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Abstract: Let (M,∇, g) be a statistical manifold and TM be its tangent bundle endowed with a
twisted Sasaki metric G. This paper serves two primary objectives. The first objective is to investigate
the curvature properties of the tangent bundle TM. The second objective is to explore conformal
vector fields and Ricci, Yamabe, and gradient Ricci–Yamabe solitons on the tangent bundle TM
according to the twisted Sasaki metric G.
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1. Introduction

Geometric flows are a mathematical concept that explore the evolution of metric
structures on Riemannian manifolds. These flows enable the analysis of how the metric
structure of a manifold changes over time and its consequent impact on the geometry of the
manifold. One significant type of geometric flow is the Ricci flow, developed by Richard
S. Hamilton [1], famously used by Grigori Perelman to prove the Poincaré Conjecture.
The Ricci flow serves as a fundamental mathematical tool for studying the changes in
metric structures on Riemannian manifolds over time. This flow systematically modifies the
metric structure of a Riemannian manifold with the objective of achieving a constant Ricci
curvature. The Ricci curvature is defined as the trace of the Ricci tensor, quantifying the
curvature of the manifold at a specific point. Ricci flow is instrumental in comprehending
the evolution of the metric structure of a manifold and deriving topological results.

Yamabe flow, introduced by Hidehiko Yamabe, is another type of geometric flow. It
seeks to maintain the Yamabe curvature of a Riemannian manifold at a constant level while
simultaneously altering the metric structure. The Yamabe curvature represents a specific
aspect of the metric structure, and this flow aims to highlight these characteristics. Yamabe
flow plays a crucial role in geometric analysis and understanding the evolution of metric
structures on manifolds.

Ricci solitons are closely related to the Ricci flow and soliton solutions defined by a
specific vector field on a Riemannian manifold. They represent particular solutions of the
Ricci flow, describing how the manifold evolves in a specific manner. There are two main
categories of Ricci solitons: gradient solitons, which correspond to metric structures with
certain properties, and Ricci flow solitons, which are solutions of the Ricci flow that exhibit
specific behavior.
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Yamabe solitons are mathematical concepts used to characterize and study metric
structures on Riemannian manifolds. These solitons are a special type that characterize
the metric structure of a Riemannian manifold (M, g) through a specific vector field X.
This vector field X characterizes a soliton that alters the Yamabe curvature of the manifold,
a curvature measure reflecting the properties of the metric structure. A negative Yamabe
curvature indicates specific curvature and contraction properties on the manifold.

The significance of Ricci solitons arises from their correspondence to self-similar
solutions of the Ricci flow [1] and their natural generalization of Einstein metrics. Recent
years have witnessed growing interest in the study of Ricci solitons and their various
generalizations in the realm of Riemannian geometry.

Yamabe flow was introduced by Hamilton [1], coinciding with the development of
Ricci flow. Both the Ricci soliton and Yamabe soliton are special solitons associated with
Ricci flow and Yamabe flow, respectively. In soliton structures, if the potential vector field
is the gradient of a function, it is termed a gradient soliton (such as gradient Ricci solitons
or gradient Yamabe solitons).

These geometric flows and solitons play pivotal roles in addressing a wide range of
problems related to the topology, geometry, and differential equations of manifolds. Re-
garding different geometric flows, some researchers have obtained different estimates and
inequalities, such as, Li–Yau-type estimates, Perelman-type differential Harnack inequali-
ties, etc. [2–5]. The studies on gradient estimates and differential Harnack inequalities were
presented in [6–11]. We can find some papers regarding different manifolds of different
connections in a tangent bundle [12–18]. All of these papers provide powerful mathematical
tools for comprehending manifold evolution and changes, contributing to the derivation of
numerous mathematical theorems and results.

Several authors have explored soliton structures in different contexts. For instance,
Abbassi and Amri [19] investigated natural Ricci soliton structures on the tangent and
unit tangent bundles of Riemannian manifolds. Chen and Deshmukh [20] introduced
the concept of quasi-Yamabe solitons on Riemannian manifolds. Güler and Crasmare-
anu [21] introduced the notion of Ricci–Yamabe flow by considering a scalar combination
of the Ricci flow and Yamabe flow. Dey and Majhi [22] studied generalized gradient
Ricci–Yamabe solitons on complete Sasakian three-manifolds. Nurowski and Randall [23]
introduced generalized Ricci solitons, and Kumara et al. [24] demonstrated that a Rieman-
nian concurrent–recurrent manifold is Einstein when its metric is a generalized Ricci-type
soliton. Gezer, Bilen, and De [25] explored almost Ricci and almost Yamabe soliton struc-
tures on the tangent bundle using the ciconia metric. Recently, Li and Khan et al. studied
solitons, inequalities, and submanifolds using soliton theory, submanifold theory, and other
related theories [26–31]. They obtained a number of interesting results and inspired the
idea of this paper. De and Gezer [32] studied k-almost Yamabe solitons for the perfect fluid
spacetime of general relativity. In particular, they constructed two examples to prove the
existence of k-almost Yamabe solitons.

In the 1980s, the concept of a statistical structure emerged, playing a pivotal role in
the development of an effective branch known as information geometry, which combines
differential geometry and statistics. This field found applications across various scientific
domains, including image processing, data analysis, physics, computer science, and ma-
chine learning (see [33–38]). A comprehensive survey of information geometry is available
in [39]. Researchers have conducted numerous studies related to statistical manifolds.
For example, Gezer, Peyghan, and Nourmohammadifar explored Kähler–Norden struc-
tures on statistical manifolds in [40]. Matsuzoe provided an overview of the geometry of
statistical manifolds and discussed the connections between information geometry and
affine differential geometry [41]. In [42], Peyghan, Seifipour, and Gezer investigated statisti-
cal structures on the tangent bundle TM equipped with two Riemannian g-natural metrics
and lift connections.

