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Abstract: The concept of complex fuzzy sets, where the unit disk of the complex plane acts as the
codomain of the membership function, as an extension of fuzzy sets. The objective of this article is to
use complex fuzzy sets in BCK/BCI-algebras. We present the concept of a complex fuzzy subalgebra
in a BCK/BCI-algebra and explore their properties. Furthermore, we discuss the modal and level
operators of these complex fuzzy subalgebras, highlighting their importance in BCK/BCI-algebras.
We study various operations, and the laws of a complex fuzzy system, including union, intersection,
complement, simple differences, and bounded differences of complex fuzzy ideals within BCK/BCI-
algebras. Finally, we generate a computer programming algorithm that implements our complex
fuzzy subalgebras/ideals in BCK/BCI-algebras procedure for ease of lengthy calculations.

Keywords: BCK/BCI-algebras; fuzzy logic; complex fuzzy set; complex fuzzy subalgebra; complex
fuzzy ideal
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1. Introduction

The concept of fuzzy sets, initially proposed by Zadeh [1], has been used extensively
by numerous researchers to address problems of uncertainty and inaccuracy in current
challenges. Axiom systems for propositional calculi were developed by Imai et al. [2,3].
They consist of axioms and rules of reasoning that help people draw conclusions and show
that logical arguments are valid. Theoretical logic refers to propositional logic in statements
are manipulated and analyzed using logical operators and their truth values such as AND,
OR, and NOT. Many mathematical systems, including propositional logic, can be modeled
and analyzed using algebraic structures. In 1966, Iséki [4,5] proposed BCK/BCI-algebras
as an extension of the concepts of set–theoretic difference and propositional calculus.
A comprehensive analysis of the theory of BCK/BCI-algebras was subsequently published,
highlighting in particular the ideal theory of BCK/BCI-algebras. Meng [6] introduced the
concept of ideals of BCK-algebras.

Al-Masarwah et al. [7] studied doubt bipolar fuzzy H-ideals in BCK/BCI-algebras and
investigated many interesting properties of ideals. Balamurugan et al. [8–10] introduced
a polar fuzzy set as an extension of the fuzzy sets applied to BCK/BCI-algebras. Al-
shami et al. [11–15] proposed the ideas of (2,1)-fuzzy sets, (a,b)-fuzzy sets, (m,n)-fuzzy sets,
SR-fuzzy sets, and kn

m-rung picture fuzzy sets, which can help people make decisions that
take more than one factor into account. The idea of complex fuzzy set was first introduced
by Ramot et al. [16,17]. The set of complex numbers is an extension of the set of real
numbers, first introduced by Gauss in 1795. A complex fuzzy set is an extension of a fuzzy
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set whose range is extended from [0,1] to a disk with a radius of 1 in a complex plane.
Hu et al. [18] represented the signals as complex fuzzy sets and examined their orthogonal
properties. Song et al. [19], distance measures are used to quantify the dissimilarity or
similarity between two data points in a given data set.

Garg et al. [20] introduced the complex intuitionistic fuzzy soft SWARA-COPRAS
approach, a methodology for decision making, particularly in the context of selecting
enterprise resource planning (ERP) software. It integrates various techniques such as
SWARA and COPRAS within the framework of complex intuitionistic fuzzy soft sets to deal
with uncertainty and ambiguity in decision-making processes. Dai [21] developed quasi-
MV-algebras as mathematical constructs used in complex fuzzy logic. These structures are
based on MV-algebras, which in turn generalize Boolean algebras to effectively manage
complicated fuzzy inferences. This extension enables a more fine-grained and adaptive
approach to modeling uncertainty and indeterminacy. Xu et al. [22] introduced complex-
valued migration into complex fuzzy operations.

Yang et al. [23] introduced the complex intuitionistic fuzzy-ordered weighted distance
measure, a method for evaluating the similarity or dissimilarity between complex intuition-
istic fuzzy sets considering weighted attributes and their distances. Zeeshan [24] developed
complex fuzzy sets with applications to decision problems. Abuhijleh et al. [25] studied
complex fuzzy subgroups and their properties. Dai [26] studied complex linguistic fuzzy
sets, which are concepts of fuzzy logic and fuzzy set theory that focus on thinking and
decision-making in uncertain situations.

