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Abstract: Pulsed laser deposition (PLD) is a simple and extremely versatile technique to grow thin
films and nanomaterials from a wide variety of materials. Compared to traditional fabrication
methods, PLD is a clean physical vapour deposition approach that avoids complicated chemical
reactions and by-products, achieving a precise stochiometric transfer of the target material onto the
substrate and providing control over the film thickness. Halide perovskite materials have attracted
extensive attention due to their excellent photoelectric and photovoltaic properties. In this paper, we
present an overview of the fundamental and practical aspects of PLD. The properties and preparation
methods of the halide perovskite materials are briefly discussed. Finally, we will elaborate on
recent research on the preparation of perovskite solar cells by PLD, summarize the advantages and
disadvantages of the PLD preparation, and prospect the all-vacuum PLD-grown solar cells in a full
solar cell structure.

Keywords: pulsed laser deposition; perovskite solar cells; photoelectric devices

1. Introduction to PLD
1.1. Background and Developments

In recent years, the application of pulsed laser deposition (PLD) in thin film preparation
has garnered significant attention due to the maturing of pulsed laser technology. The
unique capability of pulsed lasers to deliver high peak energy in extremely short durations
enables the ejection of a diverse array of complex micro and nanoparticles. These particles
are sputtered to generate a plasma when the target material is ablated. This plasma then
undergoes directional expansion towards the substrate, either in a vacuum or within a
background gas environment, ultimately forming a layer on the substrate. Consequently,
PLD technology facilitates the deposition of thin films with precise compositions and
tailored micro or nanostructures onto substrates. The evolution of PLD technology has
been closely tied to the progress in laser technology and an in-depth understanding of the
laser deposition mechanism. Since 1965, when Smith et al. [1] first utilized ruby lasers to
deposit semiconductor and dielectric thin films, people have been exploring the application
of PLD technology. In 1987, researchers at Bell Laboratories used PLD technology to prepare
Y-Ba-Cu-O films with high-temperature superconducting properties [2], and since then,
PLD technology has begun to be emphasized and developed vigorously. Nowadays, PLD
technology has become one of the most important thin film preparation technologies [3].

Compared to other plasma-assisted deposition techniques like plasma spraying or
plasma-enhanced chemical vapour deposition, Pulsed Laser Deposition (PLD) emerges
as a straightforward, adaptable, swift, and cost-efficient method for crafting high-quality
structures from a diverse array of materials [4]. The fabrication of thin films via Pulsed Laser
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Deposition (PLD) technology offers remarkable control and customization capabilities [5].
Adjusting the laser energy density allows for precise control over the particle size in
plasma plumes and hence controls the roughness of the film. Modifying the pressure
of the background gas enables the manipulation of the film’s density, morphology, and
the incorporation of dopants from the background gas. The background gas changes the
kinetic energies of the arriving species to the substrate, and can be employed to incorporate
elements such as O, C or N to create oxide, carbide or nitride thin films, respectively. By
selecting specific types of background gases, one can govern the interactions between the
plasma and the gas molecules during the deposition process. Furthermore, it is possible to
dictate the crystalline structure and orientation of the film by choosing different substrate
materials, their lattice orientations, and adjusting the substrate temperature, enabling
the creation of various crystalline forms such as monocrystalline [6], polycrystalline [7],
and amorphous [8] structures. The angle of deposition can also be adjusted to guide the
growth of nanostructures like nanopillars and nanowires [9]. Moreover, PLD is capable of
depositing films at room temperature [10], enhancing its versatility. Consequently, PLD
technology presents significant advantages in the realm of thin film preparation.

Over the past decade, the forefront of research in this domain has predominantly cen-
tered on the fabrication and application of thin film materials. From an application perspec-
tive, these materials span a wide array of fields, including optoelectronics, sensors, biology,
superconductivity [11], tribology, catalysis, and electronic packaging, among others. In
terms of material forms, the research encompasses a diverse range, from zero-dimensional
quantum dot [12] doping to one-dimensional nanowires or rods, two-dimensional thin
films [13], and even three-dimensional thick films [14]. Regarding the types of materi-
als, the focus has mainly been on metal thin films, alloy thin films [15], carbon-based
thin films [16], compound thin films, and composite film [17], showcasing that thin film
materials fabricated using Pulsed Laser Deposition technology encompass a vast and
diverse system.

