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Abstract: For complex equipment, it is easy to over-evaluate the impact of failure on production by
estimating the reliability level only through failure probability. To remedy this problem, this paper
proposes a statistical evaluation method based on fuzzy failure data considering the multi-state
characteristics of equipment failures. In this method, the new reliability-evaluation scheme is firstly
presented based on the traditional statistical analysis method using the Weibull distribution function.
For this scheme, the failure-grade index is defined, and a fuzzy-evaluation method is also proposed
by comprehensively considering failure severity, failure maintenance, time, and cost; this is then
combined with the time between failures to characterize the failure state. Based on the fuzzy failure
data, an improved adaptive-failure small-sample-expansion method is proposed based on the classical
bootstrap method and the deviation judgment between distributions of the original and newborn
samples. Finally, a novel reliability-evaluation model, related to the failure grade and its membership
degree, is established to quantify the reliability level of equipment more realistically. Example cases
for three methods of the scheme (the failure-grade fuzzy-evaluation method, the sample-expansion
method, and the reliability-evaluation modeling method) are presented, respectively, to validate the
effectiveness and significance of the proposed reliability-evaluation technology.

Keywords: reliability evaluation; Weibull distribution; multi-state failures; small-sample expansion;
fuzzy evaluation

MSC: 62P30; 90B25

1. Introduction

In existing studies, reliability evaluation is mainly performed based on failure data or
simulation. The evaluation method based on failure data is the earliest and most commonly
used at present [1–3]. Failure data refer to the record data generated during development,
testing, or use, including the failure mode, failure type, cause of failure, impact on produc-
tion and occurrence time, etc., which describe the key features of fault events. According
to research experiences, the time between the failures or service life of electromechanical
equipment such as computer numerical control (CNC) machine tools is subject to certain
probability distribution types. Typical distribution types mainly include exponential distri-
bution [4], Weibull distribution [5,6], Rayleigh distribution [7], normal distribution [8], and
extremum distribution [9]. For example, under the complete maintenance assumption of
“repair as new”, exponential distribution and Weibull distribution are often used for fault-
data modeling. Common reliability indicators include reliability, failure rate, mean time
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between failures (MTBF), and mean time to repair (MTTR). In early studies, researchers
evaluated the reliability of machine tools mostly based on the two-state hypothesis, which
assumes that the equipment has only two states: normal and faulty. For example, exponen-
tial distribution and Weibull distribution are often used to establish the reliability model of
the machine tool based on fault data [10–12].

However, the numerical control machine tool is a complex piece of mechanical and
electrical equipment, which always has diversified failure modes, difficult data collection,
and fewer occasional failures. Therefore, the system failure reflects the obvious and com-
plex polymorphism. In order to evaluate its reliability level more accurately, multi-state
system reliability has become a current research hot spot. The existing reliability-modeling
methods for multi-state systems include a multi-valued model extended from the Boolean
model for the two-state system [13], the stochastic process model [14], the general-purpose
generating function method [15], and Monte Carlo simulation [16], which are analyzed and
summarized in the reference report of [17]. In these studies, scholars used a reliability block
diagram, fault trees, and the Petri net model to describe the fault logic relationship between
the system and its component units, and they proposed the reliability-evaluation method
of complex systems through the analysis of the probability of underlying events and the im-
portance of components. For example, Wang et al. proposed a reliability-evaluation method
for manufacturing systems based on dynamic adaptive fuzzy-reasoning Petri nets, consid-
ering the multi-state performance of each machine of the system [18]. He et al. proposed a
task reliability-evaluation method for manufacturing systems based on extended stochastic
flow nets, focusing on the machine fuzzy multi-state characteristics of the system affected
by human factor division and working conditions [19]. Sun et al. established a reliability
model called the general-purpose generating function, which considered the stochastic
uncertainty and cognitive uncertainty of manufacturing systems, and they carried out
structural reliability modeling and an analysis of the fatigue strength of machine-tool
milling shafts [20]. Due to the difficulty of failure data collection in practical applications,
the small sample size is always the main problem for reliability evaluations based on failure
data, which can be better solved using advanced statistical methods [21]. For example, Xu
et al. introduced the objective Bayesian method to analyze degradation data with small
sample sizes and used a rejection sampling-embedded Monte Carlo algorithm to obtain
Bayesian parameters [22]. Zhou et al. proposed a re-parameterized gamma process with
random effects to improve the calculation efficiency and estimation accuracy of the product
degradation process [23]. Amalnerkar et al. used the bootstrap information criterion to
present a unique and efficient simulation scheme, aiming to solve the uncertainty problem
of reliability analysis [24]. Moreover, the reason for the small sample size is that reliabil-
ity experiments have several drawbacks, such as a long time period and high cost; thus,
simulation-based reliability evaluation was developed, which can help us to realize the
collaborative design of reliability and performance. The reliability-simulation model is
established based on performance simulation, also considering equipment fault behaviors
and mechanisms [25].

Moreover, since different failure modes have different impacts on the system or
task, failure severity has been considered in many existing studies. For example, Kaidis
et al. classified failure events of wind turbines into three severity levels according to
the required repair time of failure—including failures that only need manual restarts,
failures that need minor repairs, and failures that need major repairs—and proposed
reliability statistical processing methods for failures at different severity levels [26]. Zhang
et al. introduced failure severity into the failure mode effects and criticality analysis
(FMECA) method considering failure mode correlation, which referenced the definition
of failure severity (the severity of the most serious consequences of product failure) in the
standard (the detailed information can be found in the reference [27]). And, they divided
failure severity into four levels according to the influence of failures on people, systems,
economic loss, or task efficiency: minor level, medium level, lethal level, and disaster
level [28]. Zhang et al. considered the severity level of failures in the reliability analysis



Mathematics 2024, 12, 1414 3 of 21

of machine tools based on FMECA and fuzzy evaluation, which divided failures into
five levels according to occurrence rate and detection difficulty [29]. In summary, many
researchers have considered failure severity to improve the accuracy of the reliability
analysis, but they have used different classification means according to the requirements of
their proposed methods.