Yasin [27] introduced trigonometric similarity measures of complex fuzzy sets, which
refers to mathematical methods used to quantify the similarity or dissimilarity between
complex fuzzy sets. Al Tahan et al. [28–30] examined in detail the properties of complex
fuzzy Hv subgroups, Krasner hyperrings and the linear Diophantine fuzzy n-fold weak
subalgebra of a BE-algebra.

Motivation and objectives of the proposed method are as follows:

1.1. Motivation

1. The complex fuzzy ideals offer a natural extension of classical ideals to BCK/BCI-
algebras, allowing for a more comprehensive analysis of their properties and behavior.

2. It provides a means to quantify this fuzziness within the framework of BCK/BCI-algebras.
3. It offers a versatile representation that can capture a wide range of algebraic structures

and properties within BCK/BCI-algebras.
4. Complex fuzzy ideals play a crucial role in these applications by providing a formalism

for reasoning about fuzzy sets, approximate reasoning, and uncertainty management
within the framework of BCK/BCI-algebras.

1.2. Objectives of the Proposed Method

1. The complex fuzzy sets are a new concept that extends traditional fuzzy sets by using
complex numbers or fuzzy numbers as elements.

2. We aim to apply complex fuzzy sets in BCK/BCI-algebras.
3. We present the idea of complex fuzzy subalgebras in BCK/BCI-algebras and investi-

gate their properties.
4. We explore modal and level operators associated with complex fuzzy subalgebras in

BCK/BCI-algebras.
5. We investigate various operations, such as union, intersection, complement, sim-

ple difference, and bounded difference, defined on complex fuzzy ideals within
BCK/BCI-algebras.

6. We provide a systematic method for dealing with complex fuzzy sets and operations
in BCK/BCI-algebras, potentially providing practical applications and computational
implementations.
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The structure of this research article is outlined as follows: Section 2 introduces
the concepts of BCK-algebras, fuzzy subalgebras, fuzzy ideals, and complex fuzzy sets.
In Section 3, a framework for complex fuzzy subalgebras within BCK/BCI-algebras is
proposed, and their properties are examined. Section 4 presents various operations defined
on complex fuzzy ideals, including unions, intersections, complements, simple differ-
ences, and bounded differences. Section 5 deals with a theoretical comparative analysis
of the proposed approach. In Section 6, the advantages of the proposed approach are
presented. At the end, Section 7 offers conclusions and outlines future research directions.
In Appendix A, we generates a computer programming algorithm that implements our
complex fuzzy subalgebras/ideals in BCK/BCI-algebras procedure for ease of lengthy
calculations.

In this article we often use different symbols and their corresponding meanings. These
symbols and their explanations are summarized in Table 1 below:

Table 1. List of symbols and abbreviations.

Symbols Abbreviations

U BCK/BCI-algebra
CFI Complex Fuzzy Ideal
CFS Complex Fuzzy Set
CFSA Complex Fuzzy Subalgebra
FI Fuzzy Ideal
FS Fuzzy Set
FSA Fuzzy Subalgebra

2. Preliminaries

An important class of legitimate algebras known as BCK/BCI-algebras, initially de-
veloped by Iséki (refer to [2,3]), has undergone extensive investigation by numerous
researchers. We recall the concepts and basic insights necessary for this work. If the criteria
are satisfied and a fixed U possesses a designated element denoted as 0 along with a binary
operation “⋄”