1.2. Working Princple

A PLD system consists of a vacuum chamber with at least one window that is transpar-
ent to the incident laser wavelength. Within the vacuum chamber, two main components
must be present: the target and the substrate holder. The diameter of the target usually
does not exceed 25 mm. These two components are separated by a predefined gap so that
the surface of the target faces the substrate holder. A laser is used to ablate the target,
creating a plasma that expands toward the substrate in the form of what is commonly
referred to as a “plasma column”. This plasma corresponds to energetic substances, which
are deposited on the substrate and form a thin film [18]. The area of the target ablated by
the laser, commonly referred to as spot size, correlates to the number of removed species
per pulse. Spot size is generally either square or rectangular, with an approximate area of a
few square millimeters.

The physical process of PLD can be divided into laser–target interaction, plasma spatial
evolution, and deposition of sputtered material on the substrate surface. An illustration of
the pulsed laser deposition method is displayed in Figure 1. The laser–target interaction in-
volves high-energy transient interactions between pulsed lasers with different wavelengths
and pulse widths and various types of targets. This interaction is governed by physical
theories including the heat conduction model, the dual-temperature model [19], and the
Coulomb explosion model [20], among others. The spatial evolution of plasma is a complex
kinetic process. It is particularly noteworthy that within the plasma, there exists a region
layer with a thickness merely equivalent to a few gas molecules’ mean free path. When
the laser ablates the target material, the particle density ejected from the target surface can
reach 1016 to 1027 cm−3. In this region, close to the target surface, an extensive collision
among particles of such high density occurs, leading to the rapid adjustment, redistribution,
and convergence of velocities of particles with varying energies within a very short period.
The existence of the Knudsen layer is the fundamental reason for the compositional fidelity
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of PLD, ensuring that the composition of the deposited film remains consistent with that of
the target material. The plume generated by the pulsed laser is highly directional, and the
density and speed of the particles in all directions in space are different; these will affect
the uniformity of the film. Therefore, the PLD process for the preparation of large-area
films requires further optimization of the deposition parameters. The spatial distribution
of matter in the plasma typically follows θ; the normalized distribution function Z(θ) is
defined by Equation (1):

Z(θ)=
(n + 1)

2π
θ (1)

Here, θ refers to the angle relative to the normal direction, and the value of n, which is
related to the type of target material, ranges approximately from 4 to 11 [21]. The uneven
spatial distribution of matter within the plasma makes the large-area uniformity of Pulsed
Laser Deposition a challenge. Finally, when the sputtered material reaches the substrate
surface, factors such as the properties and temperature of the substrate directly influence
the adsorption, nucleation, and growth on the substrate, thus affecting the structure and
morphology of the final deposited layer.
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2. Halide Perovskite Materials
2.1. Structure and Property

Perovskite structure materials have gained widespread attention in recent years due
to their high light absorption coefficient, long carrier lifetime, low cost, simple fabrication
process, and scalability [22–25]. Perovskite materials primarily refer to a category of materi-
als composed of cations, metal cations, and halide ions, featuring a CaTiO3-type crystal
structure [26] as shown in Figure 2, with the general formula ABX3. Herein, ‘A’ represents
a cation, such as organic cations methylammonium (CH3NH3

+, MA+) or formamidinium
(HC(NH2)2+, FA+), and metal cations like cesium (Cs+) or rubidium (Rb+); ‘B’ typically
denotes a divalent metal cation, such as lead ion (Pb2+) or tin ion (Sn2+); ‘X’ stands for a
halide anion, including chloride (Cl−), bromide (Br−), or iodide (I−) [27]. Organic chalco-
genides and inorganic perovskite materials are defined according to the classification of
A cations into organic and inorganic cations, and their main representative materials are
CH3NH3PbI3 and CsPbBr3, respectively. Six halide anions X− and one metal ion B2+ form
an octahedron [BX6]4−, with B2+ located at the center of the octahedron [BX6]4−, and X−

positioned at the vertices of the octahedron [BX6]4−. These octahedra share vertices to
extend into a three-dimensional spatial structure, with A+ situated at the center formed by
four octahedra. Consequently, the stability and degree of deformation of the perovskite
structure can be predicted through the tolerance factor t and the octahedral factor µ [28].
These parameters, t and µ, are calculated using Equations (2) and (3), respectively.

t =
rA + rX√
2(rB + rX)

(2)
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µ =
rB
rX

(3)

