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Abstract: Multiple natural frequencies may be encountered when analyzing the essential natural
vibration of a symmetric mechanical system or sub-structure system or a system with special pa-
rameters. The transfer matrix method (TMM) is a useful tool for analyzing the natural vibration
characteristics of mechanical or structural systems. It derives a nonlinear eigen-problem (NEP) in
general, even a transcendental eigen-problem. This investigation addresses the NEP in TMM and
proposes a novel method, called the determinant-differentiation-based method, for calculating multi-
ple natural frequencies and determining their multiplicities. Firstly, the characteristic determinant
is differentiated with respect to frequency, transforming the even multiple natural frequencies into
the odd multiple zeros of the differentiation of the characteristic determinant. The odd multiple
zeros of the first derivative of the characteristic determinant and the odd multiple natural frequencies
can be obtained using the bisection method. Among the odd multiple zeros, the even multiple
natural frequencies are picked out by the proposed judgment criteria. Then, the natural frequency
multiplicities are determined by the higher-order derivatives of the characteristic determinant. Finally,
several numerical simulations including the multiple natural frequencies show that the proposed
method can effectively calculate the multiple natural frequencies and determine their multiplicities.

Keywords: linear vibration; multiple natural frequencies; nonlinear eigen-problem; transfer matrix
method; determinant derivatives; multibody system transfer matrix method

MSC: 70J10

1. Introduction

Natural vibration analysis is essential for dynamic design and manufacturing of
mechanical systems [1,2]. In the process of the natural vibration analysis, the multiple
eigenvalues, i.e., the multiple natural frequencies for undamped systems and the multiple
complex eigenvalues for damped systems, may be encountered if a mechanical system or a
sub-structure system is symmetrical and its boundary conditions are also symmetric, or the
system parameters are specially chosen. Determination for the frequency multiplicity is es-
sential for these systems such as the reduced-order model [3], the optimization design [4,5],
and so on.

Besides the widely used finite element method (FEM) [6], the transfer matrix method
(TMM) is also a useful tool for analyzing the natural vibration characteristics of a me-
chanical system, which fully utilizes both the analytical and numerical approximation
solutions of the mathematical models for individual elements. Especially for chain me-
chanical systems, the method only involves the low-order matrices. It has been applied to
many applications [7–13] including wave propagation of panels [7], beam structures [8],
rotor-bearing systems [9–11], vibration and acoustics of pipes [12,13], etc. Rui et al. [14]
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greatly improved the classical TMM of vibration mechanics and developed the multi-
body system transfer matrix method (MSTMM), including vibration analysis, frequency
response analysis and transient analysis for mechanical systems with linear vibration and
large motion. It was reported that the MSTMM already has approximately 150 different
applications [15], including but not limited to engineering software [15], a fly-cutting
machine-tool [2], helicopter-driven system [16], rotating machinery [17], and so on.

For analyzing the vibration characteristic of the undamped mechanical systems, both
the TMM and MSTMM derive the following eigen-equation [14]:

U(ω)Z = 0 (1)

where ω denotes the natural frequency, Z denotes the reduced state vector that summarizes
the unknown modal displacements and forces at the system boundary, and the coeffi-
cient matrix U is derived from the system overall transfer matrix according to the system
boundary conditions. Solving this eigen-equation enables the natural frequencies ω and
reduced state vector Z to be obtained. Here, we address the multiple natural frequencies
and determine their multiplicities by solving the above eigen-equation.

Different from the general eigen-problem in the FEM [6], the eigen-equation, as shown
in Equation (1), always contains the nonlinear functions, even transcendental functions,
of the natural frequencies. Thus, solving this eigen-equation is called the nonlinear eigen-
problem (NEP), even in cases of transcendental eigen-problems mathematically. The
NEP is reported as a challenge for the modern eigen-problem and includes the quadratic
eigen-problem, the polynomial eigen-problem, the rational eigen-problem and the tran-
scendental eigen-problem. Generally, the direct way to solve the quadratic eigen-problem
and polynomial eigen-problem is to adopt the linearization method, resulting in the gen-
eral eigen-problem with the first or second type of companion matrices [18,19]. Since the
linearization method increases the matrix order, it is the choice if the properties are unclear.
In addition, the commonly used methods include the Newton-type method [18,20–23]
and iterative projection method [24–27]. It was reported that no classical methods can
work perfectly for these NEP, and only the methods dealing with the specific structures
provide sufficiently accurate eigenvalues [18,27]. However, the NEP derived in TMM,
as well as MSTMM, represented by Equation (1), has no specific properties. It may be a
polynomial eigen-problem, rational eigen-problem, or transcendental eigen-problem, even
their combination, which depends on the types of the utilized elements when modeling the
mechanical or structural systems.

To the best of the author’s knowledge, only a few techniques exploiting the model
characteristics have been developed for NEP, especially the transcendental eigen-problem,
among which the famous Wittrick–Williams algorithm [28] is notable. This algorithm can be
regarded as an extension of the Sturm sequences method, and the latter is commonly used
for solving the general eigen-problem [6]. The Wittrick–Williams algorithm precisely counts
the number of the natural frequencies below a given trial frequency by utilizing the residual
dynamic stiffness matrix [28,29]. It has been applied in various fields including structural
dynamics analysis [29–33], linear buckling analysis [34,35], etc. Several improvements
and extensions have been proposed to enhance its efficiency [36] and capabilities [32,33].
However, due to the symmetry assumptions of the dynamic stiffness matrix, both the
Wittrick–Williams algorithm and its enhancements are not directly applicable for solving
the resulting NEP in both TMM and MSTMM, where the coefficient matrix of the derived
eigen-equation is asymmetric.