From the above introduction, the method based on failure data is the most used in
recent studies for complex equipment—for example, some distribution functions have been
widely applied to establish the reliability model for mechanical or control systems, such as
machine tools [30], robots [31], and control systems [32]. Failure severity has also been con-
sidered to more accurately analyze the reliability of equipment. However, except for failure
severity, maintenance time and expense also have a major impact on the task-executing
efficiency and cost of equipment. Moreover, combined with the definition of reliability (the
ability of the equipment to complete the specified function under specified conditions and
within the specified time), the traditional method cannot accurately quantitatively evaluate
the equipment-reliability level since it only considers the failure occurrence probability and
ignores the influence degree of failure on equipment performance or functioning. There-
fore, in this paper, we introduce a new index—the failure-grade index—to characterize
the failure state more comprehensively, considering the severity, maintenance time, and
expense of the failure. The purpose of this index definition is to obtain a more accurate
reliability-evaluation model for equipment, which can consider not only the occurrence
probability but also the influence of failure on equipment performance or function, as well
as the efficiency and cost the production task. Based on the above definition, this paper
proposes a reliability fuzzy-evaluation method based on failure-state characterization. It
mainly includes the following three contributions: (1) The failure-grade fuzzy-evaluation
method is proposed to characterize the failure state considering fault severity, failure main-
tenance time and expense; (2) The modified adaptive small-sample-expansion method
is proposed based on error judgement and correlation coefficient judgement for the time
between failures and the failure-grade evaluation index, respectively, aiming to solve the
problem of a small sample size; and (3) A novel reliability-evaluation model is established
to more accurately estimate the reliability level of equipment by considering the failure
grade and membership degree. The remainder of this paper is organized as follows: Sec-
tion 2 presents the reliability-evaluation scheme considering multiple states of failure,
which is proposed based on the traditional Weibull-distribution-based reliability modeling
framework; Section 3 presents the failure-grade fuzzy-evaluation method and an example
analysis; Section 4 outlines the modified adaptive small-sample-expansion method and an
example analysis; Section 5 presents the novel reliability-evaluation model and an example
analysis; and Section 6 offers the main conclusions and future recommendations based on
this work.

2. Reliability-Evaluation Scheme Considering Multi-State Characteristic of Failures

According to existing studies, Weibull distribution is an absolutely continuous proba-
bility distribution, and when the failure rate follows this distribution, its power function
form can be adjusted by shape and scale parameters; it has been widely applied in the
reliability analysis of equipment due to its wide coverage [30–32]. Based on Weibull dis-
tribution, the probability density function and the cumulative distribution function (also
known as failure distribution function) can be expressed by [33].

f (t) =

 β
α

(
t−γ

α

)β−1
exp

[
−
(

t−γ
α

)β
]

, t ≥ γ

0, t < γ
(1)

F(t) =

1− exp
[
−
(

t−γ
α

)β
]

, t ≥ γ

0, t < γ
(2)
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wherein α and β are the scale parameter and shape parameter, respectively (α, β > 0), and
γ is the position parameter (γ ≥ 0). The practice proves that the failure rate of repairable
equipment generally takes the shape of a “bathtub curve” over time, and it includes three
periods: the early failure period (β < 1), the occasional failure period (β = 1), and the
exhaustion failure period (β > 1). In real applications, it is assumed that a failure occurs
at t = 0; then, the reliability function based on the two-parameter Weibull distribution is
widely applied and can be expressed by [33].

R(t) = 1− F(t) = exp

[
−
(

t
α

)β
]

, t ≥ 0 (3)

Moreover, in order to analyze the equipment reliability of the whole life cycle, re-
searchers proposed a reliability-modeling method based on mixed Weibull distribution,
which is expressed as three-stage segmented function as Equation (4). The linear regression
analysis for each segment of the function was implemented based on the failure data in
the corresponding failure stage, and the function continuity processing was carried out to
obtain the final function parameters [34,35].

R(t) =



k1exp
[
−
(

t
α1

)β1
]

, 0 < t ≤ t1

k2exp
[
−
(

t
α2

)β2
]

, t1 < t ≤ t2

k3exp
[
−
(

t
α3

)β3
]

, t > t2

(4)

where k1, k2, k3 are the weight parameters of the model, which is used to adjust the continu-
ity of three curves; α1, α2, α3 are the scale parameters of the Weibull distributions of three
failure periods; and β1, β2, β3 are the shape parameters of the Weibull distributions of three
failure periods, respectively.

In the parameter estimation of the distribution function, the classical probability statis-
tical method is generally used to analyze the equipment failure data, and the estimation
accuracy depends on sufficient data. However, in practical engineering, for most equip-
ment or manufacturing systems, it is difficult to obtain sufficient failure data due to long
experiment periods, huge experiment costs, and an insufficient sample size. A small sample
dataset is one of the key problems faced by complex equipment or manufacturing system re-
liability research. A small sample refers to a size less than or equal to 30 [36]. Small-sample
expansion is an effective way to solve the problem of insufficient sample size. The methods
mainly include the regression conversion method, virtual augmented samples, and the
bootstrap method. The authors of [36] found that the bootstrap method has an obvious
advantage in the small-sample expansion of time between failures through a comparative
study of the above methods. The classical bootstrap method extends the original fault
data through the following steps: (1) take the random value δ in the interval [0, 1]; (2) take
ε = (n− 1)δ, i = floor(ε) + 1, wherein floor(ε) represents taking the largest integer not
greater than ε; and (3) obtain regenerated data by tn = t∗i + (ε− i + 1)

(
t∗i+1 − t∗i

)
, wherein

t∗i is the ith data point after the original data are processed in descending order. Based
on the above description, the pseudo-code algorithm of the classical bootstrap method is
determined and can be found in Table 1, wherein CBExpansion(tO) means the expansion
of the original data tO based on the classical bootstrap method and tN denotes the new
generated data; M is the required sample size of the expansion; and the function rand(1, 1)
is used to generate the random value in the interval [0, 1]. Using the above method, the
original fault data can be extended, which then provides a sufficient fault-data basis for
the estimation of distribution parameters. Therefore, the traditional equipment-reliability
modeling procedure based on distribution functions is shown in Figure 1.
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Table 1. Pseudo-code algorithm of the classical bootstrap method.

