and ET sensitivities. SWE is playing a major role in
causing this tipping point. We hypothesize that the warming is just enough to reduce the
number of winter days near the 0 ◦C isotherm to cause the snowpack to be highly sensitive
to any additional warming but not any further since not enough snowpack is left to respond
to T perturbations. This would cause the maximum negative sensitivity of SWE to T at
the 0.5 ◦C reference climate. Similarly, ET is least sensitive to warming in this reference
climate. Because of the heightened SWE sensitivity at this tipping point, any additional
available energy would be utilized for melting SWE rather than for increasing ET (making
ET less sensitive). Beyond the 0.5 ◦C reference climate, however, ET sensitivity increases
with warming. This is likely due to a lengthening of the warm season, thus increasing the
potential ET.
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Figure 8. Streamflow, snow water equivalent, and evapotranspiration sensitivities to the precipitation
over reference temperatures (0, 0.5, 1, and 1.5 ◦C) for the basin average. Values on the y-axis are
sensitivities. For example, if a Q sensitivity to T is −0.1, each 1 ◦C increase in temperature results in a
10% reduction in streamflow rates.

The tipping point can be further explored by examining Q sensitivities to T at the
monthly scale (Figure 9). Q responds to T positively during the cold season (November–
February) since more P will fall as rain, which will contribute to Q faster than snowfall.
This response diminishes under warmer reference climates because of less snowpack
accumulations. The response of Q to T becomes negative during the warm season (March–
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October) and, thus, drives the negative response at the annual scale (Figures 7a and 8a).
This response has no significant difference among all reference climate gradience during
May–September since any variations in baseline T have little impact on the sensitivity of
ET to T because of water limitation. The response of Q to T along the reference T gradient
is reversed from March to April; i.e., the warm T has a lower response in March and the
opposite in April (Figure 9a). This timing is critical because these are the months for which
the primary source of Q shifts from snowmelt to rain, underlining the importance of the
snowpack in contributing to this tipping point.
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3.4. Temperature Perturbation on the Budyko Curve

Figure 10 shows the Budyko curve and the theoretical water and energy limits. A
water-limited area is where the ratio of the PET/P is higher than 1, while an energy-limited
area is where the ratio of PET/P is lower than 1.

Long-term averages of actual and potential ET and P were calculated from VIC
simulations for each reference temperature. As Figure 10 depicts, the points in the Budyko
space being calculated from the basin-wide streamflow averages under each reference T
scenario are in the area that is water-limited. As the climate becomes warmer, the points
move towards the area of drier climate and less runoff.
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Figure 10. Temperature perturbations on the Budyko curve. All points (from various temperature
perturbations) are in the water-limited area. As the reference temperatures increase, the points
correspond to drier and lesser water yield areas.

3.5. Coefficients of Variation in Monthly Streamflow

As shown in Figure 11, normally, CVs are higher under drier reference climates in
all months (May–September in particular) except for March, and they are higher under
warmer climates in the warm season (i.e., May–October), while it is the opposite in the cold
season (i.e., January–April). These patterns indicate that the streamflow will become more
variable in the summer when the climate is drier and warmer, while during earlier spring,
the variation becomes weaker to T perturbations in warmer conditions.

Hydrology 2024, 11, x FOR PEER REVIEW 17 of 23 
 

 

Figure 10. Temperature perturbations on the Budyko curve. All points (from various temperature 
perturbations) are in the water-limited area. As the reference temperatures increase, the points cor-
respond to drier and lesser water yield areas. 

3.5. Coefficients of Variation in Monthly Streamflow 
As shown in Figure 11, normally, CVs are higher under drier reference climates in all 

months (May–September in particular) except for March, and they are higher under 
warmer climates in the warm season (i.e., May–October), while it is the opposite in the 
cold season (i.e., January–April). These patterns indicate that the streamflow will become 
more variable in the summer when the climate is drier and warmer, while during earlier 
spring, the variation becomes weaker to T perturbations in warmer conditions. 

 
Figure 11. Monthly coefficients of variation under various temperature (a) and precipitation (b) per-
turbations. 

4. Discussions 
4.1. Implications of P and T Elasticities of Q to Water Resource Management 

Results from this sensitivity analysis can be summarized in two ways: (1) hydrologi-
cal responses to each reference climate and (2) hydrological sensitivity to small perturba-
tions. First, in the reference climates, we observed that the decreasing P and rising T would 
significantly diminish Q, especially in the spring season. The first result means less water 
availability in the long term in response to climate change. Less water availability is one 
point of pressure on decision-makers in terms of water management. Secondly, the sensi-
tivity analysis shows that Q responds to T negatively for all reference climates; this re-
sponse is non-monotonic, with a stronger decrease after a 0.5 °C increase in reference T 
(see Figure 8). Streamflow sensitivity to precipitation perturbations increases non-linearly 
as reference P decreases (see Figure 7). Higher sensitivities and elasticities mean more 

Figure 11. Monthly coefficients of variation under various temperature (a) and precipitation (b)
perturbations.