Another widely used strategy for solving NEP in both the TMM and MSTMM is
to transform them into the root-finding problems of the characteristic equation, i.e., the
algebraic equation expressed by the determinant of the coefficient matrix of the eigen-
equation shown as Equation (1). This allows solving NEP to be equivalent to solving the
resulting nonlinear algebraic equation [14,37–39] with respect to the natural frequency
ω. This strategy is feasible because the TMM, as well as MSTMM, only involves the
low-order matrices. Murthy [37] employed the Newton iteration method to solve the
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derived determinant equation from NEP for the flutter frequency in aeroelasticity. Xue [38]
proposed a method combining the dynamic finite element with the Riccati TMM for
solving the rational eigen-problem. The Muller iteration method, Brent method, Newton
iteration and quasi-Newton method [40] are suitable for finding a certain root, but their
local convergence means it requires guessing a proper initial value to ensure the local
convergence when searching for a certain root. However, a proper guess for a complex
mechanical or structural model is usually difficult. Moreover, when searching for the next
natural frequency within the trial frequency, the obtained natural frequencies should be
effectively stepped over during the subsequent iterations. Since the essential eigenvalues
are of the first several orders, they cannot directly meet the specific requirements for solving
the multi-root problem. Therefore, in TMM, the bisection method is widely applied to find
all the natural frequencies below a trial frequency [14] for its robustness. It is foolproof for
searching the odd multiple natural frequencies as long as the interval resolution can identify
the densest frequencies. However, the original bisection method, through identifying the
sign changes in function values on both sides, can only find the odd multiple natural
frequencies, including the distinct natural frequencies, rather than the even multiple natural
frequencies. Given these, Bestle et al. [39] proposed an extreme-based method called the
“recursive eigenvalue searching algorithm” (RESA) to solve the NEP in MSTMM. This
method transforms the root-finding problem into a minimization problem. In the RESA, a
minimum point may be incorrectly identified as a natural frequency of the system if it is a
non-zero minimum of the absolute value of the characteristic determinant. Moreover, no
methods are available for determining the multiplicities of the natural frequencies in both
MSTMM and TMM.

Therefore, when using TMM, as well as MSTMM, it is crucial to develop a more
stable and reliable method to resolve even multiple natural frequencies and determine the
multiplicities of all the natural frequencies.

This paper addresses the calculation of natural frequencies and determination of their
multiplicities of mechanical systems. In this paper, Section 2 presents a brief overview of
TMM, and then Section 3 illustrates a novel method, named the determinant-differentiation-
based method, to calculate the multiple natural frequencies for the derived NEP. Firstly,
the even multiple natural frequencies are calculated by transforming them into zeros of
the first derivative of the characteristic determinant. Then, judgment criteria are proposed
to identify and select the even multiple natural frequencies from the zeros of this first
derivative. The remaining odd multiple natural frequencies are directly obtained by finding
the zeros of the characteristic determinant using the bisection method. Subsequently,
we utilize the higher-order derivatives of the characteristic determinant with respect to
frequency to determine the multiplicities of all the natural frequencies. Finally, Section 4
presents several numerical simulations with multiple natural frequencies to validate the
proposed method for calculating these frequencies and determining their multiplicities.
Among them, the basic ideas, the judgment criteria, and the method to determine the
multiplicities are original. They are outlined in Sections 3.1, 3.3 and 3.4, respectively.
Section 3.2 mainly deduces an alternative to Jacobi’s formula to obtain the derivative
without matrix inversion for the fact that the coefficient matrix U near the natural frequency
is almost singular.

2. Principle of Transfer Matrix Method

In TMM [14], for a spatially vibratory element, the state vector of each connection
point may be defined as, i.e.,

Z =
[
RT ΘT MT QT]T (2)
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where R, Θ, M and Q denote the modal translational displacements, rotational angles,
forces and moments, respectively. Their array forms in three axis directions of the element’s
inertial frame can be given as follows:

R =

X
Y
Z

, Θ =

ΘX
ΘY
ΘZ

, M =

MX
MY
MZ

, Q =

QX
QY
QZ

 (3)

The state vectors of connection points of each element are divided into input I and
output O. For the element i with a single input and single output, the relationships between
its state vectors can be expressed as the transfer equation [14]:

Zi,O = UiZi,I (4)

where Ui is the element transfer matrix. For any branch element i with multiple inputs and
a single output, the relationships among its state vectors are expressed as follows [14]:

Zi,O =
N

∑
k=1

Ui,Ik Zi,Ik (5)

where N denotes the number of inputs of this branch element, Ik (k = 1, 2, · · · , N) denotes
the k-th input, and Ui,Ik denotes the element transfer matrix from input Ik to output O.
Additionally, the consistency equations should be supplemented due to the state vector
dependency of its inputs. For a rigid body with multiple inputs and a single output, its
consistency equations can be expressed as follows [14,15]:

Hi,I1Zi,I1 + Hi,IN Zi,IN = 0, k = 2, 3, · · · , N (6)

where Hi,Ik (k = 1, 2, · · · , N) denotes the coefficient matrix corresponding to the k-th input
of branch element i. For a flexible body, the consistency equations can be found in Ref. [2].

The state vectors of the intermediate connection points within the system can be
recursively eliminated from the system inputs to the system output, and the system overall
transfer equation is finally derived [14]:

UallZall = 0 (7)

where the boundary state vector of the system Zall is composed of the state vectors of
the system boundary, while the coefficient matrix Uall of Equation (7) is called the overall
transfer matrix. Excluding the corresponding columns and rows of Uall according to the
zeros in Zall, the final eigen-equation is deduced as shown in Equation (1). The nontrivial
solution Z of Equation (1) requires a singular coefficient matrix, leading to the following
characteristic equation:

∆(ω) := det
¯
U = 0 (8)

In general, Equation (8) is solved to obtain the odd multiple natural frequencies,
especially the distinct natural frequencies, by using the methods such as the bisection
method [14], RESA [39], and so on. In the next section, a stable and reliable method will be
developed to resolve multiple natural frequencies, including those with even multiplicities,
and the multiplicities of all the natural frequencies will be determined.

3. Multiple Natural Frequency Analysis

Unless otherwise noted, the first and k-th order derivatives of (·) with respect to ω
can be expressed as follows:

(•)′ = d(•)
dω

, (•)(k) = dk(•)
dωk (9)



Mathematics 2024, 12, 1413 5 of 24

3.1. Basic Ideas

If a mechanical system has the multiple natural frequencies, its characteristic equation.
Equation (8) will have multiple roots. According to the definition of multiple roots in
algebraic equations [41], for the infinitely differentiable function ∆(ω) with respect to the
single variable ω, ω∗ is an m-multiple zero of ∆(ω) if and only if the following condition
is satisfied:

∆(ω∗) = ∆′(ω∗) = · · · = ∆(m−1)(ω∗) = 0 ∧ ∆(m)(ω∗) ̸= 0 (10)

This equation implies that ω∗ is the m − 1 multiple zero of ∆′(ω). Thus, it can be found
that every even multiple zero of ∆ is the odd multiple zero of ∆′ and is used to transfer the
even multiple zero of ∆ into the odd multiple zero of ∆′. Moreover, an m-multiple zero
of ∆(ω) is also the zero of the k-th derivative ∆(k)(ω) if k < m, while it is not the zero of
∆(k)(ω) if k ≥ m.

