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Abstract: Traditional working electrodes are not sufficient to realize the low detection limit and wide
detection range necessary for the detection of heavy metals. In this study, a microelectrode array
electrode was proposed using a design scheme based on microelectromechanical systems that was
optimized with finite element software. The working electrode adopted an innovative composite
structure to realize the integrated design of the working and counter electrodes, which improved
the system integration. Performance tests showed that the electrode realized the quantitative anal-
ysis of Cd(II), Pb(II), and Cu(II) with a low detection limit (0.1 µg/L) and a wide detection range
(0.1–3000 µg/L). The electrode successfully measured the lead and copper ion concentrations in
the Sanya River, including both seawater and freshwater environments. The experimental results
demonstrate that the electrode exhibits excellent adaptability to environmental conditions and can be
potentially applied for technical support in environmental monitoring and sewage treatment.

Keywords: microelectrode array electrode; heavy metal; detection; dissolved voltammetry

1. Introduction

Heavy metal pollution is a global environmental problem that poses a major threat to
human health and the safety and stability of marine ecosystems [1–3]. Heavy metals readily
accumulate in particulate matter and sediments through processes such as adsorption,
complexation, ion exchange, and precipitation. These heavy metal ions are released when
the water body is disturbed and can enter the food chain through bioconcentration and
biomagnification by phytoplankton and animals, ultimately posing a threat to human
health [4–6]. In recent years, with the rapid development of a modernized economy and
society, industrial wastewater and domestic sewage have been discharged directly or
through rivers into the sea, posing a great threat to the safety and stability of ecosystems.
These heavy metals are highly toxic and resistant to reduction and degradation, thus
becoming a major contributor to global environmental crises [7–10].

Dissolved voltammetry is currently the most widely used technique for the electro-
chemical analysis of trace metals and trace metal monitoring. The method can directly
measure the metal content of water samples in the presence of dissolved oxygen [11,12].
Electrode design is essential in improving the stability and accuracy of dissolved voltamme-
try detection. In recent years, many scholars have focused on the design and investigation
of new electrodes [13,14]. With the development of micromachining, microelectrodes have
become indispensable as working electrodes in electrochemical analysis [15,16]. Compared
with traditional large electrodes, microelectrodes have many advantages, including a rela-
tively high current density, fast mass transfer rate, low time constant, high signal-to-noise
ratio, and low IR drop [17–19]. In addition, due to the smaller size of microelectrodes, a
smaller sample volume is required, eliminating the need for bulky or complex pretreatment
and injection systems for actual detection [20].

Although microelectrodes have many advantages, the current value of a single mi-
croelectrode is small, which necessitates a detection system with high accuracy. When the
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detection accuracy is insufficient, multiple microelectrodes can usually be connected in
parallel or formed into arrays to increase the current strength and improve the detection
accuracy [21]. By connecting multiple microelectrodes in parallel, the current values can
be superimposed, increasing the total current strength and improving the stability and
reliability of the signal. This method addresses the higher detection accuracy needed while
expanding the application range of the microelectrodes [22].

However, most currently available electrode designs suffer from a narrow detection
range or low sensitivity. For use in the detection of complex and variable environmental
samples, the electrode would need to provide high sensitivity over a wide detection range.

By designing microelectrodes with innovative structures, the detection range and
sensitivity of dissolution voltammetry tests can be simultaneously improved, providing
a new option for the monitoring and control of heavy metal pollution. Performance tests
showed that the developed electrode realized the quantitative analysis of Pb(II), and Cu(II)
with a low detection limit (0.1 µg/L) and a wide detection range (0.1–3000 µg/L). The
electrode successfully measured the lead and copper ion concentrations in the Sanya
River, including both seawater and freshwater environments. The experimental results
demonstrate that the electrode exhibits excellent adaptability to environmental conditions
and can potentially be applied for technical support in environmental monitoring and
sewage treatment.

2. Materials and Methods
2.1. Design Calculations for Electrodes

The measurement loop mainly focused on the polarization currents of the working
and counter electrode loops [23,24]. Thus, a composite electrode structure consisting of
working and counter electrodes was used in this study to investigate the electric field and
current density distributions of the electrodes [25].