In our present study, we introduce a novel natural metric for the tangent bundle
TM over a statistical manifold, known as the twisted Sasaki metric. In this paper, firstly,



Mathematics 2023, 12, 1395 3 of 18

we delve into the geometry of twisted Sasaki metrics, scrutinizing their properties and
inherent geometrical aspects in depth. Our exploration aims to provide a comprehensive
understanding of the behavior of these metrics, setting the stage for further investigations.
Secondly, we shift our focus to the study of soliton structures associated with the twisted
Sasaki metric when it is employed on the tangent bundle TM over a statistical manifold.
Solitons, as mathematical constructs, reveal specific patterns of evolution within a given
metric space. In our analysis, we aimed to elucidate and characterize the soliton structures
that emerge from the utilization of the twisted Sasaki metric on TM within the context of a
statistical manifold. This investigation sheds light on the dynamic interplay between the
metric structure and the statistical properties of the underlying manifold.

Our research endeavors to enhance our comprehension of the geometry and curvature
characteristics of the twisted Sasaki metric applied to TM, while also uncovering the
intriguing soliton structures that manifest in this scenario. By doing so, we contribute to the
broader fields of differential geometry and metric analysis, introducing a novel metric that
challenges traditional rigidity when applied to tangent bundles and statistical manifolds.

Throughout this paper, we consistently assume that all manifolds, tensor fields,
and connections are differentiable of class C∞.

2. The Twisted Sasaki Metric on the Tangent Bundle over a Statistical Manifold

Statistical manifolds have found applications in various domains, including informa-
tion science, information theory, neural networks, and statistical mechanics (as demon-
strated in references [33–35]). Essentially, a statistical manifold is a mathematical space
where the points represent probability distributions, providing a geometric model for
understanding these distributions. A statistical structure on a differentiable manifold M is
defined by a pair (∇, g), where g represents a (pseudo-)Riemannian metric, and ∇ denotes
a torsion-free linear connection with the property that ∇g is totally symmetric. When a
manifold possesses such a statistical structure, it is referred to as a statistical manifold. It is
worth noting that a typical example of a statistical manifold is a (pseudo-)Riemannian man-
ifold (M, g) paired with a Levi-Civita connection ∇ for g. In essence, statistical manifolds
serve as generalizations of (pseudo-)Riemannian manifolds, providing a broader geometric
framework for probabilistic modeling.

Definition 1. Consider an arbitrary linear connection ∇ defined on a (pseudo-)Riemannian
manifold (M, g). With the given pair (∇, g), we construct the (0, 3)-tensor field denoted as F
through the expression

F(X, Y, Z) := (∇Zg)(X, Y).

Clearly, F(X, Y, Z) = F(Y, X, Z), due to the symmetry of g. This tensor field F is
occasionally referred to as the cubic form associated with the pair (∇, g) [43]. Now, when
we have a symmetric bilinear form ρ defined on a manifold M, we designate (∇, ρ) as a
Codazzi pair if the covariant derivative (∇ρ) is (totally) symmetric concerning vector fields
X, Y, and Z [44]:

(∇Zρ)(X, Y) = (∇Xρ)(Z, Y) = (∇Yρ)(Z, X).

Expressed in terms of the cubic form F, this condition can be rephrased as

F(X, Y, Z) = F(Z, Y, X) = F(Z, X, Y),

which means that the condition for (∇, g) to form a Codazzi pair is equivalent to F being
entirely symmetric with respect to all of its indices.

Now, let us consider a torsion-free linear connection ∇ defined on a
(pseudo-)Riemannian manifold (M, g). In the case where the pair (∇, g) forms a Co-
dazzi pair, a concept well known to information geometers as characterizing statistical
structures, the manifold M, when coupled with this statistical structure (∇, g), is termed
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a statistical manifold. It is important to note that the notion of a statistical manifold was
originally introduced by Lauritzen [45]. These statistical manifolds are extensively explored
in the realm of affine differential geometry, as evidenced in [45,46], and they play a pivotal
role in the field of information geometry.

Consider an n-dimensional statistical manifold denoted as (Mn,∇, g). In this article,
we employ the C∞-category to comprehensively elucidate various concepts. We focus on
connected manifolds with dimension of n > 1. To facilitate our analysis, we introduce the
tangent bundle of Mn, denoted as TM. We define the natural projection as π : TM → Mn.
When we employ a system of local coordinates

(
U, xi) in Mn, it induces a corresponding

system of local coordinates on TM, denoted as
(

π−1(U), xi, xi = ui
)

, where i ranges from

n + 1 to 2n. Here,
(
ui) represents the cartesian coordinates within each tangent space Tp M

for all p ∈ U. It is important to note that p is any arbitrary point within U.
Consider the linear connection ∇ on the statistical manifold (Mn,∇, g). We can de-

compose the tangent space of the tangent bundle TM into two distributions: the horizontal
distribution determined by ∇ and the vertical distribution defined by ker π∗. In this
context, the local frame is given by

Ei =
∂

∂xi − usΓh
is

∂

∂uh ; i = 1, ..., n,

and
Ei =

∂

∂ui ; i = n + 1, ..., 2n.

Here, Γh
is represents the Christoffel symbols of the linear connection ∇. The local frame{

Eβ

}
=

(
Ei, Ei

)
is commonly referred to as the adapted frame. Let A = Ai ∂

∂xi be a vector
field. We can obtain the horizontal and vertical lifts of A with respect to the adapted frame
as follows [47]:

H A = AiEi,
V A = AiEi.