(I1) (∀ς̌, ϱ̌, κ̌ ∈ U)(((ς̌ ⋄ ϱ̌) ⋄ (ς̌ ⋄ κ̌)) ⋄ (κ̌ ⋄ ϱ̌) = 0),
(I2) (∀ς̌, ϱ̌ ∈ U) ((ς̌ ⋄ (ς̌ ⋄ ϱ̌)) ⋄ ϱ̌ = 0),
(I3) (∀ς̌ ∈ U)(ς̌ ⋄ ς̌ = 0),
(I4) (∀ς̌, ϱ̌ ∈ U)(ς̌ ⋄ ϱ̌ = 0, ϱ̌ ⋄ ς̌ = 0 ⇒ ς̌ = ϱ̌),

then we categorize U as a BCI-algebra. Furthermore, if a BCI-algebra U additionally
satisfies:

(I5) (∀ς̌ ∈ U)(0 ⋄ ς̌ = 0), then U as a BCK-algebra.

A fuzzy set (FS) Ã̧ defined on U is given by

Ã̧ = {(ς̌, ῡÃ̧(ς̌)) : ς̌ ∈ U},

where ῡÃ̧: U → [0, 1] is a real-valued membership function such that ῡÃ̧(ς̌) ≤ 1, for all
ς̌ ∈ U.

A FS Ã̧ of U is called a FSA of U if it meets

(∀ς̌, ϱ̌ ∈ U, ῡÃ̧(ς̌ ⋄ ϱ̌) ≥ ῡÃ̧(ς̌) ∧ ῡÃ̧(ϱ̌)).

A FS Ã̧ of U is called a FI of U if it meets

(∀ς̌, ϱ̌ ∈ U, ῡÃ̧(ς̌) ≥ ῡÃ̧(ς̌ ⋄ ϱ̌) ∧ ῡÃ̧(ϱ̌)).

Definition 1. Let Ã̧ be a fuzzy set of U. Then, modal operators (i), (ii), and level operators (iii), (iv)
are defined by
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(i). ⊞Ã̧ = {(ς̌,
ῡ ˜A̧(ς̌)

2 ) : ς̌ ∈ U},

(ii). ⊠Ã̧ = {(ς̌,
ῡ ˜A̧(ς̌)+1

2 ) : ς̌ ∈ U},
(iii). !Ã̧ = {(ς̌, 1

2 ∨ ῡÃ̧(ς̌)) : ς̌ ∈ U},

(iv). ?Ã̧ = {(ς̌, 1
2 ∧ ῡÃ̧(ς̌)) : ς̌ ∈ U}.

Ramot et al. [16,17] extended fuzzy set theory by introducing the concept of complex
fuzzy set (CFS) and incorporating phase angle into the analysis. They provided the
following definition:

Definition 2 ([16,28]). A CFS , defined on U is characterized by the membership function ῡÃ̧(ς̌)

that assigns any element, a complex-valued grade of membership in Ã̧. The CFS may be represented
by the set of ordered pairs

Ã̧ = {(ς̌, ῡÃ̧(ς̌)) : ς̌ ∈ U},

where ῡÃ̧(ς̌) = γÃ̧(ς̌)e
iϑ ˜A̧(ς̌)

, i =
√
−1, γÃ̧(ς̌) ∈ [0, 1] and ϑÃ̧(ς̌) ∈ [0, 2π].

Definition 3 ([28]). Let Ã̧ = {(ς̌, ῡÃ̧(ς̌)) : ς̌ ∈ U} and B̧̃ = {(ς̌, ῡB̧̃(ς̌)) : ς̌ ∈ U} be

complex subsets of a non-void set U with membership functions ῡÃ̧(ς̌) = γÃ̧(ς̌)e
iϑ ˜A̧(ς̌)

and

ῡB̧̃(ς̌) = γB̧̃(ς̌)e
iϑ ˜B̧(ς̌)

respectively. By ῡÃ̧(ς̌) ≤ ῡB̧̃(ς̌), we mean that γÃ̧(ς̌) ≤ γB̧̃(ς̌) and

ϑÃ̧(ς̌) ≤ ϑB̧̃(ς̌).

3. Complex Fuzzy Subalgebras of BCK/BCI-Algebras (CFSAs)

In this section, we will review basic ideas about CFSs, and CFSAs on the universal
set U ̸= ∅.