3.2. First Derivative of the Characteristic Determinant

Based on the above basic idea, the even multiple natural frequencies of the system
can be obtained by directly using the bisection method to solve the following nonlinear
algebraic equation for the odd multiple roots:

∆′(ω) = 0 (11)

The first derivative of the determinant ∆ with respect to the natural frequency ω can
be obtained by utilizing Jacobi’s formula [19]:

∆′(ω) = ∆(ω)tr

(
¯
U
−1¯

U
’
)

(12)

where tr(·) denotes the trace of matrix (·). Due to the singularity near the exact solution
ω∗, it is necesary to avoid the matrix inversion. Consider the following equation:

¯
U
−1

=
1

∆(ω)
adj

¯
U (13)

where adj(·) denotes the adjacent matrix of (·), Equation (12) can be expressed as follows:

∆′(ω) =
N

∑
k=1

N

∑
j=1

{(
adj

¯
U
)}

kj

{
¯
U

’
}

jk

(14)

where {·}ik denote the component in the i-th row and the k-th column of matrix (·).
The definition of the adjacent matrix yields the following:

N
∑

j=1

{
adj
(

¯
U
)}

kj

{
¯
U

’
}

jk

= det
[

col1
¯
U · · · colk−1

¯
U colk

¯
U

’

colk+1
¯
U · · · colN

¯
U

] (15)

where colk(·) denotes the components in the k-th column of matrix (·).
Therefore, the equivalent formula of ∆′(ω) can be derived from Equations (14) and (15)

as follows:

∆′(ω) =
N

∑
k=1

det
[

col1
¯
U · · · colk−1

¯
U colk

¯
U

’

colk+1
¯
U · · · colN

¯
U

]
(16)

Although Equation (16) requires more computational time than Equation (12) due to
computing N determinants, the MSTMM only involves very low-order matrices; thus, using
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Equation (16) instead of Equation (12) to avoid the matrix inversion of U near the exact
solution ω∗ is feasible. Therefore, according to Equation (16), the characteristic determinant
derivative can be deduced by calculating U and its derivative U′.

Thus, by utilizing the bisection method with scanning intervals and identifying the
sign changes in ∆′ at the two sides of each rooted interval, the zeros of Equation (11) can
encompass the even multiple natural frequencies of the system, where the first derivative
of the characteristic determinant are calculated using Equation (16).

3.3. Judgment Criteria for Picking out the Even Multiple Natural Frequencies

Since Equation (11) only gives the odd multiple zeros of ∆′(ω), i.e., the stagnation
points of the differentiable function ∆(ω), it is crucial to introduce practical judgment
criteria for picking out part of the zeros of ∆′(ω), which are the zeros of ∆(ω). Such
judgment criteria will be proposed in this section and thereby pick out even multiple
natural frequencies.

To clearly illustrate the fact that zeros of ∆′(ω) may not be the zeros of ∆(ω), a spatially
cantilever beam, as illustrated in Figure 1, is selected as an example.
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Figure 1. A spatial cantilever beam with multiple frequencies.

This beam is modeled as a uniform Euler beam with a circular cross-section, which
has a diameter of 0.05 m, a Young’s modulus of 200 GPa, a density of 7800 kg/m3, and
a length of 1 m. This structural system is symmetric and thereby has multiple natural
frequencies related to the flexure vibration modes. The transfer matrix of the spatially
vibratory Euler beam can be found in Ref. [14]. According to the fixed-free boundary
condition, the characteristic determinant can be derived, whether using MSTMM and
TMM, using the following equation:

∆(ω) =
1
4
(1 + cos λL cos λL)2 cos βL cos γL (17)

where λ =
(
mω2/EI

)1/4, β =
√

mω2/EA and γ = ω
√

E/[2ρ(ν + 1)]. Here, m, EI and EA
represent the line mass density, bending stiffness and tensile stiffness. Equation (17) gives
the double multiple frequencies that satisfy 1+ cosλLcosλL = 0 and the distinct frequencies
that satisfy cosβL = 0 or cosγL = 0. ∆(ω) and its derivative are plotted in Figure 2,
where they are scaled using the following continuous function: f 7→ sgn( f )log10(1 + | f |) .
Here, f = ∆(ω) or ∆′(ω). In Figure 2, the markers “▽” and “△” represent the odd
multiple natural frequencies and even multiple natural frequencies, respectively, while “#”
represents the numerical values that are the zeros of ∆′(ω) but not the zeros of ∆(ω). The
odd multiple natural frequencies are not the zeros of ∆′(ω) because of their multiplicities
of 1, which are the tensile natural frequencies and torsional natural frequencies and can be
obtained by directly solving Equation (17) using the bisection method.

In Figure 2, we can see that the characteristic determinant ∆(ω) has a sign change
on both sides of the odd multiple natural frequencies but no sign change on both sides of
the even multiple natural frequencies. Therefore, the even multiple natural frequencies,
i.e., the bending natural frequencies, cannot be obtained by solving Equation (8) with the
bisection method due to there being no sign changes for ∆(ω) at two sides of the intervals
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containing the even multiple zeros. Fortunately, they are also the odd multiple roots of
∆′(ω), which can be obtained by solving Equation (11) using the bisection method.
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odd multiple frequencies, and even multiple frequencies).

Obviously, several zeros of ∆′(ω), which are marked by “#” in Figure 2, are not the ze-
ros of ∆(ω), but the even multiple natural frequencies are both the zeros of ∆(ω) and ∆′(ω).
The zeros of ∆′(ω) not equal to the natural frequencies should be effectively excluded.

On the other hand, due to the inherent floating-point errors of computers, Equation (8)
cannot be perfectly satisfied for even multiple roots, although it can be satisfied with the
required absolute error. The numerical value of ∆(ω) may be large or small near the exact
natural frequency ω∗. For example, further details for ∆(ω) near the even multiple natural
frequencies of this structural system are presented in Figure 3a–f.
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Figure 3. Numerical values of ∆(ω) near the first 6 pairs of even natural frequencies (bending modes).