Within TM, the local 1−form system
(
dxi, δui) forms the dual frame of the adapted

frame
{

Eβ

}
, where

δui = H
(

dxi
)
= dui + usΓi

hsdxh.

From the Riemannian manifold (Mn, g) to its tangent bundle TM, a variety of Rieman-
nian or pseudo-Riemannian metrics have been devised. These metrics are constructed by
naturally lifting the Riemannian metric g to the tangent bundle TM and are commonly
referred to as g-natural metrics. In [48], the authors systematically derived a family of
Riemannian g-natural metrics, which depend on six arbitrary functions characterizing
the norm of a vector u ∈ TM. The study of natural metrics on tangent bundles arises
from the need to understand the geometric and physical properties of objects moving on
a Riemannian manifold. These metrics provide a way to extend the geometry of the base
manifold to the tangent bundle, which is essential in various fields, including physics,
differential geometry, and mechanics. Now, let us introduce the twisted Sasaki metric on
the tangent bundle of a statistical manifold.

Let (Mn,∇, g) be a statistical manifold and a, b ∈ R. On the tangent bundle TM,
the twisted Sasaki metric G is defined by

(i) G(HX,H Y) = ag(X, Y),

(ii) G(V X,H Y) = 0,

(iii) G(V X,V Y) = bg(X, Y)

for all vector fields X and Y.
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In the adapted frame
{

Eβ

}
, we can express the twisted Sasaki metric and its inverse

as follows:

(G) =

(
agij 0

0 bgij

)
and (

G−1
)
=

( 1
a gij 0
0 1

b gij

)
.

The horizontal lift H∇ of a linear connection ∇ on the manifold Mn to the tangent
bundle TM is a unique linear connection defined on the TM and is characterized by the
following conditions:

H∇ H
H X Y = H(∇XY), H∇ V

H X Y = V(∇XY),
H∇ H

V X Y = 0, H∇ V
V X Y = 0

for all vector fields X and Y on Mn. The torsion tensor HT of H∇ satisfies the conditions

HT(V X,V Y) = 0, HT(V X,H Y) = V(T(X, Y)),
HT(HX,H Y) = H(T(X, Y))− γR(X, Y).

In these expressions, T and R represent the torsion and curvature tensor fields, respec-
tively, of the linear connection ∇ on the manifold Mn. Importantly, the last set of identities
implies that the connection H∇ can have a non-zero torsion tensor even if ∇ is selected as
a torsion-free linear connection. For a more detailed explanation, we can refer to [47]. Now,
our objective is to determine the conditions under which the pair (H∇, G) forms a Codazzi
pair on the tangent bundle TM. To facilitate future use, we provide the following.

(H∇Ei G)(Ej, Ek) (1)

= EiG(Ej, Ek)− G(H∇Ei Ej, Ek)− G(Ej,H ∇Ei Ek)

= Ei(agjk)− G(H∇H(∂i)
H(∂j), H(∂k))− G(H(∂j), H∇H(∂i)

H(∂k))

= a(∂igjk)− G(H(∇∂i
∂j),H (∂k))− G(H(∂j),H (∇∂i

∂k))

= a(∂igjk)− ag(∇∂i
∂j, ∂k)− ag(∂j,∇∂i

∂k)

= a(∂igjk)− ag(Γh
ij∂h, ∂k)− ag(∂j, Γh

ik∂h)

= a(∂igjk − Γh
ijghk − Γh

ikgjh)

= a∇igjk,

(H∇Ei G)(Ej, Ek̄) (2)

= EiG(Ej, Ek̄)− G(H∇Ei Ej, Ek̄)− G(Ej,H ∇Ei Ek̄)

= EiG(H(
∂j
)
,V (∂k))− G(H∇H(∂i)

H(
∂j
)
,V (∂k))− G(H(

∂j
)
,H ∇H(∂i)

V∂k)

= −G(H(∇∂i
∂j),V (∂k))− G(H(

∂j
)
,V (∇∂i

∂k))

= 0,

(H∇Ei G)(Ej̄, Ek̄) = EiG(Ej̄, Ek̄)− G(H∇Ei Ej̄, Ek̄)− G(Ej̄,
H ∇Ei Ek̄)

= Eibg(∂j, ∂k)− G(V(∇∂i
∂j),V (∂k))− G(V(∂j),V (∇∂i

∂k))

= b(∂igjk − Γh
ijghk − Γh

jkgjh)

= b∇igjk, (3)
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(H∇Ei
G)(Ej, Ek) = EiG(Ej, Ek)− G(H∇Ei

Ej, Ek)− G(Ej,H ∇Ei
Ek)

= EiG(H(∂j),H (∂k))− G(H∇V(∂i)
H(∂j),H (∂k))

−G(H(∂j),H ∇V(∂i)
H(∂k))

= 0, (4)

(H∇Ei
G)(Ej, Ek̄) = EiG(Ej, Ek̄)− G(H∇Ei

Ej, Ek̄)− G(Ej,H ∇Ei
Ek̄) = 0, (5)

(H∇Ei
G)(Ej̄, Ek̄) = EiG(Ej̄, Ek̄)− G(H∇Ei

Ej̄, Ek̄)− G(Ej̄,
H ∇Ei

Ek̄) = 0.

Theorem 1. Given a statistical manifold (Mn, g,∇), and the tangent bundle TM equipped with
the twisted Sasaki metric G, the pair (H∇, G) can be classified as a Codazzi pair if and only if
∇ is a metric connection with respect to g, where H∇ represents the horizontal lift of the linear
connection ∇.