The electrode consisted of a microporous array working electrode, a counter electrode,
a working electrode junction pad, and a counter electrode junction pad (Figure 1a,b). The
two junction pads were connected by a wire to the control circuit board. As shown in
Figure 1, the microelectrode array electrode was designed in square (a) and circular
(b) arrangements.

For the square electrode (Figure 1a), the working and counter electrodes of the microp-
orous arrays were rectangular. The working electrode had 300·5 µm microporous holes,
and the counter electrode was located on one side with a width of 0.15 mm.

The circular arrangement of the electrode consisted of microporous working electrodes
arranged in a circle (Figure 1b), while the counter electrode formed a ring around the
working electrodes. The working electrodes contained 300·5 µm micropores, and the width
of the counter electrode ring was 0.15 mm.

To compare the properties of both electrode structures, the Comsol Multiphysics
6.1 finite element analysis software was used to study their electric field strength and
current density distributions. In the simulation analysis, the effective area of the working
electrode was the same for both electrode structures, and a solution with the same dielectric
constant was selected. The same voltage (1 V for the working electrode and 0 V for the
counter electrode) was applied to the working and counter electrodes. The simulation
results of the two electrodes are shown in Figure 1c,d.

The use of a square electrode led to obvious changes in the distribution of the electric
field strength and current density in the solution (Figure 1c,d). A larger distribution of
the electric field strength and current density between the working and counter electrodes
with the same orientation and a smaller distribution farther away from the parallel relative
position was observed. This prevented a uniform and consistent electrocatalytic effect
for the test article measured on the working electrode. The circular electrode, in contrast,
had a more uniform and consistent distribution of the electric field strength and current
density in the solution, providing a more uniform and consistent electrocatalytic effect for
the objects measured on the working electrode, enabling a better measurement effect.
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2.2. Detailed Structural Design of the Microelectrode Array Electrode

After calculation and simulation calibration, a detailed structural design of the mi-
croelectrode array electrode was obtained (Figure 1e). The 200 µm Si base served as the
foundation for chip processing, following the direction indicated by the arrow from bottom
to top. A 200 nm SiO2 insulating layer was employed to isolate the connection between the
metal layer and the base, while a 20 nm Ti adhesive layer facilitated a smooth transition
between the metal and insulating layers. The electrochemical reaction layer of the chip
included a 200 nm Ir conductive layer. Etched with a microporous array working electrode,
the 200 nm SiO2 insulating layer defined the electrode area. Surrounding this working
electrode, an SU8 photoresist stop ring was applied to enclose it and protect against fouling,
while its interior was filled with gel.
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The number of microvias was 300, and all center-to-center spacings (d) were chosen
to satisfy the criterion of d = 23r (where r is the radius of the Ir microdisks) to prevent the
overlap of the diffusion layers [26]. A 200-µm-thick SU-8 layer was coated around the Ir
microdisk array using photolithography as a protective ring for the agarose gel antifouling
film. The use of a gel protective layer can prevent the electrode’s surface from becoming
contaminated and effectively extend its effective working time [25].

2.3. Processing of Composite Electrodes for Microelectrode Arrays

(1) A silicon wafer was selected as the substrate and cleaned until it reached the
processing standard.

(2) The SiO2 insulating layer was deposited using plasma-enhanced chemical vapor
deposition as the underlying insulating layer for the sensor.

(3) Using an ion sputtering apparatus, a 20 nm Ti adhesion layer and a 200 nm Ir electrode
layer were sequentially percolated on the substrate, using the substrate as a specimen.

(4) A SiO2 insulating layer was deposited using plasma-enhanced chemical vapor depo-
sition as an insulating layer for the sensor.

(5) A 150-µm-thick SU-8 photoresist ring was printed around the periphery of the micro-
porous array working electrode as a protective ring for the gel plating layer (Figure 2).

(6) Using a silicon knife, the wafer was cut to obtain individual electrode chips (Figure 3a).
(7) The gold wire was led out from the chip pad, press-soldered to the pad on the PCB,

and sealed with epoxy resin to complete the sensor package (Figure 3b).
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(Aptar, Switzerland). Stock standard solutions for the preparation of Cu, Pb, Cd, and
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Zn standard solutions were provided by the Center for National Standard Substances
(CRMs, Beijing, China). The experiments were conducted at room temperature and normal
pressure, and all experimental vessels were soaked in 5% HNO3 acid wash solution for 24 h,
rinsed with deionized water, and dried before use. A three-electrode system was connected
to the VA 797 voltammetric polarimeter, which consisted of a Ag/AgCl reference electrode
and the working and counter electrodes of the microelectrode array electrode.