Here, rA, rM, and rX represent the ionic radii of A+, B2+, and X− ions, respectively, in
the perovskite structure. The ideal perovskite structure is characterized by a tolerance factor
t that approaches unity. When the tolerance factor satisfies the condition of 0.8 ≤ t ≤ 1, the
perovskite can maintain a stable cubic crystallographic structure. The octahedral factor µ
can be utilized to evaluate the potential formation of a stable regular octahedral [BX6]4−

structure. A stable octahedral geometry can be formed when µ satisfies the condition of
0.414 ≤ µ ≤ 0.592 [29].
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As it is a direct bandgap semiconductor, perovskite can control spectral tuning by
substitution or mixing of halide components and cations. The luminous wavelength
ranges from 390 nm to 790 nm and can be extended to 820 nm by mixing methyl and
formamidine [31].

2.2. Preparation of Perovskites

In order to fabricate high-performance optoelectronic devices based on perovskite thin-
film structures, it is important to deposit the absorber layer controllably onto a uniformly
covered thin film. It is widely believed that the performance of the devices largely relies
on the fabrication methods of perovskite thin films [32–36]. So far, solution processing
and vapour deposition methods have been extensively employed for the fabrication of
perovskite thin films. Both of these methods have produced efficient solar cells and other
optoelectronic devices [37]. The solution method (spin-coating) is simple, inexpensive,
and is suitable for large-scale preparation of thin films. However, the quality of films
prepared by spin-coating is often not as good as films prepared by PLD due to factors
such as rotation speed and coating concentration. In view of the convenience of adding
some additives/passivators to the solution precursor of the spin-coating method to reduce
surface defects and improve the film quality, the solution spin-coating method is widely
used in the laboratory for the preparation of perovskite solar cells.

2.2.1. Solution Deposition Method

In the solution deposition method, the precursors are initially mixed in a solvent
under ambient conditions. The resulting thin films can be deposited using techniques
such as spinning coating [38–40], knife coating [41], spray coating [42,43], and printing
methods [44]. Solution deposition offers ease of operation and presents several advantages.

In earlier studies, perovskite thin films were primarily deposited using the one-step
spin-coating method, as shown in Figure 3. Actually, thin films deposited by solution
deposition often exhibit low coverage, small grain size, and high surface roughness, leading
to poor device performance. In the one-step method, the precursor materials BX2 and AX
are dissolved in a polar solvent such as N,N-dimethylformamide (DMF) and dimethyl
sulfoxide (DMSO) in specific proportions. The mixed solvent is then deposited onto a
substrate through spin-coating, allowing for rapid solvent evaporation. During the solvent
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evaporation process, perovskite crystallization occurs, ultimately resulting in the formation
of a perovskite thin film on the substrate. Controlling the rapid crystallization of perovskite
films during solvent evaporation is challenging in the one-step method. It is difficult to
control the quick crystallization of perovskite films during solvent evaporation in the one-
step method. Extensive pin-holes in perovskite thin films result in poor device performance
and reproducibility.
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Burschka et al. [32] introduced an enhanced technique, commonly known as the two-
step method, as shown in Figure 3, aimed at enhancing the coverage of perovskite films. In
this approach, BX2 and AX are dissolved in separate solvents. Initially, lead iodide (PbI2) is
incorporated into TiO2 nanopores via spin-coating. Subsequently, the TiO2/PbI2 composite
film is immersed in a solution of CH3NH3I in 2-propanol. Ultimately, a high-quality dark
brown thin film of CH3NH3PbI3 is formed.

2.2.2. Vapour Deposition Method

In contrast, the vapour deposition method enables the uniform and high coverage
of perovskite thin films. When compared to solution-based methods, vapour deposition
results in thin films with a uniform, smooth, and dense surface, exhibiting minimal pin-holes.
Consequently, this enhances the crystallinity of perovskite thin films and device performance.

The vacuum processing technology is generally divided into two major categories,
physical vapour deposition (PVD) and chemical vapour deposition (CVD), including co-
evaporation [47,48], sequential evaporation [49], and double-layer evaporation [50]. There
are also a few methods combining the solution and vacuum processes [51].