In Figure 3a–f, numerical solutions of these even multiple natural frequencies are
obtained within the absolute error of 0.01 rad/s and marked by “△” in red, which are all
the bending natural frequencies with a multiplicity of 2. The tangents passing through the
numerical solutions are plotted with orange dash-dotted lines. From Figure 3, it can be
seen that the values of ∆(ω) in the numerical solutions are not zero and may be numerically
small, as shown in Figure 3a–d, or numerically large, as shown in Figure 3e,f.

Thus, the upper bounds of the determinant ∆(ω) near the natural frequencies, which
are used to exclude the non-zeros of Equation (8) among the roots of Equation (11) to pick
out the even multiple natural frequencies, cannot be given artificially as a fixed value. This
upper bounds should be given adaptively based on the change rates of ∆(ω). Therefore,
it is crucial to introduce criteria to effectively exclude the zeros that are not equal to the
natural frequencies within the absolute error among the odd multiple zeros of ∆′(ω).

Let E(ω*,ε) represent the neighborhood centered around an exact natural frequency
ω* with the radius equal to the absolute error ε:

E(ω∗, ε) = [ω∗ − ε, ω∗ + ε] (18)

This exact natural frequency ω* is also the exact zero of the infinitely differentiable
function ∆(ω). According to Lagrange’s mean value theorem, for any approximation
ω̄ ∈ E(ω∗, ε) , there exists η ∈ E(ω∗, |ω̄ − ω∗|), such that

∆(ω̄) = ∆(ω∗) + ∆′(η)(ω̄ − ω∗) = ∆′(η)(ω̄ − ω∗) (19)

Thereby, ∣∣∆(ω̄)
∣∣= ∣∣∆′(η)

∣∣|ω̄ − ω∗| ⩽ Mε (20)

where
M = max

η∈E(ω∗ ,|ω̄−ω∗ |)

∣∣∆′(η)
∣∣ (21)
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This formula shows that the upper bound of ω̄ for identifying the even multiple
natural frequencies can be determined if the maximum of |∆′(ω)| is determined for all
ω ∈ E(ω∗, |ω̄ − ω∗|). Generally, as the absolute error ε is a higher-order small quantity
with respect to ω > 0, ∆′(ω) exhibits monotonic behaviors as long as ε is sufficiently small,
which is illustrated in Figure 4.
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Figure 4a,b illustrate the monotonic increase behavior, revealing that M = −∆′(ω)
and M = ∆′(ω) when ω ⩽ ω∗ and ω ⩾ ω∗, respectively, while Figure 4c,d illustrate the
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monotonic decrease behavior, revealing that M = ∆′(ω) and M = −∆′(ω) when ω ⩽ ω∗

and ω ⩾ ω∗, respectively. Meanwhile, these monotonic behaviors of ∆′(ω) near the even
multiple natural frequency ω∗ can be strictly proved according to Taylor’s mean value
theorem, which is presented in Appendix A.

Therefore, the maximum of
∣∣∆′(ω)

∣∣ in the neighborhood E(ω∗, |ω − ω∗|) can be
obtained as follows:

max
η∈[min{ω,ω∗},max{ω,ω∗}]

∣∣∆′(η)
∣∣ = ∣∣∆′(ω)

∣∣ (22)

Then, Equations (20) and (23) yield an estimation for the upper bounds:

|∆(ω)| ≤
∣∣∆′(ω)

∣∣ε (23)

This estimation can be intuitively illustrated in Figure 5, where the purple dashed line
passing through the point (ω, ∆(ω)) is the tangent of the red curves for ∆(ω). Meanwhile,
the orange dash-dotted line passing through the point (ω∗, 0) is parallel to the purple
dashed line. It is clear that the numerically obtained even multiple natural frequency ω
will satisfy Equation (23) if the absolute error ε is sufficiently small. Figure 5a–d show the
variations in ∆(ω) corresponding to the monotonic behavior as depicted in Figure 4a–d,
where estimations for the upper bounds are marked with gray points. Moreover, the varia-
tions in the ∆(ω) depicted in Figure 4a–d also correspond to those depicted in Figure 3e,
Figure 3a–c, Figure 3d,f, respectively.
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Considering the computational rounding error of computers, the numerically com-
puted upper bounds may be lower due to the insufficient precision digits, so a safety factor
α is introduced to adjust the estimation for the upper bound. Then, Equation (23) can be
further modified to obtain Equation (24):

|∆(ω)| ≤ α
∣∣∆′(ω)

∣∣ε (24)

It should be noted that the judgment criterion, as shown in Equation (24), also con-
stitutes a theoretically sufficient condition when the absolute error is sufficiently small,
which has been proven in Appendix B. Equation (24) also implies that |∆(ω)| → 0 if ε → 0 .
Therefore, a zero of Equation (11) is considered as an even multiple natural frequency if
Equation (24) is satisfied. For functions that change sharply, the influence of the round-off
error will be slightly greater: α = 1.5 ∼ 2 is recommended.

Subsequently, for the structural system depicted in Figure 1, the judgment criteria
specified in Equation (24) can effectively exclude the non-zeros of ∆(ω) from the zeros
of ∆′(ω), which are marked by “#” in Figure 2; therefore, the even multiple natural
frequencies are effectively picked out and marked by “△”.

3.4. Determine the Multiplicity of the Natural Frequencies

Based on the equivalent definition for multiple natural frequencies as stated in
Equation (10), the multiplicity of a zero of ∆(ω) can be theoretically determined by as-
sessing whether it is a zero of its higher-order derivatives. Therefore, the multiplicity of a
zero can be determined based on the sign changes in the higher-order derivatives of ∆(ω)
at two sides of the interval that encompass this zero.

Let ω∗
Even and ω∗

Odd, respectively, denote the 2m multiple and 2m − 1 multiple natural
frequencies, i.e., the 2m multiple and 2m − 1 multiple zeros of the infinitely differentiable
function ∆(ω), where m is a positive integer. Equation (10) implies that ω∗

Even is an odd
multiple zero of ∆(2k−1)(ω), k = 1, 2, · · · , m but not a zero of ∆(2m+1)(ω), and ω∗

Odd is an
odd multiple zero of ∆(2k−2)(ω), k = 1, 2, · · · , m but not a zero of ∆(2m)(ω).