Hydrology 2024, 11, 64 17 of 22

4. Discussions
4.1. Implications of P and T Elasticities of Q to Water Resource Management

Results from this sensitivity analysis can be summarized in two ways: (1) hydrological
responses to each reference climate and (2) hydrological sensitivity to small perturbations.
First, in the reference climates, we observed that the decreasing P and rising T would
significantly diminish Q, especially in the spring season. The first result means less water
availability in the long term in response to climate change. Less water availability is
one point of pressure on decision-makers in terms of water management. Secondly, the
sensitivity analysis shows that Q responds to T negatively for all reference climates; this
response is non-monotonic, with a stronger decrease after a 0.5 ◦C increase in reference T
(see Figure 8). Streamflow sensitivity to precipitation perturbations increases non-linearly
as reference P decreases (see Figure 7). Higher sensitivities and elasticities mean more
variable Q in response to changing weather conditions. More variable Qs put pressure on
water managers. Figure 11 depicts the monthly coefficients of variation (CV) increase under
warmer and drier reference climates in summer months. Therefore, the risk of drought may
increase in these months. Additionally, flood events also may increase due to the higher
streamflow sensitivity to precipitation under the drier reference climates (see Figure 6).

In addition, according to the sensitivity analysis, P is most critical to Q in July because
P elasticities are at a peak in this month (Figure 9b). Therefore, any prospective reduction
in precipitation during July may lead to heightened insufficiency in water storage within
reservoirs when compared to the other months. Q sensitivities to T are more crucial in
March because Q decreases more in this month than in other months (see Figure 9a). From
the same perspective, since Q starts to peak and fill the reservoirs with snowmelt as of
March, the high level of Q reduction in this month may result in insufficient reservoirs in
downstream regions.

4.2. Further Consideration

For future research, it is imperative to employ multi-model results due to the inherent
structural uncertainties present in single-model frameworks like the VIC model. These
uncertainties stem from several model-specific assumptions, such as the treatment of the
channel network where water is confined exclusively to channels once it enters and the han-
dling of sub-grid heterogeneity that arises from the model’s use of coarse resolution. These
assumptions can significantly influence the model’s predictions and outputs, underscoring
the need for integrating findings from various models to enhance reliability and comprehen-
siveness in understanding and predicting hydrological and meteorological phenomena.

Some limitations that should be considered in risk assessments may shed light on
future studies in the basin. A sensitivity analysis with a higher resolution hydrological
model covering the entire KRB could provide more detailed interpretations, taking into
account not only the UKRB but also the three important streams, Delice, Gökırmak, and
Devres, that feed the main tributary of the KRB. With high-resolution analysis, in addition to
calculating the sensitivities across the basin-wide averages, the sensitivities along the basin
can show which specific regions in the basin are the more critical. Additionally, only one
hydrological model was used in the sensitivity analysis in this study. In risk assessments,
model-vs-model analyses will provide a clearer view of critical points. Finally, the 30-year
long-term averages are evaluated as in this study; however, daily values, extreme events,
or land cover changes should also be considered in risk assessments.

5. Conclusions

The sensitivity analysis of hydrological processes including Q to climate change over
the UKRB, a snow-dominant basin, was quantified by using the VIC model driven with
perturbed T and P. The significance of increasing T and decreasing P on streamflow in
snow-dominant regions was underscored by findings from this study. This study shows
that Q decreases when T increases for all warming scenarios (although this sensitivity
reveals a non-monotonic response to the reference climates, with the response becoming
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more strongly negative after 0.5 ◦C of warming). The response of Q to P perturbations
increases non-linearly as P decreases in the reference climates. These responses result in
a twofold setback for water management in this snow-dominant head watershed under
these warming and drying scenarios: (1) average streamflow will likely decrease, and
(2) streamflow will be more sensitive to hydroclimatic variability in the future warming
climate, meaning that water managers will likely need to plan for greater variability of
streamflow conditions. Additional research is needed to develop climate change and
adaptation strategies that consider both of these changes.