2.5. Selection of Measurement Method

Square wave anodic stripping voltammetry (SWASV) was used for measurement, with
the core parameters set as follows (Table 1) [27].

Table 1. SWASV core parameter set.

Sampling Point Pretreatment

E (initial) −1200 to −800 mV

E (final) −100 to 0 mV

Pulse amplitude 25 mV

Step amplitude 8 mV

Frequency 15Hz

Preconc −1200 to −800 mV; t = 600 s

2.6. Electrode Modification

Before the electrodes were used, the microporous array area of the working electrode
was coated with a protective gel layer [28] and activated by immersion in pure water for 1
h and then in sodium nitrate for more than 3 h. The activated working electrode was plated
in a constant potential (−0.4 V) mercury plating solution with a coating time of t = 480 s
and set aside (Figure 4) [29].
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2.7. Sample Collection and Processing

In this study, a hand-thrown sampler (Figure 5) was used to select four sampling sites
along the Sanya River (Figure 6), and six 1 L samples were collected from each site at a depth
of 1 m in the surface layer. Samples collected at Sanya Bay, Nanbianhai Pier, Xinfengqiao,
and Fenghuangshuicheng, respectively, represented seawater, estuary, mangrove (at the
junction of freshwater and seawater), and upstream freshwater environments (Table 2).
After the water samples were collected, three 1 L samples were taken from each sampling
point and filtered through a 0.45 µm filter membrane, adjusted to pH 2 with nitric acid,
and kept away from light for 2 days to measure the concentration of total dissolved metal
elements according to the requirements of the GB 17378.4-2007 Specification for Marine
Monitoring Part 4: Seawater Analysis. Three additional 1 L samples from each sampling
location were filtered through a 0.45 µm membrane without the addition of acid, and the
concentrations of metal elements in the ionic state were measured.
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Table 2. Sampling points and sampling details.

Sampling Point Pretreatment

Sanya Bay filtration with acid 1 L × 3; filtration 1 L × 3

Nanbianhai Pier filtration with acid 1 L × 3; filtration 1 L × 3

Xinfengqiao filtration with acid 1 L × 3; filtration 1 L × 3

Fenghuangshuicheng filtration with acid 1 L × 3; filtration 1 L × 3
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3. Results and Discussion
3.1. Electrochemical Characterization

In stripping analysis, mercury (Hg) has a broad cathodic potential range, which results
in a high overvoltage against the hydrogen evolution reaction that ensures reliable and
repeatable measurements [30,31]. Additionally, the amalgamation capability of mercury
with various metals, along with its rapid electrode kinetics [32], further enhances its
suitability for this analytical method. Before using the electrodes, mercury film modification
was carried out, and the morphological changes on the surface of the working electrode
were observed by scanning electron microscopy (SEM). After the mercury film modification,
the surface of the microporous array working electrode formed a distinct raised structure
due to the accumulation of mercury on the surface. The mercury film modification also
changed the shape of the micropores from planar to hemispherical, which greatly increased
the surface area. This undoubtedly contributed to the significantly improved rate and
efficiency of electrochemical reactions (Figure 7a). After a period of testing, the mercury
film is no longer complete and gradually deteriorates, resulting in its detachment and the
leakage of the conductive metal layer. Consequently, the electrode cannot function properly,
necessitating the modification of the mercury film (Figure 7b).
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3.2. Electrode Detection Range

The study encompassed a comprehensive investigation into the simultaneous de-
tection ranges of Pb(II) and Cu(II) ions, employing the established standard addition
methodology. The experimental design utilized filtered coastal seawater as the matrix for
these analyses, reflecting real-world conditions. Square wave anodic stripping voltammetry
(SWASV) was selected as the electroanalytical technique due to its sensitivity and specificity
in detecting metal ions. A wide potential scanning range of −0.8 to −0.05 V was employed
to ensure the thorough coverage of potential peaks.