Therefore, if the absolute error ε is sufficiently small, then ∆(2m+1)(ω) in the domain
E
(
ω∗

Even, ε
)

and ∆(2m)(ω) in the domain E
(
ω∗

Odd, ε
)

exhibit positivity or negativity. This
means that the multiplicity of each zero can be determined by observing the sign changes
in the derivatives at two sides of the respective intervals surrounding the zeros; i.e., the
following conditions should be satisfied:{

∆(2k+1)(ω∗
Even + ε

)
∆(2k+1)(ω∗

Even − ε
)
< 0, k = 0, 1, 2, · · · , m − 1

∆(2m+1)(ω∗
Even + ε

)
∆(2m+1)(ω∗

Even − ε
)
> 0

(25)
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for 2m multiple natural frequencies and{
∆(2k)(ω∗

Odd + ε
)
∆(2k)(ω∗

Odd − ε
)
< 0, k = 0, 1, 2, · · · , m − 1

∆(2m)
(
ω∗

Odd + ε
)
∆(2m)

(
ω∗

Odd − ε
)
> 0

(26)

for 2m − 1 multiple natural frequencies, respectively. It should be noted that m in the above
two equations does not denote the same value. In Equation (25), 2m only means a certain
even multiple natural frequency with the multiplicity 2m. In Equation (26), 2m − 1 means
an odd multiple natural frequency with the multiplicity 2m − 1.

Consider the round-off error in the numerical computation; the above conditions
are used to determine the multiplicity and can be adjusted by a safety factor β, typically
taken as 1~2 to slightly enlarge the regions E

(
ω∗

Even, ε
)

and E
(
ω∗

Odd, ε
)
. Thus, based on

the preceding discussions, the procedure for determining the multiplicities of natural
frequencies utilizing the determinant derivatives is depicted in Figure 6.
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In Figure 6, N denotes the total number of natural frequency values, with each multiple
natural frequency being counted once according to its value. For example, if a system has
only two sets of multiple natural frequencies, then N is equal to 2. Take the cantilever
beam shown in Figure 1 as a case study to explain in detail the calculation process shown
in Figure 6. There should be nine numerically distinct solutions within the frequency
range of 20,000 rad/s, i.e., N = 9. For these solutions, some of them are obtained by
solving Equation (8) with the bisection method, which are considered as odd multiple
roots, i.e., odd multiple natural frequencies. Then, the processes on the right branch in
Figure 6 can be executed to determine their odd multiplicities. The other part of the solution
is obtained by solving (11) using the bisection method and filtering through criterion (24).
This part pertains to even multiple roots, i.e., even multiple natural frequencies, so the
processes on the left branch in Figure 6 can be executed to obtain their even multiplicities.

Clearly, this procedure necessitates the higher-order derivatives of the characteristic
determinant. In view of this, a differentiation formula for computing these derivatives is
developed by differentiating the first derivative, i.e., Equation (16), p − 1 times, i.e.:

∆(p)(ω) =
N

∑
k1=1

N

∑
k2=1

· · ·
N

∑
kp=1

det
¯
U
[k1,k2,··· ,kp ]

(27)
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where each column of matrix
¯
U
[k1,k2,··· ,kp ]

is defined as

colj
¯
U
[k1,k2,··· ,kp ]

= colj
¯
U
(r)

(ω), r =
p

∑
m=1

s{j = km} (28)

and the function s{·} is defined as

s{cond} =

{
1 ifcondistrue
0 ifcondisfalse

(29)

Thereby, the higher-order derivatives of the determinant can be derived by the deriva-
tives of the coefficient matrix U.

3.5. Flowchart of the Proposed Method for Multiple Natural Frequency Analysis

Up to this point, we have proposed a novel method for solving the multiple natural
frequencies, namely the determinant-differentiation-based method, which utilizes the first
and higher-order derivatives of the characteristic determinant. The proposed method
mainly involves calculating the even multiple natural frequencies, picking out the even
multiple natural frequencies with the judgment criteria, and determining the multiplicities
of all the natural frequencies. The three aspects are integrated and summarized in the
flowchart presented in Figure 7.
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In Figure 7, the red box represents the solution method for odd multiple natural
frequencies, while the blue box represents the solution method for even multiple natural
frequencies. Calculating even multiple natural frequencies with the transfer matrix method
requires the computation of the first-order derivative of the element transfer matrices
to further obtain the derivative of the overall transfer matrix. There are two steps to
obtain the even multiple natural frequencies in the proposed method: (1) find roots of
Equation (11) with the bisection method; (2) pick out the natural frequencies among the
roots of Equation (11) using the judgment criteria according to Equation (24). The remaining
odd multiple natural frequencies, including the distinct natural frequencies, can be directly
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obtained by solving Equation (8) using the bisection method. After obtaining the numerical
values of all the natural frequencies, the higher-order derivatives are utilized to determine
their multiplicities.

4. Numerical Studies

To validate the proposed method for calculating the multiple natural frequencies and
determining their multiplicities, several numerical comparative simulations are conducted.
The numerical studies include a chain mechanical system, two closed-loop structural
systems, and a branch mechanical system. It should be noted that the RESA used in these
simulations is conducted with the absolute error, where the sampling process utilizes the
linear sampling instead of logarithmic sampling in [39]. Additionally, the original sign-
based bisection method in this paper is referred to as the direct bisection method (DBM).
All the element transfer matrices used here can be seen in [14]. The safety factors α and β in
the proposed method are selected as 1.5 and 1.0, respectively.

4.1. Free Vibration of a Chain Mechanical System with Multiple Natural Frequencies

A spatially vibratory chain mechanical system consisting of four rigid bodies and four
springs is illustrated in Figure 8, which exhibits the clamped-free boundary conditions. All
the rigid bodies share identical geometric parameters, masses, and moments of inertia. The
mass of each rigid body is 1 kg. In the body-fixed frame xiyizi originating from its input,
the mass center and the output of each rigid body are located at lIC,i =

[
0.05 0 0

]T and

lIO,i =
[
0.1 0 0

]T, respectively.
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If all the geometrical parameters of rigid bodies and spring stiffness are the same in
two transverse directions, this system may have even multiple natural frequencies. The
moment of inertia projected in the fixed body frame is as follows:

Ji,I =

0.001666 0 0
0 0.0041667 0
0 0 0.0041667

kg·m2, i = 2, 4, 6, 8 (30)

The translational stiffness and torsional stiffness of each spring are identical. The
translational stiffness in three directions is Kx = Ky = Kz = 105 N/m, and the torsional
stiffness around three axes of the fixed body frame is Kx