Proof. Consider a statistical manifold (Mn, g,∇) with a (pseudo-)Riemannian metric g
and a linear connection ∇. Then, the following relationships hold:

∇igjk = ∇jgik = ∇kgij.

Now, let (TM, G,H ∇) be a statistical manifold derived from (Mn, g,∇), where G is
the twisted Sasaki metric, and H∇ is the associated horizontal lift connection. From the
above relationships (1), we obtain

(H∇Ei G)(Ej, Ek) = (H∇Ej G)(Ei, Ek) = (H∇Ek G)(Ei, Ej)

a∇igjk = a∇jgik = a∇kgij.

Additionally, from Equations (2) and (4), we find that

(H∇Ei G)(Ej, Ek̄) = (H∇Ek̄
G)(Ej, Ei) = (H∇Ej G)(Ek̄, Ei) = 0.

Furthermore, from Equations (3) and (5), we have

(H∇Ei G)(Ej̄, Ek̄) = (H∇Ej̄
G)(Ei, Ek̄) = (H∇Ek̄

G)(Ei, Ej̄)

b∇igjk = 0,

which means that ∇ is a metric connection with respect to g. If the above equations are
performed in reverse, the sufficient condition of the theorem is easily reached.

To calculate the Levi-Civita connection ∇̃ of the twisted Sasaki metric G, we need to
find the Christoffel symbols Γ̃α

γβ associated with this connection. The Levi-Civita connection
ensures that the metric is compatible with the connection, meaning that the metric is parallel
with respect to ∇̃. To find the connection coefficients, you can use the following formula
for the Christoffel symbols:

Γ̃α
γβ =

1
2

Gαε(EγGεβ + EβGγε − EεGγβ) +
1
2
(Ω α

γβ + Ωα
γβ + Ωα

βγ),

where 
Ωα

γβ = GαεGδβΩ δ
εγ ,

Ω h
ji = −Ω h

ij = −R h
jisys ,

Ω h
ji

= −Ω h
ij

= Γh
ji

and it will be used as γ = j; j β = i; i α = h; h ε = k; k δ = m; m.
We present the following proposition regarding the Levi-Civita connection ∇̃ associ-

ated with the twisted Sasaki metric G.
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Proposition 1. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM, G)
equipped with the twisted Sasaki metric G, the local expression for the Levi-Civita connection ∇̃
associated with the twisted Sasaki metric G on TM can be stated as follows:

∇̃Ei Ej =
(

Γk
ij

)
Ek +

(
1
2

ysR k
jis

)
Ek̄,

∇̃Ei Ej̄ =

(
b

2α
ysR k

sji

)
Ek +

(
Γk

ij +
1
2

gkm(∇igmj
))

Ek̄,

∇̃Ei
Ej =

(
b

2α
ysR k

sij

)
Ek +

(
1
2

gkm(∇jgmi
))

Ek̄,

∇̃Ei
Ej̄ =

(
− b

2a
gkh(∇hgij

))
Ek,

where R is the curvature tensor of the linear connection ∇.

3. Curvature Properties of the Twisted Sasaki Metric

The components of the Riemannian curvature tensor for the twisted Sasaki metric G
are calculated using the following expression:

R̃ α
δγβ = EδΓ̃α

γβ − EγΓ̃α
δβ + Γ̃α

δεΓ̃
ε
γβ − Γ̃α

γεΓ̃
ε
δβ − Ω ε

δγΓ̃α
εβ.

In this context, the indices are denoted as follows: γ = i; i β = j; j α = k; k ε = h; h
δ = m; m. In the forthcoming proposition, we provide the components of the Riemannian
curvature tensor associated with the twisted Sasaki metric G.

Proposition 2. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM, G)
equipped with the twisted Sasaki metric G, the local expression for the corresponding Riemannian
curvature tensor R̃ can be stated as follows:

R̃ k
mij = R k

mij +
b

4a
ysyp

[
R k

shmR h
jip − R k

shi R h
jmp + 2R h

misR k
phj

]
,

R̃ k̄
mij = −1

4
ys
[

R h
jis Ak

mh − R h
jms Ak

ih + 2R h
mis Ak

jh

]
+

1
2

ys
[
∇mR k

jis −∇iR k
jms

]
,

R̃ k
m̄ij =

b
2a

ys∇iR k
msj −

b
4a

ys
[

R h
jis Ak

mh + R k
shi Ah

jm

]
,

R̃ k̄
m̄ij =

1
2

R k
jim − b

4a
ysypR k

his R h
pmj −

1
2
∇i Ak

jm − 1
4

Ak
ih Ah

jm,

R̃ k
mij =

b
2a

ys∇mR k
sij +

b
4a

ys
[

R k
shm Ah

ji + R h
jms Ak

ih

]
,

R̃ k̄
mij =

1
2

R h
mji +

b
4a

ysypR k
hms R h

pij +
1
2
∇m Ak

ji +
1
4

Ak
mh Ah

ji,

R̃ k
mij̄ =

b
4a

ys
[

R k
shm Ah

ij − R k
shi Ah

mj − 2R h
mis Ak

hj

]
+

b
2a

ys
[
∇mR k

sji −∇iR k
sjm

]
,

R̃ k̄
mij̄ = R k

mij +
1
2

[
∇m Ak

ij −∇i Ak
mj

]
+

1
4

[
Ak

mh Ah
ij − Ak

ih Ah
mj

]
+

b
4a

ysyp
[

R k
hmsR h

pji − R k
his R h

pjm

]
,
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R̃ k
m̄ij =

b
4a

[
Ak

ih Ah
jm − Ak

mh Ah
ji

]
+

b2

4a2 ysyp
[

R k
smhR h

pij − R k
sih R h

pmj

]
+

b
a

R k
mij,

R̃ k̄
m̄ij =

b
4a

ys
[

R h
sij Ak

hm − R h
smj A

k
hi

]
,

R̃ k
m̄ij̄ =

b
2a

R k
mji +

b
2a

(
∇i Ak

mj

)
− b

4a
Ak

mh Ah
ij +

b2

4a2 ysypR k
smhR h

pji ,

R̃ k̄
m̄i j̄ =

b
4a

ys
[

R h
sji Ak

hm + R k
his Ah

mj

]
,

R̃ k
mij̄ =

b
2a

R k
jim − b

2a

(
∇m Ak

ij

)
+

b
4a

Ak
ih Ah

mj −
b2

4a2 ysypR k
sih R h

pjm,

R̃ k̄
mij̄ =

b
4a

ys
[

R k
mhs Ah

ij + R h
jsm Ak

hi

]
,

R̃ k
m̄ij̄ =

b2

4a2 ys
[

R k
sih Ah

mj − R k
smh Ah

ij

]
,

R̃ k̄
m̄i j̄ =

b
4a

[
Ak

hi A
h
mj − Ak

hm Ah
ij

]
,

where R is the curvature tensor of the linear connection ∇ and Ak
ij = gkl

(
∇igjl

)
.

Continuing with our analysis, we now turn our attention to the Ricci and scalar
curvature tensors. Utilizing the results from Proposition 2 and performing standard
calculations, we obtain the following outcomes.

Proposition 3. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM, G)
equipped with the twisted Sasaki metric G, the local expression for the corresponding Ricci curvature
tensor R̃I J = R̃ M

MI J can be stated as follows:

R̃ij = Rij +
b

4a
ysyp

[
R h

misR m
phj + R h

msiR
m

jhp

]
− 1

4

(
∇igml

)(
∇jgml

)
−1

2
gml(∇i∇jgml

)
,

R̃ij =
b

2a
ys∇mR m

sij +
b

4a
ys
[

R h
sij Am

hm + R h
jsm Am

ih

]
,

R̃i j̄ =
b

2a
ys∇mR m

sji +
b

4a
ys
[

R h
sji Am

hm + R h
ism Am

jh

]
,

R̃i j̄ =
b

4a

[
2Am

hi A
h
mj − Am

hm Ah
ij

]
− b

2a

(
∇m Am

ij

)
− b2

4a2 ysypR m
sih R h

pjm,

where R is the curvature tensor of the linear connection ∇, and Ak
ij = gkl

(
∇igjl

)
.

Proposition 4. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM, G)
equipped with the twisted Sasaki metric G, the local expression for the corresponding scalar curvature
tensor r̃ can be stated as follows:

r̃ =
1
a

r +
b

4a2 ∥R∥+ 1
4a

gij
[

Am
hi A

h
mj − Am

hm Ah
ij

]
− 1

2a
gij

[
∇i Am

jm +∇m Am
ij

]
,

where Ak
ij = gkl

(
∇igjl

)
, and r and R are the scalar curvature and curvature tensor of the linear

connection ∇, respectively.
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4. Conformal Vector Fields according to the Twisted Sasaki Metric

Let LX̃ be the Lie derivation with respect to the vector field X̃. A vector field X̃ with
components (vh, vh) is fiber-preserving if and only if vh depends only on the variables (xh).
Therefore, every fiber-preserving vector field X̃ on TM induces a vector field V = vh ∂

∂xh on
Mn. We shall first state the following lemmas, which are needed later on.

Lemma 1. Consider a statistical manifold (Mn, g,∇) and its tangent bundle TM. Let X̃ be a
fiber-preserving vector field on TM with the components (vh, vh̄). Then, the Lie derivates of the
adapted frame and the dual basis are given as follows (see also [49]):

(i) LX̃Ei = −(Eivh)Eh +
[
ybvcR h

icb − vb̄Γh
bi − (Eivh̄)

]
Eh̄,

(ii) LX̃Ei =
[
vbΓh

bi − (Eiv
h̄)
]

Eh̄,

(iii) LX̃dxi = (Ehvi)dxh,

(iv) LX̃δyi = −
[
ycvbR i

bhc + vb̄Γi
bh + (Ehvi)

]
dxh −

[
vbΓi

bh − (Eh̄vi)
]
δyh.

Here, R denotes the curvature tensor of the linear connection ∇, and Γh
is represents the

Christoffel symbols of the linear connection ∇.

Through the Lemma given above, we provide the following lemma that we will
use later.

Lemma 2. In the context of a statistical manifold (Mn, g,∇) and its tangent bundle (TM, G)
equipped with the twisted Sasaki metric G, the Lie derivative of twisted Sasaki metric G with respect
to the fiber-preserving vector field X̃ is given as follows:

LX̃G = a
[

LV gij + 2
(

Eivh
)

ghj

]
dxidxj

−2bghj

[
ysvbR h

bis + vb̄Γh
bi +

(
Eivh̄

)]
dxiδyj

+b
[

LV gij − 2vbΓh
bighj + 2ghj

(
Eiv

h̄
)]

δyiδyj,

where LV gij denotes the components of the Lie derivative of LV g, and X̃ = vhEh + vh̄Eh̄. V = vh ∂
∂xh

is a vector field on Mn.

If we have the tangent bundle TM over a statistical manifold (Mn, g,∇) equipped
with the twisted Sasaki metric G, and there exists a scalar function Ω such that the equation

LX̃G = 2ΩG (6)

is satisfied, then we refer to X̃ as an infinitesimal fiber-preserving conformal vector field on
(TM, G).