2.3. Application in Photoelectric Devices

Over the past decades, direct band gap inorganic semiconductors have been exten-
sively researched for their potential in high-efficiency optoelectronic devices. Meanwhile,
the development of organic–inorganic hybrid perovskites has demonstrated unique prop-
erties, including strong photoluminescent quantum yields, long-range electron-hole diffu-
sion lengths, and low nonradiative recombination rates. Consequently, perovskites have
emerged as promising candidates for light-emitting devices. The rapid progress achieved
in perovskite solar cells in recent years has served as an inspiration to explore the appli-
cation of perovskites in other optoelectronic devices, including light-emitting diodes [52],
lasers [53,54], and photodetectors [55].
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3. PLD Preparation of Perovskite Solar Cells

Perovskite solar cells (PSCs) are third-generation solar cells that utilize organic–
inorganic hybrid metal halide perovskite semiconductors as the absorbing material to
directly convert light energy into electrical energy through the photovoltaic effect. The
device structure can be mainly divided into two categories: mesoporous structures and
planar structures. Planar structures can be divided into n-i-p (regular) type and p-i-n
(inverted) type, as shown in Figure 4.
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PSCs typically consists of six main components: transparent conductive glass, electron
transport layer, mesoporous layer, perovskite layer, hole transport layer, and metal electrode.
In most cases, FTO glass or ITO glass is used as the transparent conductive glass and
serves as the cathode in the device. The electron transport layer is typically an n-type
semiconductor material, such as SnO2, TiO2 or ZnO, which facilitates electron transport
and blocks hole diffusion [57–60]. The mesoporous layer, composed of materials like TiO2
or A12O3, acts as a support framework for the perovskite layer, enhancing the contact
area and improving performance. The perovskite layer consists of organic–inorganic
perovskite materials, such as MAPbX3 and CsPbX3. The hole transport layer is selected
as a p-type semiconductor and can be either an organic material like Spiro-OMeTAD or
PTAA, or an inorganic material like NiOx [61]. Commonly used metal materials for PSC
electrodes include Al, Ag, and Al, while non-metal materials such as conductive carbon are
also employed.

Pulsed laser deposition (PLD) is a physical vapour deposition technique (PVD) widely
used to grow oxide perovskites, which allows conformal growth of films without damaging
the underlayers, making this technique highly attractive for full solar cell devices. Different
from conventional solution-based processes that dissolve halide salt precursors in organic
solvents like dimethylformamide (DMF) or dimethyl sulfoxide (DMSO), PLD requires a
solid target containing the desired material. This target can be prepared through either
wet chemistry [62] or dry mechanochemical synthesis (MCS) [63]. Unlike wet chemistry,
MCS is not constrained by the incompatible solubility of halide salt precursors. However,
one major challenge in the perovskite film preparation by PLD is the precise control of
the stoichiometry. Due to the property of the easily vaporizable (organic) and not easily
vaporizable (inorganic) components of the hybrid material, targets prepared according to
the original stoichiometric ratios usually do not yield the expected thin films. Researchers
have made great efforts in film preparation by varying the different deposition parameters,
among others, deposition pressure, laser spot size, and substrate type. Table 1 summarizes
the findings from the literature.
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Table 1. Summary of the device structure and photovoltaic parameters of PLD-PSCs.

Device Structure Voc (V) Jsc (mA·cm−2) FF PCE (%) Ref.

ITO/ZnO/PLD-MAPbI3−xClx/spiro-OMeTAD/Au 0.97 11.08 67.7 7.66 [64]
FTO/TiO2/PLD-MAPbBr3/spiro-OMeTAD/Au 0.98 20.13 54 10.9 [65]

ITO/SnO2/PCBM/PLD-MA0.55FA0.45PbI3/spiro-OMeTAD/Au 1.0 19.9 70.5 14.0 [66]
FTO/c-TiO2/m-TiO2/PLD-CsPbBr3/spiro-OMeTAD/Ag 1.37 6.41 72 6.32 [67]
ITO/PLD-SnOx/C60/MAPbI3/TaTm/TPBi/MoO3/Ag 1.11 21.4 77 18.1 [68]

FTO/PLD-TiO2/FA0.75MA0.25PbI2.5Br0.5/spiro-OMeTAD/Au 1.08 21.8 72 17 [69]
FTO/PLD-c-TiO2/m-TiO2/MAPbI3/spiro-OMeTAD/Ag 1.0 21.83 63.98 13.95 [60]

FTO/c-TiO2/m-TiO2/PLD-CsPbBr3/PLD-NiOx/Ag 1.38 6.70 59.24 5.47 [70]
FTO/PLD-NiOx/FA0.2MA0.8PbI3−xClx/PCBM/RhB101/LiF/Ag 1.11 23.17 79.1 20.41 [71]