Algorithm 1: tN←CBExpansion(tO)

1: Input tO and M;
2: Set tN = [];
3: for i = 1 to M do
4: δ = rand(1, 1);
5: Take ε = (n− 1)δ, i = floor(ε) + 1;
6: Calculate tn = t∗i + (ε− i + 1)

(
t∗i+1 − t∗i

)
;

7: Update tN = [tN, tn];
8: end for
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Figure 1. Traditional equipment-reliability modeling procedure based on distribution functions.

With the above method as the basis, in order to consider the influence of failure on
equipment performance or function, the failure-grade evaluation index is established to
characterize the failure state. Then, taking the values of time between failures and the
failure-evaluation index as input data, failure-grade fuzzy evaluation can be performed.
Finally, for graded failures, the reliability model for each grade of failures can be established
based on the Weibull distribution and the estimation of its parameters, and it is related
to the failure grade and its membership degree. After failure grading, the small-sample
problem will be more likely to occur for the reliability modeling based on each grade
failure, so the modified adaptive small-sample extension method is proposed based on
a bootstrap method for the failure data composed of the time between failures and the
failure-grade index. The proposed new scheme based on the above steps is shown in
Figure 2. This scheme considers both the failure probability and the influence degree of
failure on the system running effect, so the result can more accurately evaluate the reliability
level of equipment.
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3. Failure-Grade Fuzzy-Evaluation Method and Example Analysis

From the proposed scheme, the equipment-reliability evaluation needs to solve three
problems, including the failure-grade fuzzy-evaluation problem based on index defini-
tion, the modified small-sample-expansion problem for the failure data, and the new
reliability-evaluation modeling problem based on failure-state characterization. The pro-
posed methods are presented in the following contents.

3.1. Failure-Grade Fuzzy-Evaluation Method

In this subsection, the failure-grade index is established to characterize the failure
state through the analysis of influence factors, and then, the failure-grade fuzzy-evaluation
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method is proposed to provide the premise of failure-data processing for the final reliability
evaluation. The detailed steps are presented below.

(1) Influence analysis. In practical applications, the equipment performance is often
multifaceted. For a piece of equipment, people may be concerned not only about
whether it can continuously and successfully complete specified operations but also
about its productivity, accuracy, and many other factors, and different modes of
failure often have different degrees of impact on equipment performance. Taking the
processing machine tool as an example, the failure of the lubrication system caused
by the lack of oil leakage will affect the machining accuracy and efficiency. The failure
of the lubrication system caused by the oil valve, oil pump motor, etc., will directly
lead to the failure of the processing task. Therefore, the failure severity is one factor
that determines the failure grade. In this paper, we also used a similar method to [28]
to determine the failure severity levels, which considers the influence of failures on
equipment performance or function and gives detailed descriptions of each severity
level: Level-1 severity can result in a decrease in accuracy or efficiency but has no
impact on the production task; Level-2 severity can result in a decrease in accuracy
or efficiency and has a general impact on the production task; Level-3 severity can
result in a serious decline in accuracy or efficiency and has a significant impact on the
production task; and Level-4 severity can cause the system to shut down, making it
unable perform the production task. In addition, the maintenance time and expense
required by different failures are often different; that is, the impact of failures on
the actual production efficiency and cost is different. From this perspective, the
maintenance time and expense of the failure are considered as two influencing factors
for failure-grade evaluation.

(2) Failure-grade index definition. The failure-grade index is defined to characterize
the failure state, comprehensively considering the severity, maintenance time, and
expense of the failure, and is written as follows,

xi = w1µi + w2λT,i + w3λC,i (5)

where µi means the severity coefficient of the ith failure, and its values for the Level-1,
Level-2, Level-3, and Level-4 failures are taken as 0.25, 0.5, 0.75, and 1, respectively.
That is, when the value is closer to zero, the influence of failure on the production task
is smaller. w1, w2 and w3 are weights of severity, maintenance time, and the expense
coefficient for the comprehensive index, and they can be assigned according to the
actual application through weighing functional requirements, time, cost, and other
resources. λC,i and λT,i are, respectively, the time proportion coefficient and expense
proportion coefficient, which are mainly used to characterize the maintenance time
Ti and the maintenance expense Ci of the ith failure. These are related to the Td and
Cd thresholds Td of time and expense, respectively, which can be set according to the
actual production situation. λC,i and λT,i can be calculated by the following formulas.

λT,i =

{
Ti/Td, Ti ≤ Td

1, Ti > Td
(6)

λC,i =

{
Ci/Cd, Ci ≤ Cd

1, Ci > Cd
(7)

According to the above formulas, when the maintenance time or maintenance expense
is larger than the threshold value, the proportion coefficient is 1, and when it is less
than the threshold value, the proportional coefficient is the ratio of the maintenance
time or expense to the corresponding threshold value—that is, the greater the time or
expense, the closer the ratio is to 1.
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(3) Failure-grade fuzzy evaluation. For the fuzzy evaluation of the failure grade, it is
divided into five grades 1~V, and the quantitative assignment of each grade is shown
in Table 2. The failure-grade judgment matrix of the index value xi can be written as

Ri = [ri,1, ri,2, ri,3, ri,4, ri,5] (8)

where ri,j represents the membership degree of the index value xi to the jth fail-
ure grade.

Table 2. Standard values of failure-grade evaluation.

Failure Grade I II III IV V

Standard value 0.2 0.4 0.6 0.8 1.0

The above membership degree is determined by the trapezoidal fuzzy distribution
function, wherein the first grade is small, the second to fourth grades are intermediate, and
the fifth grade is large. The membership degree function at all grades can be expressed
as follows:

A1 =


1, x ≤ 0.2

2− 5x, 0.2 < x ≤ 0.4
0, x > 0.4

(9a)

A2 =


0, x ≤ 0.2

5x− 1, 0.2 < x ≤ 0.4
3− 5x, 0.4 < x ≤ 0.6

0, x > 0.6

(9b)

A3 =


0, x ≤ 0.4

5x− 2, 0.4 < x ≤ 0.6
4− 5x, 0.6 < x ≤ 0.8

0, x > 0.8

(9c)

A4 =


0, x ≤ 0.6

5x− 3, 0.6 < x ≤ 0.8
5− 5x, 0.8 < x ≤ 1.0

(9d)

A5 =

{
0, x ≤ 0.8

5x− 4, 0.8 < x ≤ 1.0
(9e)