In conclusion, this study underscores the significant impacts of climate-induced tem-
perature increases and precipitation decreases on streamflow within the snow-dominant
UKRB. The findings reveal not only a reduction in average streamflow but also an increased
sensitivity to hydroclimatic variability, presenting complex challenges for water manage-
ment in these regions. Given these outcomes, water managers and policymakers must
prioritize the development and implementation of robust adaptation strategies. These
strategies should not only mitigate the adverse effects observed under various warming
scenarios but also enhance the resilience of water resource systems to accommodate in-
creasing variability. Continuing research into these dynamics will be crucial for informed
decision-making and effective management of water resources in the face of ongoing
climate change.
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Appendix A Metrics/Objectives for Calibrating VIC Monthly Streamflow

The automatic calibration is based on the multi-objective complex evolution (MOCOM-
UA) global optimization method [56]. Six metrics/objectives are selected to evaluate
model performance:

(1) Nash–Sutcliff model efficiency coefficient (NSE):

NSE = 1 − ∑T
t=1

(
Qt

m − Qt
o
)2

∑T
t=1

(
Qt

o − Qo
)2 (A1)

where Qo is the mean of observed discharges, and Qt
m and Qt

o are modeled and observed
discharge at time t (here, we use monthly time step), respectively.

(2) Nash–Sutcliffe efficiency with logarithmic values (Ln NSE)

To account for the effect of low flows in our evaluation of model performance, we use
the logarithmic value of Qt

m and Qt
o in Equation (A2).

(3) Relative bias in annual flow

RelBias =

∣∣∣∣Qm

Qo
− 1

∣∣∣∣ (A2)

Qm and Qo are the average annual modeled flow and observed flow, respectively.

https://1028f8d26f624cd18d39-my.sharepoint.com/:f:/g/personal/e254412_metu_edu_tr/EiCfsMbcdbpNvY6PQkXGKnsBguztRpGdIdMjeLF01vt7Vg?e=YZbbah
https://1028f8d26f624cd18d39-my.sharepoint.com/:f:/g/personal/e254412_metu_edu_tr/EiCfsMbcdbpNvY6PQkXGKnsBguztRpGdIdMjeLF01vt7Vg?e=YZbbah
https://vic.readthedocs.io/en/master/
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(4) Coefficient of determination r2

r2 =

 ∑T
t=1

(
Qt

o − Qo
)(

Qt
m − Qm

)√
∑T

t=1
(
Qt

o − Qo
)2
√

∑T
t=1

(
Qt

m − Qm
)2

2

(A3)

(5) Absolute average peak flow difference (AvgPeakDiff)

AvgPeakDiff =
∣∣∣∣Qpeak

o − Qpeak
m

∣∣∣∣ (A4)

The average peak flow is calculated from the average monthly flow (i.e., the maximum
value).

(6) Root mean square error (RMSE)

RMSE =

√
∑T

t=1(Qt
o − Qt

m)
2

T
(A5)

The multiple objectives of the calibration are to obtain the Pareto set, that is, solutions
that cannot be improved without degrading at least one of the other objectives. To standard-
ize the above matrices, the NSE, Ln NSE, and r2 metrics are multiplied by −1 (as greater
numbers are preferable for these metrics), and the standardized variable is minimized.

Appendix B Perturbations over Reference Climate Data

Tables A1 and A2 detail the adjustments made to temperature (T) and precipitation (P)
for each reference climate and the corresponding incremental changes used to calculate Qre f
and Qre f+∆ as per Equations (5) and (6) in the article. Following the same procedure used
for streamflow, we also evaluated the precipitation elasticity and temperature sensitivity of
snow water equivalent (SWE) and evapotranspiration (ET), denoted as εSWE and εET as
well as SSWE and SET , respectively. This involved substituting Q in Equations (5) and (6) in
the article with SWE or ET to compute these variables.

Table A1. Perturbations made to minimum and maximum temperature. VIC was run for each of these
reference climates for increments of both 0 ◦C and 0.1 ◦C. Running VIC for these incremental changes
allowed for an assessment of streamflow sensitivity to temperature for each of the referenceclimates.

Temperature Perturbations
for Each Reference Climate

Tmin and Tmax
Reference Climate

Incremental Change
(Tmin and Tmax)

0 ◦C same with obs. obs. +0.1 ◦C
0.5 ◦C Obs. +0.5 ◦C obs. +0.5 ◦C + 0.1 ◦C
1 ◦C Obs. +1 ◦C obs. +1 ◦C + 0.1 ◦C

1.5 ◦C Obs. +1.5 ◦C obs. +1.5 ◦C + 0.1 ◦C

Table A2. Perturbations made to precipitation. VIC was run for each of these reference climates
for increments of both 0% and 0.1%. Running VIC for these incremental changes allowed for an
assessment of streamflow elasticity to precipitation for each of the reference climates.

Precipitation Perturbations
for Each Reference Climate

Precipitation
Reference Climate Incremental Change (Prec.)

100% same with obs. Obs. × 101%
70% 70% × obs. Obs. × 71%
80% 80% × obs. Obs. × 81%
90% 90% × obs. Obs. × 91%

110% 110% × obs. Obs. × 111%
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