3.1. Hybrid Perovskite Layer

Bansode U. et al. [64] successfully prepared high-quality MAPbI3 films by off-axis
pulsed laser deposition and the conversion efficiency of perovskite solar cell prepared
at room temperature is about 7.7%, as shown in Figure 5a, proving the possibility of
the PLD technique for achieving room-temperature growth of high-quality thin films of
hybrid perovskites. Pulses of an excimer laser (λ = 248 nm; energy density: 0.3 J/cm2;
pulse rep rate: 5 Hz) were made incident on the target held in a vacuum chamber held
at 10−6 Torr. For a ratio of PbI2:MAI = 1:4 mol in the target, the off-axis grown film gives
near-perfect stoichiometry of the perovskite phase, as shown in Figure 5b. Furthermore,
Bansode U. et al. [65] used conventional on-aixs PLD to deposit MAPbBr3 thin films and
prepare planar heterojunction solar cells with the highest conversion efficiency, reaching
10.9%, as shown in Figure 5c. The pulsed laser deposition was carried out using a KrF
excimer laser (λ = 248 nm, energy density 0.3 J/cm2, pulse rep rate 5 Hz, and substrate tem-
perature 100 ◦C, with a target-substrate distance of 5 cm). Bansode U. et al. demonstrated
by increasing the inorganic–organic composition (PbBr2:MABr) in the target further to 1:12
along with the use of a mixture of argon and hydrogen (90%:10%) for momentum softening
of the generated radical/ions in the forward-directed plasma plume, as shown in Figure 5d;
they achieved a perfect highly oriented (110) MAPbBr3 film with good stoichiometry.
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Figure 5. (a) J-V curve for perovskite solar cell with forward and reverse scans; (b) schematic
presentation and photograph of substrate arrangement for “on-axis” and “off-axis” deposition by
pulsed laser deposition (PLD) [64]; (c) schematic diagram of the solar cell architecture; (d) schematic
diagram of the pulsed laser deposition configuration and the process [65]; (e) X-ray diffraction (XRD)
patterns of hybrid perovskites films; (f) optical properties of the optimized PLD-grown MAPbI3
films [66].
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Unlike other PVD methods such as co-evaporation that requires the use of two sources
to deposit MAPbI3, Tatiana Soto-Montero et al. [66] achieved single-source, single-step
deposition of MA1-xFAxPbI3 thin films by pulsed laser deposition with tunable stoichiomet-
ric ratios and produced n-i-p solar cells with an efficiency of 14%, as shown in Figure 5e.
Apart from common basic parameters of the deposition process (λ = 248 nm, energy den-
sity 0.3 J/cm2, pulse rep rate 5 Hz, with a target-substrate distance of 60 mm), Tatiana
Soto-Montero et al. detailed the relationship between the laser spot size and instanta-
neous growth speed (per pulse) by changing the spot size from 1.0 to 2.5 mm2. When
using 2.5 mm2 spot size, it is possible to grow 500 nm thick films of MAPbI3 in 36 min,
approximately four times faster than other well-known PVD techniques. To control the
deposition pressure during PLD, an inert gas (Ar) is introduced in the chamber. The main
function of this gas is to reduce the kinetic energy of the particles in the plasma plume,
acting as a moderator of the arriving species as well as promoting thermalization of the
ablated species.

From the above research, we can find that the target stoichiometry and the deposition
pressure plays a key role in controlling the film composition, microstructure, and optical
properties. At high pressures, the thermalization of particles allows nearly equal transfer
(smaller plasma plume size). In contrast, the scattering of light elements is more likely to
occur at low pressures (fewer organic species arriving at the substrate).

3.2. Inorganic Perovskite Layer

Organic–inorganic hybrid halide perovskite materials are easily degraded in humid
and high-temperature environments. Therefore, cesium-based inorganic halide perovskites
have been studied intensively to substitute the organic–inorganic hybrid perovskites in PSCs,
which can fundamentally solve the thermal and humid instability [72–74]. Jin X. et al. [75]
investigated the preparation of inorganic perovskite CsPbIxBr3-x (x = 0, 1, 2, 3) thin films
based on a solid-phase reaction. The pulsed laser deposition was carried out using a KrF
excimer laser (λ = 248 nm, energy 120 mJ, pulse rep rate 5 Hz, and substrate temperature
330 ◦C, with a target-substrate distance of 5 cm). The halide element ratio x (x = 0, 1, 2, 3) of
CsPbIxBr3−x thin films can be changed by selecting two PLD targets, as shown in Figure 6a.
Two solid-phase precursor thin films are deposited with a suitable thickness ratio and then
undergo a high-temperature reaction without any by-products or gas volatilization. The
emission peak positions coincide well with the absorption edges, in Figure 6b, indicating
that the thin films have good monochromatism and an excellent fluorescence performance.
It is worth noting that by increasing the distance between the target and substrate, Jin et al.
have successfully prepared 5 cm × 5 cm large-area thin films. This provides a reference for
PLD application to fabricating large-area perovskite solar cells.