3.2. Example Analysis

In order to verify the feasibility of the above fuzzy failure-grade evaluation method,
we took the practical data of one machine tool and one machine-tool cooling system listed
in the literature [36] as the research objects and carried out the numerical analysis. In the
analysis, based on the failure-grade fuzzy-evaluation method, the severity of each failure is
classified according to the severity classification principle, and the maintenance expense
is estimated for each failure based on practical experience. Component replacement is
conducted with the purchase price as a reference, and the expense of cleaning, disassembly,
and other behaviors is mainly reflected in the maintenance time. The labor cost is ignored
in this case—that is, the corresponding maintenance expense is taken as zero. We set the
time threshold to 120 min and the expense threshold to 1000 RMB, and the failure data of
the machine tool and the machine-tool cooling system based on fuzzy evaluation are listed
in Tables A1 and A2 of Appendix A, respectively. TBF means the time between failures,
and F01~F13 and FX01~FX67 represent failure descriptions for two systems, respectively,
which can be found in the literature [36].

Based on the proposed failure-grading method, the failure-grade index can reflect
the contributions of severity, maintenance time, and expense to the grade evaluation, and
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the contribution is expressed by the coefficient of each factor. By plotting values of these
coefficients and the corresponding grade index of the machine tool (Figure 3), we can
observe that the results based on the proposed method meet the objective reality. For
example, the severity of failure 1 and failure 10 is level 4, but the maintenance time and
expense of failure are lower, which results in lower-grade index values of 0.4750 and 0.5503,
respectively. For failure 5 and failure 6, the severity level, maintenance time, and expense
are all lower, which results in the lowest grade index values of the table: 0.3375 and 0.3500,
respectively. The severity level, maintenance time, and expense are all high, so the grade
index value is the highest in the table: 0.9000. From the partial-failure data of the cooling
system shown in Figure 4, we can also obtain the same conclusion—for example, the
severity level, maintenance time, and expense of failures 2, 4, 5 and 14 are high, so the
grade index values for these failures are all above 0.9; the severity of failure 1 and failure 15
is level 4, but their maintenance time and expense are lower, so the grade index values are
about 0.45. The above analysis indicates the rationality and effectiveness of the proposed
failure-grading method.
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4. Modified Adaptive Small-Sample-Expansion Method and Example Analysis
4.1. Modified Adaptive Small-Sample-Expansion Method

The modified method is proposed based on the classical bootstrap method for the
failure data, including the time between failures and the failure-grade index and assuming
that two data sets are independent of each other. Moreover, in order to solve the deviation
of the newborn sample from the real distribution caused by the randomness of bootstrap
expansion, the random number expansion is optimized based on the error judgement and
the correlation coefficient judgment for the time between failures and the failure-grade
index, respectively. Detailed steps for the modified sample expansion are as follows.

(1) Take the original data for the time between failures tO and the failure-grade index xO,
and two random values δ1 and δ2 in the interval [0, 1];
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(2) Take ε1 = (n− 1)δ1 and ε2 = (n− 1)δ2, and set i1 = floor(ε1)+ 1 and i2 = floor(ε2)+ 1;
(3) Obtain the newborn data by tn = t*

i + (ε1 − i1 + 1)
(
t*
i+1 − t*

i
)
, xn = x*

i + (ε2 − i2 + 1)(
x*

i+1 − x*
i
)
, wherein t*

i and x*
i are the ith value for the time between failures and the

corresponding failure-grade index in the original data from smallest to largest;
(4) For the data optimization of the time between failures, taking the original data tO

and the newborn data in each iteration tn as failure data, respectively, the Weibull
distribution functions can be determined as FO(t) and FN(t) according to Equation
(2). Then, the largest error between two distribution curves can be calculated by
∆m = max|FN(t)− F0(t)|. Finally, setting the error threshold as ∆th, the newborn data
set can be optimized by the above steps until the threshold condition ∆m ≤ ∆th is
satisfied. Based on the above embedded optimization, the data distribution of the
time between failures can be ensured.

(5) The distribution feature of the failure-grade index is analyzed firstly based on the
calculation implemented in the example cases of the above section. Figure 5a,b shows
the interval distributions of the failure-grade index for the machine tool and the
cooling system, respectively. In the two figures, it is shown that the distribution
features a bell shape, roughly increasing first and then decreasing; thus, it can be
considered that the grade index approximately follows a positive skewed distribution.
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Figure 5. Interval distribution analysis of the failure-grade index. (a) For the machine tool (13 faults).
(b) For the machine-tool cooling system (67 faults).

Therefore, for the failure-grade index, the ratio of two variances of the original data
and the newborn data are calculated to define the coefficient of correlation of two data sets,
dσ = σ1/σ2, wherein σ1 and σ2 are the smaller variance and larger variance respectively,
and 0 < dσ ≤ 1. the closer the coefficient is to one, the more correlated the two sets
of data are. The threshold of the coefficient is set as dσth. When the distribution of the
newborn data following steps from (1) to (3) cannot satisfy the threshold requirement
(dσ ≥ dσth), random numbers are re-taken, and newborn data are generated until the
threshold requirement is satisfied, to ensure that the new data do not deviate from the
real distribution.
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Based on the above description, the pseudo-code algorithm of the modified sample-
expansion method is listed in Table 3, wherein MSExpansion(tO, xO) means the expansion
of the original data tO and xO based on the modified sample-expansion method; σN and
σO mean the coefficients of correlation for the newborn and original data, and M and K are
their sample sizes, respectively; the function mean(·) is used to calculate the average value
of the sample; and the functions min(·) and max(·) are used to take the smallest value and
the largest value from several data.

Table 3. Pseudo-code algorithm of the modified sample-expansion method.