Theorem 2. In the context of a statistical manifold (Mn, g,∇) of dimension n ≥ 2 and its tangent
bundle (TM, G) equipped with the twisted Sasaki metric G, the fiber-preserving vector field X̃ is an
infinitesimal fiber-preserving conformal vector field on (TM, G) if and only if the scalar function Ω
on TM depends only on the variables

(
xh
)

with respect to the induced coordinates
(

xh, xh̄
)

and
the following conditions are satisfied:
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(i) X̃ =
(

vh, vh̄
)
=

(
vh, ys Ah

s + Bh
)
= HV + V B + γA,

(ii) Ω =
1

2n
gij(LV gij) +

1
n

(
Eivi

)
,

(iii) vl R h
lis +∇i∇svh = 0,

(iv) ∇ivh = Ah
i ,

(v) ∇iBh = 0,

where X̃ = vhEh + vh̄Eh̄ is a fiber-preserving vector field on TM, V = vh ∂
∂xh is a vector field

on Mn, Ω is a scalar function, HV is the horizontal lift of V, V B is the vertical lift of B, and
A =

(
Ah

i

)
and B =

(
Bh

)
are (1, 1) and (1, 0) tensor fields on Mn, respectively.

Proof. Starting from the expressions given in Lemma 2 and Lemma 6, we obtain the
following equations:

LX̃Gij = 2ΩGij

LV gij + 2(Eivh)ghj = 2Ωgij, (7)

LX̃Gī j = 2ΩGī j

2bghj

[
ysvl R h

lis + vl̄Γh
li +

(
Eivh̄

)]
= 0 (8)

and
LX̃Gī j̄ = 2ΩGī j̄

LV gij − 2vlΓh
lighj + 2ghj

(
Eiv

h
)
= 2Ωgij. (9)

Now, let us apply Ek to both sides of Equation (9):

ghjEk

(
Eiv

h
)
=

(
EkΩ

)
gij. (10)

By interchanging i with k in the last equation, we obtain

ghjEi

(
Ekvh

)
=

(
EiΩ

)
gkj. (11)

From the equalities of (10) and (11), we can write(
EkΩ

)
gij =

(
EiΩ

)
gkj.

By contracting with gij in the above equation, we obtain

n
(
EkΩ

)
=

(
EkΩ

)(
EkΩ

)
= 0. (12)

This means that the scalar function Ω depends only on the variables
(

xh
)

. Thus, we
can see Ω as a function on Mn. Substituting Equation (12) into Equation (11), we can write

Ei

(
Ekvh

)
= 0

vh = ys Ah
s + Bs, (13)
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where A =
(

Ah
i

)
and B =

(
Bh

)
are (1, 1) and (1, 0) tensor fields on Mn, respectively.

Through substituting Equation (13) into Equation (8), we have

vl R h
lis +∇i Ah

s = 0

and
∇iBh = 0.

By substituting Equation (13) into Equation (9), we have

LV gij − 2vlΓh
lighj + 2ghj Ah

i = 2Ωgij. (14)

When Equations (7) and (14) are evaluated together, we can write

∇ivh = Ah
i .

If the last equation is used in equality (14), the following result is obtained

vl R h
lis +∇i∇svh = 0.

By contracting Equation (7) with 1
2n gij, we have

Ω =
1

2n
gij(LV gij

)
+

1
n

(
Eivi

)
.

This completes the proof.

5. The Ricci Solitons according to the Twisted Sasaki Metric

A Ricci soliton on a smooth manifold Mn (where n ≥ 2) is defined as a triple (g, X, λ),
where g represents a pseudo-Riemannian metric on Mn, Ric is the associated Ricci tensor,
X is a vector field, and λ is a real constant. This triple can satisfy the following equation:

Ric +
1
2

LX g = λg,

where LX represents the Lie derivative with respect to the vector field X. A Ricci soliton can
be classified into three categories, shrinking, steady, or expanding, depending on the sign
of the constant λ. It is called “shrinking” when λ is positive, “steady” when λ is zero, and
“expanding” when λ is negative. These classifications are important because Ricci solitons
correspond to self-similar solutions of the Ricci flow [1] and serve as natural generalizations
of Einstein metrics.

In the case of a gradient Ricci soliton, the soliton vector field X can be expressed
as the gradient of a smooth function f on Mn. For gradient Ricci solitons, the following
equation holds: (

∇2 f
)
+ Ric = λg,

where ∇2 denotes the Hessian operator.
A Ricci soliton defined on the tangent bundle TM equipped with the twisted Sasaki

metric G, which is defined over a statistical manifold (Mn, g), is characterized by the equation

R̃ic +
1
2

LX̃G = λG, (15)

where R̃ic is the Ricci tensor of G, X̃ is a vector field on TM, and λ is a smooth function
on TM.
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Theorem 3. In the context of a statistical manifold (Mn, g,∇) of dimension n ≥ 2 and its tangent
bundle (TM, G) equipped with the twisted Sasaki metric G, (TM, G, λ) constitutes a Ricci soliton
if and only if the base manifold is flat, and the following conditions are satisfied:

(i) X̃ = (vh, vh) = (vh, ys Mh
s + Nh),

(ii) λ =
1
n

[
1
2

gij(LV gij) + (Eivi)− 1
2a

∇j∇mgjm − 1
4a

gij(∇mgih)
(
∇hgjm

)]
,

(iii) ∇M = ∇N = 0,

where X̃ = vhEh + vhEh is a vector field on TM, V = vh ∂
∂xh is a vector field on Mn, λ ∈ R, and

M = (Mh
s ) and N = (Nh) are (1, 1) and (1, 0) tensor fields on Mn, respectively.