Definition 4. A CFS Ã̧ = (ς̌, ῡÃ̧(ς̌)) is considered a CFSA of U if ς̌, ϱ̌ ∈ U, and its satisfies
following:

1. ῡÃ̧(0) ≥ ῡÃ̧(ς̌)

2. ῡÃ̧(ς̌ ⋄ ϱ̌) ≥ ῡÃ̧(ς̌) ∧ ῡÃ̧(ϱ̌).

Example 1. Take a BCK-algebra U = {0, ς̌, ϱ̌, κ̌} with Table 2. Now define a CFS Ã̧ on U as:

Ã̧ = {(0, 0.8ei0.5π), (ς̌, 0.8ei0.5π), (ϱ̌, 0.5ei0.2π), (κ̌, 0.8ei0.5π)}.

It is easy to show that Ã̧ is a CFSA of U.

Table 2. Cayley’s table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌

0 0 0 0 0
ς̌ ς̌ 0 0 ς̌
ϱ̌ ϱ̌ ϱ̌ 0 ϱ̌
κ̌ κ̌ κ̌ κ̌ 0

Example 2. Take a BCI-algebra U = {0, ς̌, ϱ̌, κ̌, κ̌} with Table 3. Now define a CFS Ã̧ on U as

Ã̧ = {(0, 0.9ei0.6π), (ς̌, 0.7ei0.5π), (ϱ̌, 0.4ei0.3π), (κ̌, 0.4ei0.3π), (κ̌, 0.4ei0.3π)}.

It is easy to show that Ã̧ is a CFSA of U.
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Table 3. Cayley’s table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌ κ̌

0 0 0 κ̌ κ̌ ϱ̌
ς̌ ς̌ 0 κ̌ κ̌ ϱ̌
ϱ̌ ϱ̌ ϱ̌ 0 ϱ̌ κ̌
κ̌ κ̌ κ̌ ϱ̌ 0 κ̌
κ̌ κ̌ κ̌ κ̌ ϱ̌ 0

Property 1. If Ã̧ is a CFSA of U, then ῡÃ̧(0) ≥ ῡÃ̧(ς̌).

Proof. Let Ã̧ be a CFSA of U. Then

ῡÃ̧(0) = γÃ̧(0)e
iϑ ˜A̧(0)

= γÃ̧(ς̌ ⋄ ς̌)e
iϑ ˜A̧(ς̌⋄ς̌)

≥ (γÃ̧(ς̌) ∧ γÃ̧(ς̌))e
i(ϑ ˜A̧(ς̌)∧ϑ ˜A̧(ς̌))

= γÃ̧(ς̌)e
iϑ ˜A̧(ς̌)

≥ ῡÃ̧(ς̌).

Definition 5. Let Ã̧ be a CFS of U. Then modal operator ⊞Ã̧ is defined as

ῡ
⊞Ã̧(ς̌) =

γ ˜A̧(ς̌)

2 e
i

 ϑ ˜A̧(ς̌)

2



Example 3. Let ῡÃ̧(ς̌) = {(ς̌1, 0.4ei0.5π), (ς̌2, 0.8ei0.1π), (ς̌3, 0.6ei0.3π)} be a CFS of U. Then

ῡ
⊞Ã̧(ς̌) = {(ς̌1, 0.2ei0.25π), (ς̌2, 0.4ei0.05π), (ς̌3, 0.3ei0.15π)} is a CFS of U.

Theorem 1. Let Ã̧ be a CFSA of U. Then ⊞Ã̧ is a CFSA of U.

Proof. For each ς̌,∈ U, we have

ῡ
⊞Ã̧(0) =

γÃ̧(0)

2
e

i

 ϑ ˜A̧(0)

2



≥
γÃ̧(ς̌)

2
e

i

 ϑ ˜A̧(ς̌)

2


= ῡ

⊞Ã̧(ς̌).
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Let ς̌, ϱ̌ ∈ U. Then

ῡ
⊞Ã̧(ς̌ ⋄ ϱ̌) =

γÃ̧(ς̌ ⋄ ϱ̌)

2
e

i

 ϑ ˜A̧(ς̌⋄ϱ̌)

2



≥
(

γÃ̧(ς̌)

2
∧

γÃ̧(ϱ̌)

2

)
e

i

 ϑ ˜A̧(ς̌)

2 ∧
ϑ ˜A̧(ϱ̌)

2



= ῡ
⊞Ã̧(ς̌) ∧ ῡ

⊞Ã̧(ϱ̌).