Algorithm 1: tN,xN←MSExpansion(tO,xO)

1: Input tO, xO and M;
2: Set tN = [] and xN = [];
3: Expansion codes of the time between failures:
4: while (∆m > ∆th) do
5: for i1 = 1 to M do
6: δ1 = rand(1, 1);
7: Take ε1 = (n− 1)δ1, i1 = floor(ε1) + 1;
8: Calculate tn = t∗i + (ε1 − i1 + 1)

(
t∗i+1 − t∗i

)
;

9: Update tN = [tN, tn];
10: end for
11: Calculate ∆m = max|FN(t)− F0(t)|;
12: End while
13: Expansion codes of the failure-grade index:
14: while (dσ < dσth) do
15: for i2 = 1 to M do
16: δ2 = rand(1, 1);
17: Take ε2 = (n− 1)δ2 and i2 = floor(ε2) + 1;
18: Calculate xn = x∗i + (ε2 − i2 + 1)

(
x∗i+1 − x∗i

)
;

19: Update xN = [xN, xn];
20: end for
21: Calculate σN ←

[
∑M

m=1(xN,m −mean(xN))
2
]
/M and

σO ←
[
∑K

k=1
(

xO,k −mean(xO)
)2
]
/K

22: Take σ1 = min(σN , σO), σ2 = max(σN , σO);
23: Calculate dσ = σ1/σ2;
24: End while

4.2. Example Analysis

In this subsection, the original failure data of the machine tool and the cooling system,
as listed Tables 2 and 3, are expanded to verify the effectiveness of the proposed sample-
expansion method—that is, the newborn data for the time between failures and the failure-
grade index are still consistent with the distribution regularity of the original data.

(1) Distribution verification of time between failures. In the simulation, the expan-
sion capacities for the machine tool and the cooling system are set as 50 and 200, respectively.
For the time between failures, taking the error threshold value between failure distribution
curves of the original data and newborn data as a constraint (∆m < 0.01), the optimal
newborn data for two systems are obtained through eight and three iterations, respectively.
Figure 6a,b shows the failure distribution curves of the original data and the newborn data
for two systems. Through comparison, the failure distribution errors for the machine tool
and the cooling system are 0.0037 and 0.0057, respectively, which both satisfy the threshold
requirement; two function curves that basically coincide can effectively ensure that the
newborn data of the time between failures do not deviate from the original distribution
regularity. Moreover, the smaller the size of the original data, the more iterations are
required to produce a result that satisfies the constraint requirement.
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Moreover, the iteration numbers and the maximum errors under different values of
expansion capacity are listed in Table 4, where KM and KC are the expansion capacities
of the machine tool and the cooling system, respectively. From this table, errors under
all cases satisfy the threshold constraint condition ∆m ≤ 0.01, and they are basically
irrelevant to the value of K; this is because the sample is expanded based on random
array generation. However, the iteration number is obviously related to the expansion
capacity and the original sample size—for example, for the sample expansion of the
machine tool, the iteration number increases with the value of K, but for the cooling system,
the iteration number for each expansion capacity is very small, which indicates that the
larger the original sample, the easier it is to obtain capacity expansion data that meet the
threshold requirement.

Table 4. Iteration numbers and maximum errors under different values of expansion capacity.

KM Iteration Number Max. Error KC Iteration Number Max. Error

25 9 0.0018 100 6 0.0007
50 8 0.0037 200 3 0.0057
75 15 0.0078 300 3 0.0094

100 31 0.0074 400 3 0.0028

(2) Distribution verification of failure-grade index. In the simulation, the expansion
capacities of the machine tool and the cooling system are set as 50 and 200. For the failure-
grade index, taking the threshold value of the coefficient of correlation between failure
distributions of the original data and newborn data as constraint dσ ≥ 0.95, the optimal
newborn data for two systems are obtained through 23 and 10 iterations, respectively, and
the optimal correlation coefficients are 0.9682 and 0.9815, which both satisfy the given
threshold condition. Figure 7a,b shows failure frequency comparisons of the original data
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and the newborn data of the failure-grade index for two systems. From the comparison, it
can be found that the failure frequency distributions of the original data and the newborn
data are generally the same, which can indicate that the modified expansion method can
verify the effectiveness of the proposed modified sample-expansion method; the results
also indicate that when the original sample size is small, more iterations are required to
search for the newborn data that meet the constraint condition.
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Figure 7. Failure frequency comparisons of the original data and the newborn data of failure-grade
index for two systems. (a) For the machine tool. (b) For the machine-tool cooling system.

Moreover, the iteration numbers and the correlation coefficients under different values
of expansion capacity are listed in Table 5. From this table, the coefficients under all cases
all satisfy the given threshold condition dσ ≥ 0.95, and they are also basically irrelevant to
the value of K. The results also show that as the expansion capacity increases, the iteration
number required by the sample expansion increases dramatically.

Table 5. Iteration numbers and correlation coefficients under different values of expansion capacity.

KM Iteration Number Corr. Coefficient KC Iteration Number Corr. Coefficient

25 18 0.9553 100 8 0.9574
50 23 0.9682 200 10 0.9815
75 289 0.9508 300 56 0.9535

100 1930 0.9877 400 271 0.9721

5. Novel Reliability-Evaluation Model and Example Analysis
5.1. Novel Reliability-Evaluation Model

In the reliability-evaluation method, firstly, the Weibull distribution parameters for
failures at each grade are estimated. In the estimation, the membership degree is introduced
to reflect the probability distribution under the corresponding grade. During the data fitting,
the value of Y that corresponds with X = lnti can be expressed by,
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Y = ln

[
ln

1
1− ri,jF(ti)

]
(10)

Then, parameters αj and β j of the Weibull distribution for grade-j failures are calcu-
lated based on linear fitting, and based on this, the failure distribution function can be
defined considering the influence effect of the failure on the system function and perfor-
mance. This is relevant to the failure grade j and its membership degree ri,j. The distribution
function is expressed as follows:

Fj(t) = 0.2j
{

1− exp
[
−
(
t/αj

)β j
]}

(11)

where the term 0.2j represents the evaluation standard value of the failure grade.
Finally, the reliability function of grade-j failures is obtained by Rj(t) = 1− Fj(t). The

overall reliability-evaluation model can be expressed by

R(t) =
5

∏
j=1

Rj(t) (12)

In summary, the proposed failure-grade fuzzy-evaluation method is used to char-
acterize the multiple states of failures, and the modified sample expansion is the basis
of the failure data analysis and the reliability modeling. After the failure grading and
sample expansion, the new failure data (including the original sample and the newborn
sample) are further handled in the following ways, aiming to ensure the accuracy of the
distribution-parameter estimation.