Wang H. et al. [67] prepared the target from CsPbBr3 single crystal powders, which
were grown by an inverse temperature crystallization (ITC) method. The CsPbBr3 thin film
prepared by PLD displays good stability in a high-humidity environment. Similarly, the
parameters of laser deposition (λ = 248 nm, energy 100 mJ, pulse rep rate 5 Hz, and substrate
temperature of 320 ◦C, with a target-substrate distance of 5 cm) have minor adjustments
compared with CsPbIxBr3-x (x = 0, 1, 2, 3) mentioned above. Generally, the thickness of the
film deposited by PLD is determined by the number of laser pulses. As the thickness of
the CsPbBr3 layer is in linear dependence on the laser pulse number, Wang H. et al. [73]
have further studied the influence of CsPbBr3 film thickness on PSCs’ device performances.
The perovskite solar cells (FTO/c-TiO2/m-TiO2/CsPbBr3/Spiro-OmeTAD) achieved the
highest power conversion efficiency of 6.3%, as shown in Figure 6c.

Compared with CsPbBr3, CsPbI3 possesses the most suitable band gap (1.73 eV)
for photovoltaic device applications [76]. However, its cubic structure (black α-phase)
degrades rapidly to the nonphotoactive orthorhombic phase (yellow δ-phase) with a larger
band gap (3.0 eV) under ambient conditions [77,78]. Furthermore, the common chemical
solution preparation techniques for CsPbI3 are still hard to obtain large areas, uniform
and compact CsPbI3 thin films with fewer defects. Zhou X. et al. [79] prepared the CsPbI3



Inorganics 2024, 12, 128 9 of 16

thin films with black orthorhombic phase on the surface of Si(100) by PLD employing a
KrF excimer laser (λ = 248 nm, energy 250 mJ, pulse rep rate 5 Hz). The cylindrical CsPbI3
target was fabricated with uniformly mixed PbI2 and CsI powder (mole ratio, 1:1) under
the mechanical pressure of 40 Mpa.
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3.3. Electron Transport Layers

Electron transport layers (ETL) based on tin(IV) oxide (SnO2) are recurrently employed
in perovskite solar cells (PSCs) by many deposition techniques. Pulsed laser deposition
(PLD) offers a few advantages for the fabrication of such layers, such as being compatible
with large scale, patternable, and allowing deposition at fast rates.

Pulsed laser deposition (PLD) has already been adopted as a low damage deposition
technique of transparent conducting oxides on top of sensitive organic charge transport
layers in optoelectronic devices. Zanoni K. P. S. et al. [68] used a PLD tool equipped with a
droplet trap to minimize the number of excess particles reaching the substrate and obtained
surfaces with very low roughness, the results are shown in Figure 7. The SnOx deposition
conditions were optimized by using a constant laser fluence of 1.5−1.6 J/cm2, with a laser
frequency set at 25 Hz. The substrates were kept at room temperature during the whole
PLD process. The number of oxygen vacancies in the film can be affected by changing the
concentration of oxygen in the background gas. Zanoni K. P. S.’s team finally obtained the
solar cell in the n-i-p configuration employing methylammonium lead iodide perovskite as
the absorber layer with power conversion efficiencies exceeding 18%.