Definition 6. Let Ã̧ be a CFS of U. Then modal operator ⊠Ã̧ is defined as

ῡ
⊠Ã̧(ς̌) =

γ ˜A̧(ς̌)+1

2 e
i

 ϑ ˜A̧(ς̌)+1

2



Example 4. Let ῡÃ̧(ς̌) = {(ς̌1, 0.3ei0.5π), (ς̌2, 0.7ei0.2π), (ς̌3, 0.5ei0.4π)} be a CFS of U. Then

ῡ
⊠Ã̧(ς̌) = {(ς̌1, 0.8ei0.75π), (ς̌2, 0.85ei0.6π), (ς̌3, 0.75ei0.7π)} is a CFS of U.

Theorem 2. Let Ã̧ be a CFSA of U. Then ⊠Ã̧ is a CFSA of U.

Proof. For each ς̌,∈ U, we have

ῡ
⊠Ã̧(0) =

γÃ̧(0) + 1

2
e

i

 ϑ ˜A̧(0)+1

2



≥
γÃ̧(ς̌) + 1

2
e

i

 ϑ ˜A̧(ς̌)+1

2


= ῡ

⊠Ã̧(ς̌).

Let ς̌, ϱ̌ ∈ U. Then

ῡ
⊠Ã̧(ς̌ ⋄ ϱ̌) =

γÃ̧(ς̌ ⋄ ϱ̌) + 1

2
e

i

 ϑ ˜A̧(ς̌⋄ϱ̌)+1

2



≥
(

γÃ̧(ς̌) + 1

2
∧

γÃ̧(ϱ̌) + 1

2

)
e

i

 ϑ ˜A̧(ς̌)+1

2 ∧
ϑ ˜A̧(ϱ̌)+1

2



= ῡ
⊠Ã̧(ς̌) ∧ ῡ

⊠Ã̧(ϱ̌).

Therefore, ⊠Ã̧ is a CFSA of U.

Definition 7. Let Ã̧ be a CFS of U. Then level operator !Ã̧ is defined as

ῡ
!Ã̧(ς̌) =

(
1
2 ∨ γÃ̧(ς̌)

)
e

i
(

1
2∨ϑ ˜A̧(ς̌)

)

Example 5. Let ῡÃ̧(ς̌) = {(ς̌1, 0.4ei0.6π), (ς̌2, 0.6ei0.2π), (ς̌3, 0.5ei0.7π)} be a CFS of U. Then

ῡ
!Ã̧(ς̌) = {(ς̌1, 0.5ei0.6π), (ς̌2, 0.6ei0.5π), (ς̌3, 0.5ei0.7π)} be a CFS of U

Theorem 3. Let Ã̧ be a CFSA of U. Then !Ã̧ is a CFSA of U.
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Proof. For each ς̌,∈ U, we have

ῡ
!Ã̧(0) =

(
1
2
∨ γÃ̧(0)

)
e

i
(

1
2∨ϑ ˜A̧(0)

)

≥
(

1
2
∨ γÃ̧(ς̌)

)
e

i
(

1
2∨ϑ ˜A̧(ς̌)

)

= ῡ
!Ã̧(ς̌).