(1) Failures with a membership degree of zero at each grade were eliminated. Since
the membership degree ri,j of the ith failure at the jth grade is less than or equal to
one and may be zero, the failures with a membership degree of zero at each grade are
eliminated for the ease of the reliability modeling.

(2) Small sample data cases at some grades after expansion were re-handled, as in
Figure 8. In detail, according to the analysis of the distribution of failure-grade index,
it approximately follows a positive skewed distribution; therefore, the failure samples
at some edge grades may still be small samples even after expansion. In order to
avoid the serious deviation phenomenon caused by the small-sample cases at some
grades, in this work, the failures at the grade with small sample data (in previous
works, when the sample size K was less than 30, it was regarded as the small-sample
case) are automatically incorporated into the failure data at the lower or higher grades,
starting at the lowest and highest grades, respectively, until the sample size at each
grade satisfies the sample-size requirement.
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5.2. Example Analysis

The machine tool and the cooling system are further used as the example cases of this
analysis, and their original failure data have different features. For example, the original
data of the machine tool only have 13 recordings of failures, so they belong to the small
sample data. Although the original data of the cooling system have 67 failures, there still
exist small-sample cases under some grades after failure grading. Two example cases can
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better verify the feasibility and sample adaptation of the proposed reliability-evaluation
method. Moreover, in each example case, the evaluation results based on the methods
that consider and do not consider the failure grading are compared to show the necessity
of considering multi-state failure, and the influences of the expansion randomness, the
expansion capacity, and grade-index values on the reliability-evaluation result are analyzed
to verify the effectiveness of the proposed model.

(1) Example case 1 (taking the machine tool as the research object). Since the sample
size of the machine tool is small, the sample-expansion capacity is taken by 50. The newborn
sample is obtained through expanding five times; then, it is used to generate five failure
samples with different expansion capacities (K = 50, 100, 150, 200, 250). During the five
expansions, the errors for time between failures are 0.0022, 0.0043, 0.0065, 0.0093 and 0.0012,
and the correlation coefficients for the failure-grade index are 0.9567, 0.9688, 0.9748, 0.9969
and 0.9529, respectively, which indicates that the newborn data do not deviate from the
distribution rule of the original data. Finally, the failure samples including 263 failures are
obtained by combining them with the original 13 failures. Based on the proposed methods,
the failure samples at all grades can be obtained, and their sizes are 45, 175, 185, 87 and
32, which are all larger than 30. Figure 9 shows a comparison of reliability curves based
on the methods before and after considering failure grading (K = 250): traditional and
novel reliability-evaluation. The difference between the two curves is also calculated and
plotted. Based on the comparison, it is known that the reliability-evaluation value becomes
obviously after considering failure grading, and it has the tendency of increasing gradually
and then basically not changing over time. The largest value of the difference is 0.3128.
This result indicates that the proposed method can increase the accuracy of the reliability
evaluation through considering the impact degree of failures on the system running.
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In order to reveal the influence mechanism of the modeling process on the evaluation
result, the above simulation is repeated ten times. Then, the evaluation results obtained
by ten simulations are compared. The maximum and minimum fluctuation values of
the evaluation are used to show the stability of the algorithm, and they are obtained by
calculating the differences between values at the same time from ten simulations and taking
the smallest and largest value from all values. In this case, they are 0.0801 and 0.0112,
respectively. Moreover, the evaluation results based on different expansion capacities
(K = 50, 100, 150, 200, 250) are compared. Sample sizes at all grades under different
expansion capacities are listed in Table 6, wherein KL1, . . . , KL5 are sample sizes at five
grades, respectively. The comparison shows that the small-sample case more easily occurs
at some failure grades when the expansion capacity is small.
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Table 6. Sample sizes at all grades under different expansion capacities.

K KL1 KL2 KL3 KL4 KL5

50 13 43 43 19 6
100 18 77 80 35 14

150 25 107 116 55 21
200 35 141 150 71 27
250 45 175 185 87 32

Moreover, the comparison of reliability curves based on different values of expansion
capacity (K = 50, 100, 150, 200, 250) is shown in Figure 10. From this figure, the following
conclusions can be obtained, (1) from the reliability comparison based on the failure data
with and without incorporating small sample data at some grades (as shown in Figure 6,
and corresponding to the cases K = 200, with inc. and K = 200, without inc.), it is found
that the reliability value under the case K = 200, without inc. is obviously smaller than
that under the case K = 200, with inc., which means that although the small-sample
incorporation is necessary due to the existence of the small sample, sometimes the handling
way will largely influence the evaluation accuracy of the reliability level; (2) the reliability
value of the machine tool decreases over the expansion capacity, which indicates that the
capacity has the major influence on the evaluation result, and the more larger the sample
size, the closer the evaluation result is to the real reliability level, for example, the results
under cases K = 200, without inc. and K = 250 are very close; (3) in summary, although the
increase in the expansion capacity will influence the calculation efficiency of the evaluation
result, its value should be large enough to make the sample data at each grade is sufficient
to ensure that the result does not deviate from the real level in practical applications.
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Figure 11 shows the comparison of reliability curves based on different values of
failure-grade index (x = 0.2, 0.4, 0.6, 0.8, 1.0) when K = 250, that is, the grade indexes of
all failures are taken as a certain value. From the result, the following conclusions can be
obtained, (1) the evaluation result is obviously affected by the failure-grade index, and it
decreases over the index value, which indicates the novel model is effective in reliability
evaluation; (2) the larger the failure grade, the higher the decline rate of the reliability over
the time, for example, the evaluation value at T = 2000 h decreases by 16.33% compared
with that at T = 100 h, the decline percentages when x = 0.4, 0.6, 0.8, 1.0 are 33.45%,
51.42%, 70.28% and 90.13% respectively.
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(2) Example case 2 (taking the cooling system as the research object). Compared with
example case 1, the original sample size is larger; therefore, the sample-expansion capacity
is set to 200 and the expansion is performed four times. Each expansion ensures that the
error and the coefficient of correlation satisfy the given threshold constraints. Then, firstly,
four failure samples with a capacity of 200 are obtained. Secondly, through the generation
method shown in Figure 12, six failure samples with a capacity of 400 are obtained, and
the small sample at Grade-1 is caused because the original failures at Grade-1 are fewer.
Sample sizes at all grades of different failure samples are listed as Table 7. From the table,
we may observe that the sample sizes at all grades when K = 400 all satisfy the large sample
requirement, and the failure-number distribution at different grades is generally the same.
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Table 7. Sample sizes at all grades for different failure samples.