Among the metal oxides reported as ETLs in planar PSCs, like SnO2, ZnO and organic
compounds, TiO2 prevails in most of the highly efficient planar or mesoporous PSCs.
Mazumdar, S. et al. [69] studied TiO2 films deposited on FTO substrates by PLD under
various conditions and utilized as the ETL of PSCs. The best performing one is deposited at
room temperature and yields in a PSC with 17% efficiency. An excimer laser with 248 nm
wavelength is subjected to a TiO2 target (99.99% pure), with the energy of 42 mJ/pulse
and the laser frequency set at 10 Hz. Through optimizing PLD conditions (substrate



Inorganics 2024, 12, 128 10 of 16

temperature, target-substrate distances), the enhanced crystallinity of the epitaxial films
improves photogenerated charge transport while maintaining sufficient porosity.
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3.4. Hole Transport Layers

The hydrophilism and acidity of some organic HTLs are harmful to the perovskite
layer, often resulting in poor device stability, which is a major concern for PSCs. Alterna-
tively, some inorganic semiconductors such as NiOx [70], CuSCN [80], and CuOx films are
considered as suitable candidates for achieving stable HTLs for inverted PSCs. Among
them, NiOx thin films have attracted particular attention as HTLs for PSCs due to their high
optical transmittance, high conductivity, good chemical stability, good electron blocking
capability, and good alignment of valence band maximum (VBM) with perovskite layers.
Although spin-coated Cu-doped NiOx film used as HTLs for PSCs had improved the
efficiency, the solution-based processes generally suffered from poor reproducibility.

Feng M. et al. [71] systematically studied the optical and electrical properties of Cu-
doped NiOx films and the photovoltaic performance of PSCs with NiOx HTL. Cu-doped
NiOx with different doping concentrations that varied from 0% to 5% were successfully
prepared by a high-temperature solid-state reaction. To be specific, for the Cu-doped
NiOx target, the Cu2O powder (mole ratio Cu/Ni = 1%, 3%, and 5%) was mixed with
NiO powder for adequate grinding in mortar, then pressed under a pressure of 30 MPa
for 0.5 h, and was sintered in a furnace at 900 ◦C for 48 h under an oxygen-rich atmo-
sphere. The laser energy was set to 300 mJ with a 5 Hz pulse frequency, and the distance
between the target and substrate was about 5 cm. The deposition was at room temperature,
and oxygen partial pressure controlled at 11.0 Pa was favourable to form intrinsic p-type
NiOx films under an oxygen-rich atmosphere. Furthermore, inverted planar PSCs with
Ag/LiF/RhB101/PCBM/FA0.2MA0.8PbI3−xClx/NiOx (Cu:NiOx)/FTO/glass configura-
tions were fabricated. Under the optimal conditions, PSCs with 3% Cu:NiOx films as HTLs
exhibited a current density and PCE of 23.17 mA/cm2 and 20.41%, as shown in Figure 8a,
which were much higher than those of the PSCs with undoped NiOx HTLs, and it is the
best efficiency among the PSCs with physical vapour-deposited NiOx HTLs.

In most of the research, the PLD technique has been used to prepare only one of the
transport layers of perovskite solar cells. Song, Q. et al. [70] tried to fabricate the solar
cells by depositing the perovskite layer (CsPbBr3) and the hole transport layer (NiOx) in
sequence in the chamber. After exploring the overall annealing temperature on the device
performance, they achieved all-inorganic CsPbBr3. PSCs specifically can maintain 95% of
initial efficiency for 1200 h under the condition of 85 ◦C and 30% relative humidity with a
champion efficiency of 5.47%. So far, the maximum efficiency of CsPbBr3 PSCs has reached
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11.08% [81]. There is a significant gap compared to the maximum performance fabricated
by the solution method.
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3.5. Surface Plasmons in PSCs

In order to enhance the efficiency of perovskite solar cells, various approaches have
been developed to promote light-harvesting capabilities or to tailor carrier transport kinetics
for maximized charge collection. Metallic nanoparticles (MNPs) with plasmonic properties,
including Au, Ag, Al, and Cu, are widely employed in various photoelectric devices. This is
attributed to their exceptional optical and near-field electromagnetic properties stemming
from the localized surface plasmon resonance (LSPR) effects of MNPs [71,80–83]. The light
excites the electrons at the fermi level of a plasmonic NP and raises it to the localized
surface plasmon energy level. From here, the hot electrons are transferred to the conduction
band of the semiconductor and increase the minority charge carriers in the semiconductor
(especially, in the active layers of solar) [84–86]. The specific mechanisms and magnitude
of plasmonic enhancement in PSCs are closely linked to the structure of PSCs. Optimal
selection of MNPs enhancers alongside thoughtful design of device structures is critical for
maximizing the LSPR effects in plasmonic PSCs [87,88].