These concentrations included 0.1, 0.5, 1, 5, 50, 100, 250, 500, 750, 1000, 1250, 1500,
1750, 2000, and 3000 µg/L. Such a diverse concentration range was chosen to establish
the limits of detection and quantification for both Pb(II) and Cu(II) ions. The utilization
of filtered coastal seawater as the experimental medium was significant, This approach
allowed for a more realistic assessment of the method’s applicability in environmental
monitoring and analysis.

The resulting dissolution peaks observed at the various concentration levels, as de-
picted in Figure 8, provide a clear visualization of the method’s performance characteristics
across the specified concentration range. This detailed analysis enables a thorough un-
derstanding of the method’s sensitivity, selectivity, and quantitative capabilities in the
detection of Pb(II) and Cu(II) ions in coastal seawater environments.
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Figure 8. (a) Pb(II) and (c) Cu(II) dissolution peaks at different concentrations and linearization
results for (b) Pb(II) and (d) Cu(II).

The voltammetric curves for various ion concentrations, distinguished by different
colors, reveal distinctive peak current patterns in the linear scan. These results demonstrate
a clear linear relationship, showing a robust increase with the concentration of metal ions
(Figure 8). The experimental data obtained using the standard addition method for Pb(II)
and Cu(II) ions within the 0.1 to 3000 µg/L concentration range are visually depicted in
Figure 8.

The linear regression equation for Pb(II) is expressed as I = 0.0882C − 0.8914. This
equation displays a remarkably high correlation coefficient (R2) of 0.9998, indicating a
strong linear relationship between the peak current and Pb(II) concentration. Similarly, the
linear equation for Cu(II) is given as I = 0.0021C − 0.0237. This equation demonstrates a
substantial correlation coefficient (R2) of 0.9924, also indicating a strong linear association
between the peak current and Cu(II) concentration.

3.3. Electrode Repeatability Tests

The Cu(II) standard solution was added to the coastal seawater samples from Sanya
Bay, filtered through a 0.45 µm membrane, and the concentration was set at 2 µg/L.
The sample solutions were detected by SWASV, with a scanning potential range of −1.2
to −0.1 V. Ten consecutive measurements of the Cu(II) peak current (i.e., 57.12, 59.48,
61.92, 56.54, 60.19, 59.75, 57.03, 57.25, 58.79, and 61.20 nA) were recorded to evaluate the
reproducibility of the electrode. These Cu(II) voltammetric curves nearly overlapped,
demonstrating the consistency of the peak current measurements. The calculated relative
standard deviation (RSD) of the peak currents was 3.04%, indicating that the sensor chip
had very good reproducibility (Figure 9).
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3.4. Comparison of This Study with Other Literature

Compareing this study with other literature (Table 3), this microelectrode array was
meticulously engineered with a low detection limit (0.1 µg/L) and a wide detection range
(0.1–3000 µg/L).

Table 3. Comparison of reported electrodes and measurement methods.

Electrode Measurement
Method

Pb Detection
Range (µg/L)

Pb
Sensitivity
(nA/µg/L)

Pb Detection
Limit (µg/L)

Cu
Detection

Range (µg/L)

Cu
Sensitivity
(nA/µg/L)

Cu
Detection

Limit (µg/L)
Reference

Bi/AuNP-
SPCE DPV 1.00–150.00 0.48 0.03 1.00–150.00 0.48 0.03 [33]

RGO-
CSCS/PLL/GCE DPV 0.05–2.00 4.84 0.02 0.05–2.00 4.84 0.02 [34]

C60-CS/GCE DPV 1.04–1242.00 1.29 0.21 6.40–384.00 1.29 0.21 [35]

F-MWCNT SWV 5.80–6210.00 0.21 1.74 1.09–2016.00 0.21 1.74 [36]

GCE-BFS DPV 103.50–
16,560.00 0.15 17.39 32.00–

5120.00 0.15 17.39 [37]

ZFO/GCE DPV 20.70–414.00 0.56 1.06 6.40–64.00 0.56 1.06 [38]