K Failure
Sample KL1 KL2 KL3 KL4 KL5

200

Sample 1-0 20 165 197 99 49
Sample 2-0 23 170 194 94 49
Sample 3-0 26 166 196 98 44
Sample 4-0 24 168 195 96 47

400

Sample 1 36 291 342 173 88
Sample 2 42 292 341 172 83
Sample 3 43 290 342 174 81
Sample 4 39 287 344 177 83
Sample 5 37 289 343 175 86
Sample 6 40 294 340 170 86

Figure 13 shows a comparison of reliability curves based on different failure samples;
it shows that the curves are concentrated, and their maximum difference is 0.0787. This
comparison result explains the usability of the proposed methods for failure grading and
reliability evaluation.
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Figure 14 shows a comparison of reliability curves based on different values of the
failure-grade index for sample 1. From the comparison, we can draw conclusions as
follows: (1) the failure-grade index has a major influence on the evaluation result, and the
larger the failure-grade index, the smaller the reliability-evaluation value, which indicates
the effectiveness of the proposed method; (2) in all cases, the reliability-evaluation value
decreases rapidly with time at the beginning and then flattens out after 1000 h; and (3)
compared with example case 2, the reliability curve in example case 1 declines more gently,
mainly because the mean time between failures (MTBF) of the cooling system is smaller
than that of the machine tool, based on the original sample data of two systems listed in
Tables 2 and 3. The observed value of the MTBF can be calculated by T =

(
∑N

i=1 Ti

)
/N.

The calculated MTBF values of the machine tool and the cooling system are 619.41 h and
330.63 h, respectively. Therefore, the decline rate of the reliability curve of the cooling
system is higher than that of the machine tool, which means the tendency of the reliability
curve is consistent with the practical experience. Moreover, when the time is less than
1000 h, the larger the failure-grade index, the higher the decline rate of the reliability over
time, and when the time is larger than 1000 h, the change tendency tends to be flat.
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6. Conclusions and Future Works

This work proposed a new reliability-evaluation scheme for equipment considering
multi-state failures. It was applied in three sections to a machine tool and its cooling system
to verify the effectiveness of the methods included in this scheme, respectively. The main
conclusions are as follows:
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(1) In the failure-grade fuzzy-evaluation method, the failure severity, maintenance time,
and expense are considered to establish the failure-grade index model. From the
simulation cases, we note that this method is effective for characterizing the state of
failure based on its influence on the system performance or function.

(2) In the modified adaptive small-sample-expansion method, the data of the time be-
tween failures and the failure-grade index are expanded through random-number
optimization based on error judgement and correlation coefficient judgement, respec-
tively. The results of simulation cases indicate that the distributions of the original
and its corresponding newborn samples are basically the same, which verified the
effectiveness of the proposed sample-expansion method.

(3) In the novel reliability-evaluation modeling method, the distribution parameters are
estimated by introducing the failure-grade membership degree; then, the equipment-
failure distribution function at each grade is established, and the equipment reliability
is finally modeled. Based on simulation cases, the novel method can more accurately
evaluate the reliability level of equipment based on sufficient failure data after the
effective sample expansion, which avoids the problem of the over-evaluation of equip-
ment unreliability caused by ignoring multi-state failures. Moreover, the randomness
of the sample-expansion process has a minor impact on the reliability-evaluation
result—for example, the maximum fluctuation value of the reliability curves of the
machine tool is 0.081 and that of the cooling system is 0.0787, which shows the stability
of the proposed reliability-evaluation scheme.

Moreover, the execution of the above steps depends mainly on the integrity of the
original failure data, which include not only the time between failures but also the severity,
maintenance time, and expense of the failure. Also, in the failure-grade index definition,
the equipment differences are considered by setting weight parameters and threshold
parameters for the maintenance time and the expense of the failure, which can improve the
universality of the proposed method in terms of its application with different equipment.
Moreover, the adaptive sample-expansion method can effectively solve the general small-
sample problem. In summary, as long as the above failure data are fully provided, the
proposed method is basically available for the reliability evaluation of any equipment—for
example, automotive bearings or engine failure data.

In future works, the failure data of more equipment will be collected during their
service stages and be used to portray the actual universality of the proposed method and
the significance of this work. Moreover, the calculation algorithm will be embedded in the
equipment control system, aiming to realize the real-time quantification and monitoring of
the equipment-reliability level, which will also provide a theoretical basis for the further
proposal of reliability-improvement strategies.
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Appendix A. Failure Data Based on Fuzzy Evaluation

The failure data of the machine tool and the machine-tool cooling system based on
fuzzy evaluation are listed in Tables A1 and A2, respectively.
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Table A1. Failure data of the machine tool.

No. TBF (h) Failure Severity T (min) C (RMB) x Failure-Grade Fuzzy Evaluation

1 20 F1 4 30 0 0.4750 [0,0.625,0.375,0,0]
2 29 F2 2 150 800 0.7400 [0,0,0.3,0.7,0]
3 44 F3 3 19 80 0.3715 [0.1425,0.8575,0,0,0]
4 112 F4 3 190 2000 0.9000 [0,0,0,0.5,0.5]
5 176 F5 3 15 0 0.3375 [0.3125,0.6875,0,0,0]
6 259 F6 2 60 0 0.3500 [0.25,0.75,0,0,0]
7 467 F7 4 200 0 0.7000 [0,0,0.5,0.5,0]
8 635 F8 3 60 0 0.4500 [0,0.75,0.25,0,0]
9 949 F9 3 30 400 0.4950 [0,0.525,0.475,0,0]
10 1242 F10 4 60 1.0 0.5503 [0,0.2485,0.7515,0,0]
11 1576 F11 2 100 100 0.4800 [0,0.6,0.4,0,0,0]
12 1924 F12 3 60 0 0.4500 [0,0.75,0.25,0,0]
13 --- F13 3 200 20 0.6060 [0,0,0.97,0.03,0]

Table A2. Failure data of the machine-tool cooling system.