Proof. With the help of Equation (15), we have

R̃ij +
1
2

LX̃Gij = λGij,

λagij = Rij +
b

4a
ysyp[R h

misR m
phj + R h

msiR
m

jhp ]− 1
4

Am
ih Ah

jm (16)

−1
2
∇i Am

jm +
a
2
[LV gij + 2(Eivh)ghj],

R̃ı̄j +
1
2

LX̃Gij = λGij,

1
2a

∇mR m
sij +

1
4a

(R h
sij Am

hm + R h
jsm Am

ih)− ghjvl R h
lis = 0

and
vlΓh

li + (Eivh) = 0. (17)

Also,

R̃i j̄ +
1
2

LX̃Gi j̄ = λGi j̄,

λgij =
1
4a

[2Am
hi A

h
mj − Am

hm Ah
ij]−

1
2a

(∇m Am
ij ) +

1
2

LV gij

+ghj(Eiv
h)− vlΓh

lighj (18)

and
b2

4a2 ysypR m
sih R h

pjm = 0 ⇒ b2

4a2 ysyp∥R∥ = 0.

This means that the base manifold is flat. By contracting with gij in Equation (18),
we obtain

λn =
1
4a

gij[2Am
hi A

h
mj − Am

hm Ah
ij]−

1
2a

gij(∇m Am
ij ) +

1
2

gijLV gij

+(Eiv
i)− vlΓi

li.

Applying Ek to both sides of the last equation, we have

Ek

(
Eiv

i
)
= 0

vi = ys Mi
s + Ni, (19)
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where M = (Mi
s) and N = (Ni) are (1, 1) and (1, 0) tensor fields on Mn. Substituting

Equation (19) in Equation (17), we obtain

ys∇i Mh
s +∇i Nh = 0.

By contracting with 1
na gij in Equation (16) and considering that the base manifold is

flat, we have the following equation

λ =
1
n

[
1
2

gij(LV gij) + (Eivi)− 1
2a

∇j∇mgjm − 1
4a

gij(∇mgih)
(
∇hgjm

)]
,

which completes the proof.

6. The Yamabe Solitons according to the Twisted Sasaki Metric

In the context of a complete Riemannian manifold (Mn, g), where n ≥ 2, the Rieman-
nian metric g is considered to have a Yamabe soliton if it satisfies the following equation:

1
2

LX g = (r − λ)g,

where λ is a scalar constant, X is a differentiable vector field known as the soliton vector
field, and r represents the scalar curvature of the Riemannian manifold (Mn, g). If λ is a
smooth function, then the Riemannian metric g is said to admit an almost Yamabe soliton,
which is a natural generalization of Yamabe solitons [50]. Additionally, almost Yamabe
solitons are classified as steady, expanding, or shrinking, depending on the value of λ.
Specifically, they are categorized as follows: (1) steady if λ = 0, (2) expanding if λ < 0, and
(3) shrinking if λ > 0. It is important to note that Einstein manifolds are a special case of
almost Yamabe solitons.

Now, when considering a Yamabe soliton defined on the tangent bundle TM with the
twisted Sasaki metric G over a statistical manifold (Mn, g,∇), we can describe it with the
following equation:

1
2

LX̃G = (r̃ − λ)G, (20)

where r̃ represents the scalar curvature of (TM, G), X̃ is a vector field on TM, and λ is a
smooth function on TM.

In the case of a gradient Yamabe soliton, the soliton vector field X can be expressed as
the gradient of a C∞ function f on Mn, and this leads to the following equation:(

∇2 f
)
= (r − λ)g.

Theorem 4. In the context of a statistical manifold (Mn, g,∇) of dimension n ≥ 2 and its tangent
bundle (TM, G) equipped with the twisted Sasaki metric G, (TM, G, λ) is a Yamabe soliton if and
only if the following conditions are satisfied:

(i) X̃ = (vh, vh) = (vh, ys Mh
s + Nh),

(ii) λ = r̃ − 1
2n

gij(LV gij)−
1
n
(Eivi),

(iii) ∇i Mh
s = vl R h

lis ,

(iv) ∇i Nh = 0,

where X̃ = vhEh + vhEh is a vector field on TM, V = vh ∂
∂xh is a vector field on Mn, λ ∈ R, and

M = (Mh
s ) and N = (Nh) are (1, 1) and (1, 0) tensor fields on Mn, respectively.
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Proof. Starting from Equation (20), we have

1
2

LX̃Gij = (r̃ − λ)Gij,

λgij = r̃gij −
1
2

LV gij − (Eivh)ghj.

By contracting the last equation with 1
n gij, we obtain

λ = r̃ − 1
2n

(LV gij)−
1
n
(Eivi). (21)

Now, from Equation (20), we also have

1
2

LX̃Gı̄j = (r̃ − λ)Gı̄j = 0,

which implies that
ysvl R h

lis + Γh
liv

l + Eivh = 0 (22)

1
2

LX̃Gi j̄ = (r̃ − λ)Gi j̄

1
2
[LV gij − 2vlΓh

lighj + 2ghj(Eiv
h)] = (r̃ − λ)gij.

By contracting the last equation with 1
n gij, we find that

λ = r̃ − 1
2n

gij(LV gij) +
1
n

vlΓi
li −

1
n
(Eiv

i). (23)

When Equations (21) and (23) are evaluated together, we obtain

−(Eivi) = vlΓi
li − (Eı̄vı̄).

Applying Ek to both sides of the last equation, we have

Ek

(
Eiv

i
)
= 0,

vi = ys Mi
s + Ni. (24)

Substituting Equation (24) into Equation (22), we obtain

ysvl R h
lis + Γh

li(y
s Ml

s + Nl) + Ei(ys Mh
s + Nh) = 0

and
ys(vl R h

lis +∇i Mh
s ) +∇i Nh = 0.