′ = Ky
′ = Kz

′ = 103N·m/rad.
For this chain mechanical system, the boundary state vector Zall and overall transfer

matrix Uall are shown as follows:

Zall =
[
Z8,0

T Z1,0
T]T, Uall =

[
−I T1−8

]
(31)

where I denotes the identity matrix with the order of 12 × 12, and T1−8 is defined as

T1−8 = U8U7U6U5U4U3U2U1 (32)

where Ui denotes the transfer matrix of element i.
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Thus, according to system boundary conditions, the characteristic equation is as follows:

∆(ω) = det
¯
U = det(col7−18Uall) = 0 (33)

where coli∼j(·) denotes the components of (·) from its i-th to j-th columns.
The required first derivative and higher-order derivatives of the characteristic deter-

minant can be obtained by utilizing Equations (16) and (27), respectively.
This discrete system has 24 degrees of freedom (DOFs), giving rise to 24 modes

in total. Due to the similarity in both the Y- and Z-direction regarding the structural
property and boundary conditions, the frequencies associated with the transverse vibration
in the X–Y and X–Z planes may overlap, resulting in a multiplicity of 2. The natural
frequencies calculated through the DBM, RESA, analytical solutions, and proposed method
are presented in Table 1. The analytical solutions are obtained by utilizing Lagrange’s
formulation. The absolute computing error of 0.01 rad/s is employed, and both the
determinant and its derivative are shown in Figure 9.

Table 1. Natural frequencies of the chain mechanical system (unit: rad/s).

Modal Order 1 2 3 4 5 6 7 8

DBM - - 109.824 - - 269.012 316.231 -
RESA 49.600 - 109.824 209.621 - 269.018 316.228 422.053

Analytical 49.603 49.603 109.825 209.619 209.619 269.015 316.228 422.053
Proposed 49.606 49.606 109.824 209.621 209.621 269.012 316.231 422.051

Modal Order 9 10 11 12 13 14 15 16

DBM - 484.488 - - 594.316 - - 774.598
RESA - 484.492 572.895 - 594.316 754.483 - 774.598

Analytical 422.053 484.489 572.896 572.896 594.314 754.482 754.482 774.597
Proposed 422.051 484.488 572.895 572.895 594.316 754.481 754.481 774.598

Modal Order 17 18 19 20 21 22 23 24

DBM - - 1186.754 - - 1455.762 - -
RESA 1004.114 - 1186.749 1279.005 - 1455.769 1477.811 -

Analytical 1004.115 1004.115 1186.751 1279.005 1279.005 1455.766 1477.808 1477.808
Proposed 1004.113 1004.113 1186.754 1279.004 1279.004 1455.762 1477.809 1477.809
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In Figure 9, it can be seen that ∆(ω) has eight even multiple zeros and eight odd
multiple zeros without counting their multiplicities. This means that this chain system has
eight even multiple and eight odd multiple natural frequencies. Consequently, the results
presented in Table 1 reveal that this system has eight sets of double natural frequencies and
eight distinct natural frequencies. Compared to the analytical solutions, the even multiple
natural frequencies cannot be resolved using the DBM. The RESA can only determine
numerical values of the natural frequencies without determining their multiplicities. In
contrast, the proposed method can effectively resolve the multiple natural frequencies and
determine their respective multiplicities. Moreover, Figure 9 demonstrates that the even
multiple zeros of the characteristic determinant are also the odd multiple zeros of its first
derivative, and the monotonicity of the first derivative of characteristic determinant near
the even multiple natural frequencies is consistent with Figure 4 in this simulation.

4.2. Free Vibration of a Closed-Loop Structural System with Multiple Natural Frequencies

A closed-loop structural system composed of four identical square planar rigid bodies
and four identical springs is shown in Figure 10, which is vibrating in plane. Each rigid
body has a mass of 1 kg, with its center of mass located at its geometric center. The
connection point of each rigid body is positioned at the midpoint of the corresponding
side. The moment of inertia with respect to the midpoint of any side is 5/12 kg·m2. The
translational stiffness of each spring is 1000 N/m in the x and y principal directions, and
the torsional stiffness is 100 N·m/rad.
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Figure 10. Schematic diagram of a closed-loop mechanical system composed of 8 elements numbered
from 1 to 8 and with multiple natural frequencies.

If all the rigid bodies and springs are the same, this system may have multiple natural
frequencies. These elements form a transfer closed loop. Therefore, in MSTMM, the system
overall transfer matrix can be obtained as follows:

Uall = T1−8 − I, T1−n = U8 · · ·U2U1 (34)

where Uj(j = 1, 2, · · · , 8) denotes the transfer matrix of element j. For the closed-loop
system, the coefficient matrix U of the eigen-equation is equal to Uall.

This system has 12 DOFs, resulting in 12 vibration modes. The first three natural
frequencies correspond to zero values and represent the free displacement modes. Frequen-
cies obtained through the DBM, RESA, analytical solutions, and the proposed method in
this paper are presented in Table 2, where the first three zero frequencies are excluded, and
the absolute error is set to 0.001 rad/s.
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Table 2. Frequencies of the closed-loop system composed of rigid bodies and springs (unit: rad/s).

Modal Order 4 5 6 7 8 9 10 11 12

DBM - - 44.721 - - 48.990 - - 89.443
RESA 40.601 - 44.721 - - - 80.942 - 89.443

Analytical 40.601 40.601 44.721 44.721 44.721 48.990 80.942 80.942 89.443
Proposed 40.602 40.602 44.721 44.721 44.721 48.990 80.942 80.942 89.443

The results show that, after excluding the free displacement modes, this system has
two sets of double natural frequencies, one set of triple natural frequencies and two distinct
natural frequencies, resulting in nine non-zero natural frequencies in total. Meanwhile, it
is evident that the DBM can neither resolve the even multiple natural frequencies of the
system nor determine the multiplicities of all frequencies. The RESA cannot determine the
frequency multiplicities, and the 9-th natural frequency is missed when the sample number
is set to 100. The proposed method in this paper obtains all the multiple natural frequencies
and correctly gives their multiplicities. The curves corresponding to the characteristic
determinant and its first two derivatives are plotted in Figure 11.
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Figure 11. Characteristic determinant and the first two derivatives of the closed system (“#”, “▽”,
and “△”denote the zeros of the first derivative but not the natural frequencies, odd multiple natural
frequencies, and even multiple natural frequencies, respectively).