No. TBF (h) Failure Severity T (min) C (RMB) x Failure-Grade Fuzzy Evaluation

1 5 FX01 4 21 40 0.4645 [0,0.6775,0.3225,0,0]
2 7 FX02 3 150 2000 0.9000 [0,0,0,0.5,0.5]
3 7 FX03 4 92 0 0.6300 [0,0,0.85,0.15,0]
4 8 FX04 4 99 2000 0.9475 [0,0,0,0.2625,0.7375]
5 10 FX05 4 92 2000 0.9300 [0,0,0,0.35,0.65]
6 10 FX06 4 63 0 0.5575 [0,0.2125,0.7875,0,0]
7 11 FX07 4 66 0 0.5650 [0,0.175,0.825,0,0]
8 17 FX08 4 65 0 0.5625 [0,0.1875,0.8125,0,0]
9 27 FX09 2 81 500 0.5525 [0,0.2375,0.7625,0,0]
10 35 FX10 3 73 10 0.4855 [0,0.5725,0.4275,0,0]
11 37 FX11 3 215 0 0.6000 [0,0,1,0,0]
12 47 FX12 3 65 0 0.4625 [0,0.6875,0.3125,0,0]
13 47 FX13 3 32 10 0.3830 [0.085,0.915,0,0,0]
14 48 FX14 3 146 2000 0.9000 [0,0,0,0.5,0.5]
15 49 FX15 4 23 0 0.4575 [0,0.7125,0.2875,0,0]
16 56 FX16 4 19 200 0.5075 [0,0.4625,0.5375,0,0]
17 60 FX17 4 311 500 0.8500 [0,0,0,0.75,0.25]
18 64 FX18 4 152 2000 1.0000 [0,0,0,0,1]
19 70 FX19 4 59 0 0.5475 [0,0.2625,0.7375,0,0]
20 77 FX20 4 33 0 0.4825 [0,0.5875,0.4125,0,0]
21 80 FX21 4 58 800 0.7850 [0,0,0.075,0.925,0]
22 83 FX22 3 34 1000 0.6850 [0,0,0.575,0.425,0]
23 88 FX23 3 74 10 0.4880 [0,0.56,0.44,0,0]
24 88 FX24 4 91 0 0.6275 [0,0,0.8625,0.1375,0]
25 93 FX25 4 19 0 0.4475 [0,0.7625,0.2375,0,0]
26 95 FX26 4 28 200 0.5300 [0,0.35,0.65,0,0]
27 95 FX27 4 9 0 0.4225 [0,0.8875,0.1125,0,0]
28 97 FX28 4 63 1 0.5578 [0,0.211,0.789,0,0]
29 103 FX29 4 13 0 0.4325 [0,0.8375,0.1625,0,0]
30 110 FX30 3 22 0 0.3550 [0.225,0.775,0,0,0]
31 114 FX31 4 14 0 0.4350 [0,0.825,0.175,0,0]
32 114 FX32 4 26 0 0.4650 [0,0.675,0.325,0,0]
33 127 FX33 3 135 2000 0.9000 [0,0,0,0.5,0.5]
34 138 FX34 4 116 200 0.7500 [0,0,0.25,0.75,0]
35 158 FX35 3 96 0 0.5400 [0,0.3,0.7,0,0]
36 161 FX36 3 27 0 0.3675 [0.1625,0.8375,0,0,0]
37 173 FX37 4 28 500 0.6200 [0,0,0.9,0.1,0]
38 202 FX38 3 30 0 0.3750 [0.125,0.875,0,0,0]
39 215 FX39 4 66 0 0.5650 [0,0.175,0.825,0,0]
40 216 FX40 4 69 0 0.5725 [0,0.1375,0.8625,0,0]
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Table A2. Cont.

No. TBF (h) Failure Severity T (min) C (RMB) x Failure-Grade Fuzzy Evaluation

41 251 FX41 4 38 500 0.6450 [0,0,0.775,0.225,0]
42 258 FX42 4 27 40 0.4795 [0,0.6025,0.3975,0,0]
43 267 FX43 4 26 1 0.4653 [0,0.6735,0.3265,0,0]
44 270 FX44 3 44 0 0.4100 [0,0.95,0.05,0,0]
45 274 FX45 4 65 0 0.5625 [0,0.1875,0.8125,0,0]
46 302 FX46 4 126 10 0.7030 [0,0,0.485,0.515,0]
47 314 FX47 4 66 300 0.6550 [0,0,0.725,0.275,0]
48 326 FX48 4 29 200 0.5325 [0,0.3375,0.6625,0,0]
49 342 FX49 4 59 40 0.5595 [0,0.2025,0.7975,0,0]
50 350 FX50 4 33 0 0.4825 [0,0.5875,0.4125,0,0]
51 400 FX51 3 148 2000 0.9000 [0,0,0,0.5,0.5]
52 406 FX52 4 236 800 0.9400 [0,0,0,0.3,0.7]
53 458 FX53 3 32 0 0.3800 [0.1,0.9,0,0,0]
54 460 FX54 3 45 200 0.4725 [0,0.6375,0.3625,0,0]
55 544 FX55 4 66 0 0.5650 [0,0.175,0.825,0,0]
56 595 FX56 4 69 0 0.5725 [0,0.1375,0.8625,0,0]
57 599 FX57 4 65 0 0.5625 [0,0.1875,0.8125,0,0]
58 627 FX58 4 44 0 0.5100 [0,0.45,0.55,0,0]
59 726 FX59 4 65 40 0.5745 [0,0.1275,0.8725,0,0]
60 830 FX60 3 15 40 0.3495 [0.2525,0.7475,0,0,0]
61 852 FX61 3 7 0 0.3175 [0.4125,0.5875,0,0,0]
62 1042 FX62 3 59 500 0.5975 [0,0.0125,0.9875,0,0]
63 1062 FX63 4 117 2000 0.9925 [0,0,0,0.0375,0.9625]
64 1346 FX64 4 159 10 0.7030 [0,0,0.485,0.515,0]
65 2354 FX65 4 96 0 0.6400 [0,0,0.8,0.2,0]
66 3325 FX66 4 19 0 0.4475 [0,0.7625,0.2375,0,0]
67 -- FX67 4 117 2000 0.9925 [0,0,0,0.0375,0.9625]
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