Gezgin, S.Y. et al. [89] enhanced the conversion efficiency and photo current of
Si/CZTS solar cells by embedding gold nanoparticles in CZTS films. Au plasmonic NPs can
provide hot electron transfer to semi-conductor in which it is embedded as well as photon
absorption and photon scattering. Au nanoparticles were deposited at room temperature
by laser beam at energies of 26 mJ, 30 mJ, 32 mJ, and 36 mJ and it was determined that ideal
laser energy to be used for Au NPs to be embedded into CZTS films, as shown in Figure 9.
The characteristics and distribution of Au nanoparticles can be changed by adjusting the
laser energy during the preparation process using PLD. Si/CZTS solar cells with Au NPs
(by laser energy of 36 mJ) embedded into CZTS film achieved a better device performance
(Jsc = 24.43 mA/cm2, Voc = 300 mV, FF = 0.16 and η = 1.45%), as shown in Figure 9.
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ity and designability of growth parameters. Targets used in PLD techniques, unlike the 
solution method, are not constrained by the incompatible solubility of halide salt precur-
sors. Through summarizing recent scientific research work on the preparation of perov-
skite solar cells by pulsed laser deposition of the active layer, electron transport layer, and 
hole transport layer, we can see the advantages of pulsed laser deposition technology in 
obtaining high-quality thin films; of course, due to the limitations of vacuum technology, 
pulsed laser technology in the preparation of the PSCs’ cost is higher than the solution 
method. At present, the generally high-efficiency solar cells are obtained by the organic 
solution spin-coating method and interface engineering. For the application of PLD in 
perovskite solar cells, most of the research has focused on the preparation and optimiza-
tion of a particular one-transport layer (ETL/perovskite layer/HTL). Results show that 
PLD techniques do yield higher quality films while failing to achieve the highest efficiency 
of PSCs. One of the reasons is that the preparation of the organic–inorganic hybrid perov-
skite layer by PLD requires strict parameters (target component, deposition pressure, laser 
spot size, etc.) so that the PLD process is not as repeatable as solution methods. What is 
more, common optimization strategies applied in PSCs like additive engineering and in-
terface engineering are more suitable for solution methods, which limit the PLD technique 
from setting high-efficiency records. However, the application of solution methods like 
spin-coating is challenging for the integration into heterostructures such as monolithic 
tandem devices and large-area depositions. We hold a promising outlook for PLD prepar-
ing fully physical vapour-processed halide PSCs and optoelectronic devices. 
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The current mainstream approach of realizing plasmonic PSCs is solution spin-coating
method. MNPs are usually added to the perovskite layer precursor solution at a certain
concentration [90–92]. Not much research work has been carried out on PLD preparation
of MNPs as well as the application in perovskite solar cells. There is still a lot of room for
future research in this area.

4. Conclusions

This paper introduces the application of PLD technology in perovskite solar cells from
the deposition principle and development history of pulsed laser deposition technology.
After a brief introduction to the principle of perovskite solar cells, we compared two
mainstream methods for preparing perovskite solar cells: the solution method and the
physical meteorological deposition method. Generally, pulsed laser deposition technology
can obtain high-quality films with low defects by means of very good controllability
and designability of growth parameters. Targets used in PLD techniques, unlike the
solution method, are not constrained by the incompatible solubility of halide salt precursors.
Through summarizing recent scientific research work on the preparation of perovskite
solar cells by pulsed laser deposition of the active layer, electron transport layer, and
hole transport layer, we can see the advantages of pulsed laser deposition technology in
obtaining high-quality thin films; of course, due to the limitations of vacuum technology,
pulsed laser technology in the preparation of the PSCs’ cost is higher than the solution
method. At present, the generally high-efficiency solar cells are obtained by the organic
solution spin-coating method and interface engineering. For the application of PLD in
perovskite solar cells, most of the research has focused on the preparation and optimization
of a particular one-transport layer (ETL/perovskite layer/HTL). Results show that PLD
techniques do yield higher quality films while failing to achieve the highest efficiency of
PSCs. One of the reasons is that the preparation of the organic–inorganic hybrid perovskite
layer by PLD requires strict parameters (target component, deposition pressure, laser spot
size, etc.) so that the PLD process is not as repeatable as solution methods. What is more,
common optimization strategies applied in PSCs like additive engineering and interface
engineering are more suitable for solution methods, which limit the PLD technique from
setting high-efficiency records. However, the application of solution methods like spin-
coating is challenging for the integration into heterostructures such as monolithic tandem
devices and large-area depositions. We hold a promising outlook for PLD preparing fully
physical vapour-processed halide PSCs and optoelectronic devices.
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