MAE SWV 0.1–3000 4.31 0.01 0.1–3000 2.42 0.02 this study

Bi/AuNP-SPCE: screen-printed bismuth film and gold-nanoparticle-modified carbon electrode; RGO-
CS/PLL/GCE: reduced graphene oxide, chitosan, and polylysine nanocomposite; C60-CS/GCE: fullerene-and-
chitosan-modified glassy carbon electrode; F-MWCNT/Fe3O4/GCE: glassy carbon electrode modified with
fluorinated multiwalled carbon nanotubes and tetrakis iron oxide nanoparticles; GCE-BFS: glassy carbon electrode
modified with blast-furnace slag; ZFO/GCE: glassy carbon electrode modified with ZnFe2O4-nanoparticle-
modified glassy carbon electrode; GCE-BFS: blast-furnace-slag-modified glassy carbon electrode; ZFO/GCE:
ZnFe2O4-modified glassy carbon electrode; DPV: differential pulse voltammetry; SWV: square wave voltammetry.

3.5. Electrode Detection Performance

To evaluate the performance of the microelectrode array electrode, a sample of coastal
seawater from Sanya Bay, filtered through a 0.45 µm filter membrane, was tested by SWASV
with a scanning potential range of −1.2 to −0.1 V at a measurement frequency of 15 Hz [39].
Although the results showed that the electrode was capable of simultaneously measuring
four elements, i.e., Zn(II), Cd(II), Pb(II), and Cu(II), the measured value of Zn(II) was too
high to obtain the effective concentration. The quantitative calculation of the other three
metal elements was completed to obtain the effective concentrations. The linearity of
the electrode was tested via standard addition by measuring the concentrations of Cd(II),
Pb(II), and Cu(II) ions in triplicate at 1 µg/L increments and averaging the values [40]. The
corresponding peak current curves were obtained, as shown in Figure 8a.

By analyzing the standard curves, the sensitivity of the electrode toward Cd(II), Pb(II),
and Cu(II) was, respectively, calculated as 43.62, 4.31, and 2.42 nA/(µg·L−1), with linear
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correlation coefficients (R2) of 0.9964, 0.9992, and 0.9903 (Figure 10). The sensitivity of Pb(II)
and Cu(II) was calculated as 4.31 and 2.42 nA/(µg·L−1), while the limits of detection were
0.01 and 0.02 µg·L−1.
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3.6. Measurement of Lead and Copper Ion Concentrations in Sanya River Samples

The concentrations of lead and copper ions in the water samples from the Sanya
River were measured using the designed microelectrode array electrode and detected by
SWASV with a scanning potential range of −1.2 to −0.01 V (Tables 4 and 5). The water
samples were quantified by standard addition (Figure 11). The concentrations of lead and
copper ions in the Sanya River were unevenly distributed due to the influence of tides and
anthropogenic activity but were confirmed to meet the Grade I Chinese Seawater Quality
Standard (GB 3097-1997) [41].

Table 4. Ionic state sample tests.

Sampling Location Pb Ion Concentration (µg/L) Cu Ion Concentration (µg/L)

Sanya Bay 0.39 0.28

Nanbianhai Pier 0.61 0.45

Xinfengqiao 0.12 0.23

Fenghuangshuicheng 0.35 0.25
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Table 5. Total dissolved state sample tests.

Sampling Location Pb Ion Concentration (µg/L) Cu Ion Concentration (µg/L)

Sanya Bay 0.98 0.79

Nanbianhai Pier 0.78 0.70

Xinfengqiao 0.42 0.96

Fenghuangshuicheng 0.53 0.66
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4. Conclusions

In this study, a microelectrode array was meticulously engineered with heightened
sensitivity and an expansive detection range, thereby facilitating the precise quantification
of the lead and copper ion concentrations within the intricate aquatic ecosystems of the
Sanya River. Despite the successful application of the array, notable constraints were
identified, limiting its simultaneous quantification capacity to two to three metal ions. In
particular, the quantification of Zn(II) surpassed the measurable limits, posing a challenge
to accurate determination. Additionally, the stability of the Cd(II) measurements was
observed to be inconsistent. Moving forward, our research endeavors will focus on refining
the structural design and preparation methodology of the microelectrode array. This
strategic optimization aims to bolster its measurement efficacy, enabling the comprehensive
assessment of a diverse array of metal elements. Ultimately, this advancement promises
to provide crucial technical support in combatting and mitigating the pervasive threat of
heavy metal pollution within aquatic ecosystems.
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