In Figure 11, it can be observed that three curves pass through the horizontal axes
and intersect at the same point within the range of 44 rad/s to 46 rad/s, indicating the
presence of a natural frequency with a multiplicity of at least 3. Through our calculations,
we identified a solution at 44.721 rad/s, which satisfies cases k = 1 and 2 in Equation (26),
but not k = 3. Therefore, this solution can be identified as a triple natural frequency as
presented in Table 2. Moreover, the monotonicity of the first derivative of the characteristic
determinant near the double natural frequencies is also consistent with the descriptions
illustrated in Figure 4; thus, the criteria are feasible for picking out these even multiple
natural frequencies among the zeros of ∆′(ω).

4.3. Free Vibration of a Regular Hexagonal Structure with Multiple Natural Frequencies

A regular hexagonal structure vibrating in plane is illustrated in Figure 12. This
structure consists of six straight uniform Euler beams with circular cross-sections, which
consider the axial tension. The beams are connected end to end by six nodes, with each
node containing spring supports in two principal directions. In this configuration, the
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beams and supported nodes are marked by odd numbers from 1 to 11 and even numbers
from 2 to 12, respectively.
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Figure 12. Schematic diagram of a regular hexagonal structure composed of 12 elements numbered
from 1 to 12 and with multiple natural frequencies.

The system can be considered as a closed-loop system consisting of six rigid bodies
and six supports; that is, these twelve elements form a transfer loop. If all beams and
supports are the same except for their orientations, the system will exhibit multiple natural
frequencies. Here, the Young’s modulus of the Euler beam is 200 GPa, the section radius is
0.025 m, the density is 7800 kg/m3, and the length is 1 m. The boundary bearing stiffness
in both principal directions is 1000 N/m. Therefore, this structure can be regarded as a
closed-loop system. The overall transfer matrix follows the same form as Equation (34), i.e.:

Uall = T1−12 − I, T1−12 = U12 · · ·U2U1 (35)

where the matrices U1, U3, · · · , U11 denote the transfer matrix of the Euler beams numbered
as 1, 3, . . ., 11 while the matrices U2, U4, · · · , U12 denote the transfer matrix of the spring
supprts numbered as 2, 4, . . ., 12. The coefficient matrix U of the eigen-equation is also
equal to Uall in this simulation.

The natural frequencies obtained using the DBM, RESA, FEM, and proposed method
in this paper are presented in Table 3, where the absolute error adopted in the DBM,
RESA, and proposed method is 0.01 rad/s. The FEM is used to provide the reference
results by dividing each Euler beam into 20 two-node Euler beam elements considering the
tensile DOFs.

Table 3. Natural frequencies of the regular hexagonal structure system (unit: rad/s).

Modal Order 1 2 3 4 5 6 7

DBM - - 8.851 - - 483.359 624.390
RESA 8.081 - 8.852 193.670 - 483.360 624.387
FEM 8.080 8.080 8.852 193.667 193.667 483.359 624.385

Proposed 8.084 8.084 8.851 193.670 193.670 483.359 624.390

The results show there are two pairs of double natural frequencies and three distinct
natural frequencies in the first seven natural frequencies, revealing that the proposed
method can effectively obtain the even and odd multiple natural frequencies as well as
their multiplicities, compared with the RESA and DBM.

4.4. Free Vibration of a Branch Mechanical System

A branch system consisting of a planar square rigid body and four planar spring
elements, as illustrated in Figure 13, is chosen to validate the proposed method for the
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branch mechanical systems. The choice is motivated by the fact that the analytical solu-
tions for this simple system can be directly derived. In this system, each spring connects
the midpoint of each side of the rigid body to the system boundary. The square rigid
body has a side length of 2a, mass m, and the moment of inertial Jz = 5 ma2/3 with
respect to the midpoint of each side. Each spring has the translational stiffness denoted by
Kx,i = Kx, Ky,i = Ky(i = 2, 3, 4, 5) and angular stiffness denoted by K′

z,i = Kr(i = 2, 3, 4, 5).
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When parameters are specially chosen, this system will have double natural frequen-
cies or triple natural frequencies. The boundary state vector Zall is chosen as follows:

Zall =
[
ZT

2,0 ZT
3,0 ZT

4,0 ZT
5,0

]T
(36)

Therefore, the overall transfer matrix can be obtained by the automatic assembly
method [14] and expressed as follows:

Uall =

 −I T3−2 T4−2 T5−2
O3×6 G3−1 G4−1 O3×6
O3×6 G3−1 O3×6 G5−1

 (37)

{
T3−2 = U2U1,I1U3, T4−2 = U2U1,I2U4, T5−2 = U2U1,I3U5,
G3−1 = −H1,I1U3, G4−1 = H1,I2U4, G5−1 = H1,I3U5

(38)

where U2,U3,U4, and U5 denote the transfer matrices of the four springs, while U1,I1 ,U1,I2 ,
and U1,I3 denote the transfer matrices of rigid body 1 from its three inputs to output.

According to the system boundary conditions, the coefficient matrix of the eigen-
equation expressed in Equation (1) is as follows:

¯
U = col4-6,10-12,16-18,22-24Uall (39)

The natural frequencies of this simple system can be analytically obtained using the
following equation:

ω1 = 2

√
Kx

m
, ω2 = 2

√
Ky

m
, ω3 =

√
4Kr + 2

(
Kx + Ky

)
a2

Jz − ma2 (40)

Typically, this system has three distinct natural frequencies, marked as Case A. Another
two exceptional cases are marked as Case B and Case C, where Case B is defined by
supplementing the condition Kx = Ky = K based on Case A, and Case C is defined by
supplementing the condition Kr = K

(
Jz − 2ma2)/m based on Case B.



Mathematics 2024, 12, 1413 21 of 24

For Case B, the system contains one pair of double natural frequencies and a single
natural frequency, i.e.,

ω1 = ω2 = 2

√
K
m

, ω3 = 2

√
Kr + a2K
Jz − ma2 (41)

For Case C, the system contains only one set of triple natural frequencies, i.e.,

ω1,2,3 = 2

√
K
m

(42)

To conduct a numerical study to validate the effectiveness of the proposed method for
the branch mechanical systems, the parameters in Case A, B, and C are chosen as follows:

CaseA : m = 1 kg, a = 0.5 m, Kr = 10 N·m/rad, Kx = 100 N/m, Ky = 200 N/m;
CaseB : m = 1 kg, a = 0.5 m, Kr = 10 N·m/rad, K = 100 N/m;
CaseC : m = 1 kg, a = 0.5 m, K = 100 N/m

(43)
The calculation results are shown in Table 4. Among them, the absolute computational

error in the proposed method is taken as 0.001 rad/s, and the numerical values of the
analytical solutions can be obtained using Equations (40)–(43).