Form the above equations, we obtain

∇i Mh
s = −vl R h

ils

and
∇i Nh = 0.

Thus, the proof is complete.
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7. The Generalized Ricci–Yamabe Solitons according to the Twisted Sasaki Metric

Güler and Crasmareanu [21] introduced the concept of a Ricci–Yamabe flow on a
Riemannian manifold (Mn, g), where n ≥ 2, by combining the Ricci flow and Yamabe flow
into a scalar equation:

∂g
∂t

(t) + 2αR(t) + βr(t)g(t) = 0, (25)

where g is a Riemannian metric, R is the Ricci tensor, r is the scalar curvature tensor, and
α, β ∈ R.

A Riemannian manifold (Mn, g) with n > 2 is said to have a generalized Ricci–Yamabe
soliton (g, X, λ, α, β, γ) if the following equation holds:

LX g + 2αR = (2λ − βr)g + 2γX# ⊗ X#, (26)

where λ, α, β, γ ∈ R, and X# is the associated 1−form with X.
If X is the gradient of a smooth function f on Mn, then this concept is referred to as a

generalized gradient Ricci–Yamabe soliton, and Equation (26) simplifies to

∇2 f + αR =

(
λ − 1

2
βr
)

g + γd f ⊗ d f .

The generalized (gradient) Ricci–Yamabe soliton is categorized as expanding if λ < 0,
steady if λ = 0, or shrinking if λ > 0.

Theorem 5. In the context of a statistical manifold (Mn, g,∇) of dimension n ≥ 2 and its tangent
bundle (TM, G) equipped with the twisted Sasaki metric G, (TM, G,C V, λ) is a generalised
Ricci–Yamabe soliton if and only if the following conditions are satisfied:

(i) λ =
1

2n

[
gij(LV gij) + 2(Eivi)− gij∂tgij − 2γagktvkvt

]
,

(ii) LV gij = 2λgij + 2ghj(∇ivh) + ∂tgij,

(iii) gkt(∂svk)(∂pvt) = 0,

where the potential vector field CV is the complete lift of a vector field V on Mn to the tangent
bundle TM. This lift is given by CV = (vm, vm) = (vm, ys∂svm), where V = vh ∂

∂xh is a vector
field on Mn, and λ ∈ R.

Proof. We will demonstrate the existence of the scalar λ. Starting from Equation (25),
we obtain

2αR + βrG = −∂tG. (27)

When we substitute the expressions for LCXG and Equation (27) into Equation (26),
we obtain

LCXGij + 2αR̃ij = (2λ − βr̃)Gij + 2γ CX#
i ⊗ CX#

j , (28)

LCXGij + 2αR̃ij = (2λ − βr̃)Gij + 2γ CX#
i ⊗

CX#
j

and
LCXGij + 2αR̃ij = (2λ − βr̃)Gij + 2γ CX#

i ⊗
CX#

j . (29)

Here, the potential vector field CX and its associated 1−form CX# are defined
as follows:

CX =

(
vm

vm

)
=

(
vm

ys∂svm

)
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and

CX#
j = CX I GI j = agijvi,

CX#
j̄ = CX I GI j̄ = bgijys∂svi.

From (28), we deduce that

LV gij + 2(Eivh)ghj − ∂tgij = 2λgij + 2γagkivkgtjvt.

By contracting this equation with 1
2n gij, we obtain

λ =
1

2n

[
gij(LV gij) + 2(Eivi)− gij∂tgij − 2γagktvkvt

]
.

From Equation (29), we have

b
[

LV gij − 2vlΓh
lighj + 2hhj(Eiv

h)
]
+ 2αR̃ij + βr̃Gij = 2λGij + 2γ CX#

i ⊗
CX#

j̄ .

Using Equation (27) in the last equation, we can rewrite it as

0 = LV gij − 2λgij − 2ghjvlΓh
li + 2ghj(∂ivh)− ∂tgij

LV gij = 2λgij + 2ghj(∇ivh) + ∂tgij.

Finally, from the contracted equation

2γbysypgki(∂svk)gtj(∂pvt) = 0,

we obtain
gkt(∂svk)(∂pvt) = 0.

Therefore, the proof is complete.

8. Conclusions

This paper endeavors to examine the geometric characteristics of the tangent bundles
of statistical manifolds by employing the twisted Sasaki metric on their tangent bundles.
Our inquiry was structured into two principal phases, each delineating specific yet inter-
connected objectives.

Firstly, we delved into the intricacies of the twisted Sasaki metrics, meticulously
scrutinizing their properties and inherent geometrical aspects. Our comprehensive analysis
has provided a deeper understanding of these metrics, elucidating their behavior and
implications for differential geometry within the context of statistical manifolds.

Secondly, we shifted our focus toward the study of soliton structures arising from
the application of the twisted Sasaki metric to the tangent bundle. Solitons, as mathe-
matical constructs, offer invaluable insights into the dynamic interplay between metric
structures and statistical properties. By characterizing these soliton structures, we uncov-
ered novel patterns of evolution within the manifold, further enriching our comprehension
of its geometry.

Our research makes a significant contribution to the fields of differential geometry
and metric analysis by introducing a novel metric that challenges traditional rigidity
when applied to tangent bundles and statistical manifolds. By elucidating the curvature
properties of the tangent bundle and uncovering intriguing soliton structures, we have
expanded the horizons of geometric understanding in this domain. In the future, our
findings will facilitate further investigations into the manifold implications of the twisted
Sasaki metric and its role in shaping the geometric and statistical landscapes of diverse
mathematical structures. It is our hope that this paper will inspire future endeavors aimed
at unraveling the profound mysteries of geometric structures in statistical manifolds.
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