Table 4. Natural frequencies of the branch mechanical system.

Method Analytical (rad·s−1) Proposed Method (rad·s−1)

Model Order 1 2 3 1 2 3

Case A 20.000 28.284 33.764 20.000 28.284 33.764
Case B 20.000 20.000 28.983 20.000 20.000 28.983
Case C 20.000 20.000 20.000 20.000 20.000 20.000

Table 4 reveals that the proposed method can be used to effectively calculate the
multiple natural frequencies of this branch system and determine their multiplicities.

5. Conclusions

This paper proposes a novel method, named the determinant-differentiation-based
method, for calculating the multiple natural frequencies and their multiplicities. It enables
the TMM, as well as MSTMM, to effectively calculate the multiple natural frequencies and
determine their multiplicities, where the latter has not been addressed previously pertaining
to the MSTMM or TMM. Four comparative simulations show that the calculation accuracy
of the proposed method agrees well with the available analytical solutions or the finite
element method. The proposed method makes the following contributions:

(1) By differentiating the characteristic determinant with respect to the natural frequency,
the proposed method effectively calculates the even multiple natural frequencies of the
mechanical or structural systems. This is achieved by transforming the even multiple
natural frequencies into the odd multiple zeros of the first derivative of determinant,
and the odd multiple zeros can be directly obtained with the bisection method.

(2) The proposed judgment criteria can effectively pick out the even multiple natural
frequencies among the zeros of the first derivative of the characteristic determinant,
in which the upper bounds can adaptively change with the absolute error from the
true zeros.

(3) The higher-order derivatives of the characteristic determinant are derived and utilized
to accurately determine the multiplicities of all the natural frequencies.

This paper also provides a method for solving the real nonlinear eigen-problem with
multiple eigenvalues and with a middle- or low-rank matrix, including solving their
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eigenvalues and multiplicities. In the proposed method, we have taken into account
numerical stability and therefore avoided matrix inversion. This guarantees the stability
and reliability of the processes of picking out the even natural frequencies from the first
derivative of the characteristic determinant and determining their multiplicities. It is worth
noting that the differentiability of element transfer matrices may play a crucial role in the
overall differentiability of the method. If the element transfer matrices are not differentiable,
it could potentially introduce challenges when applying the proposed method. Future
research will focus on improving the computational efficiency of the method proposed in
this paper, such as enhancing the computational efficiency of the system’s overall transfer
matrix, combining it with more efficient iterative procedures, and accurately counting
the eigenvalues.
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Appendix A. A Proof for the Monotonicity near the Even Multiple Natural Frequencies

Assume that ω∗ is an exact even multiple natural frequency with the multiplicity 2m,
where m is a positive integer; for any real positive number ω ∈ E(ω∗, ε), there exists a real
number η ∈ E(ω∗, |ω − ω∗|), such that

∆′′ (ω) =
1

(2m − 2)!
∆(2m)(η)(ω − ω∗)2m−2 (A1)

∆(2m)(ω∗) ̸= 0 for the infinitely differentiable function ∆(ω) near the ω∗ because the 2m-
multiple natural frequencies are also the 2m-multiple zeros of ∆(ω). Therefore, for any
δ > 0, there will exist µ > 0, such that∣∣∣∆(2m)(ω)− ∆(2m)(ω∗)

∣∣∣ < δ, ∀ω ∈ E(ω∗, µ) (A2)

If δ =
∣∣∣∆(2m)(ω∗)

∣∣∣, it yields that, for all ω ∈ E(ω∗, µ),

∆(2m)(ω∗)− δ < ∆(2m)(ω) < ∆(2m)(ω∗) + δ (A3)

This implies that {
∆(2m)(ω) > 0, if∆(2m)(ω∗) > 0
∆(2m)(ω) < 0, if∆(2m)(ω∗) < 0

(A4)

Therefore, for ∆(2m)(ω), no zeros exist within E(ω∗, ε) if ε is sufficiently small, i.e., ε < µ,
which yields the following: {

∆′′ (ω) > 0, if∆(2m)(ω∗) > 0
∆′′ (ω) < 0, if∆(2m)(ω∗) < 0

(A5)

Therefore, the monotonicity of ∆′(ω) near the even multiple zeros when ε is sufficiently
small, which is illustrated as Figure 4, is proved.
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Appendix B. A Proof for the Sufficiency of the Judgment Criteria

The sufficiency can be proven via its contrapositive wherein, if ω̂∗ is not the zero of ∆,
Equation (24) will be not satisfied even if the absolute error ε is sufficiently small.

For any non-zero ω̂∗ of ∆ and absolute error ε, if no zeros exist in the region E(ω̂∗, ε),
there will certainly be a nonzero minimum of |∆(ω)| with respect to ω in E(ω̂∗, ε), which
yields the following:

min
ω∈E(ω̂∗ ,ε)

|∆(ω)| > 0 (A6)

Therefore, for any ε0 < ε1 = min
{

ε, min
ω∈E(ω̂∗ ,ε)

|∆(ω)|/
(

α max
ξ∈E(ω̂∗ ,ε)

|∆′(ξ)|
)}

,

Such that

min
ω∈E(ω̂∗ ,ε0)

|∆(ω)| ≥ min
ω∈E(ω̂∗ ,ε)

|∆(ω)| ≥ α max
ξ∈E(ω̂∗ ,ε)

|∆′(ξ)|ε1

> α max
ξ∈E(ω̂∗ ,ε0)

|∆′(ξ)|ε0
(A7)

Therefore, it yields that for all ω ∈ E(ω̂∗, ε0),

|∆(ω)| ≥ min
ω∈E(ω̂∗ ,ε0)

|∆(ω)|

> α max
ξ∈E(ω̂∗ ,ε0)

|∆′(ξ)|ε0 ≥ α|∆′(ω)|ε0
(A8)

Therefore, when ε is sufficiently small, the criterion shown in Equation (24) is also a
sufficient condition, i.e., ω̂∗ is the zero of ∆ if it is satisfied.
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