Let ς̌, ϱ̌ ∈ U. Then

ῡ
!Ã̧(ς̌ ⋄ ϱ̌) =

1
2
∨ γÃ̧(ς̌ ⋄ ϱ̌) e

i
(

ϑ ˜A̧(ς̌⋄ϱ̌)

)

≥ 1
2
∨
(

γÃ̧(ς̌) ∧ γÃ̧(ϱ̌)
)

e
i
(

ϑ ˜A̧(ς̌)∧ϑ ˜A̧(ϱ̌)

)

=

(
1
2
∨ γÃ̧(ς̌) e

iϑ ˜A̧(ς̌)
)
∧
(

1
2
∨ γÃ̧(ϱ̌) e

iϑ ˜A̧(ϱ̌)
)

= ῡ
!Ã̧(ς̌) ∧ ῡ

!Ã̧(ϱ̌).

Therefore, !Ã̧ is a CFSA of U.

Definition 8. Let Ã̧ be a CFS of U. Then level operator ?Ã̧ is defined as

ῡ
?Ã̧(ς̌) =

(
1
2 ∧ γÃ̧(ς̌)

)
e

i
(

1
2∧γ ˜A̧(ϑ̌)

)

Example 6. Let ῡÃ̧(ς̌) = {(ς̌1, 0.4ei0.6π), (ς̌2, 0.6ei0.2π), (ς̌3, 0.5ei0.7π)} be a CFS of U. Then

ῡ
?Ã̧(ς̌) = {(ς̌1, 0.4ei0.5π), (ς̌2, 0.5ei0.2π), (ς̌3, 0.5ei0.5π)} be a CFS of U

Theorem 4. Let Ã̧ be a CFSA of U. Then ?Ã̧ is a CFSA of U.

Proof. For each ς̌,∈ U, we have

ῡ
?Ã̧(0) =

(
1
2
∧ γÃ̧(0)

)
e

i
(

1
2∧ϑ ˜A̧(0)

)

≥
(

1
2
∧ γÃ̧(ς̌)

)
e

i
(

1
2∧ϑ ˜A̧(ς̌)

)

= ῡ
?Ã̧(ς̌).

Let ς̌, ϱ̌ ∈ U. Then

ῡ
?Ã̧(ς̌ ⋄ ϱ̌) =

1
2
∧ γÃ̧(ς̌ ⋄ ϱ̌) e

i
(

ϑ ˜A̧(ς̌⋄ϱ̌)

)

≥ 1
2
∧
(

γÃ̧(ς̌) ∧ γÃ̧(ϱ̌)
)

e
i
(

ϑ ˜A̧(ς̌)∧ϑ ˜A̧(ϱ̌)

)

=

(
1
2
∧ γÃ̧(ς̌) e

iϑ ˜A̧(ς̌)
)
∧
(

1
2
∧ γÃ̧(ϱ̌) e

iϑ ˜A̧(ϱ̌)
)

= ῡ
?Ã̧(ς̌) ∧ ῡ

?Ã̧(ϱ̌).

Therefore, ?Ã̧ is a CFSA of U.
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4. Complex Fuzzy Ideals of BCK/BCI-Algebras (CFIs)

In this section, we will review basic ideas about the CFSs, and CFIs over the univer-
sal set U ̸= ∅.

Definition 9. A CFS Ã̧ = (ς̌, ῡÃ̧(ς̌)) is considered as CFI of U if ς̌, ϱ̌ ∈ U, the following hold:

1. ῡÃ̧(ς̌) ≥ ῡÃ̧(ς̌ ⋄ ϱ̌) ∧ ῡÃ̧(ϱ̌).

Example 7. Take a BCK-algebra U = {0, ς̌, ϱ̌, κ̌, κ̌} with Table 4.
Now define a CFS Ã̧ on U as

Ã̧ = {(0, 0.67ei0.5π), (ς̌, 0.34ei0.43π), (ϱ̌, 0.67ei0.0.5π), (κ̌, 0.34ei0.43π), (κ̌, 0.34ei0.43π)}.

It is easy to show that Ã̧ is a CFI of U.

Table 4. Cayley table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌ κ̌

0 0 0 0 0 0
ς̌ ς̌ 0 ς̌ 0 0
ϱ̌ ϱ̌ ϱ̌ 0 0 0
κ̌ κ̌ κ̌ κ̌ 0 0
κ̌ κ̌ κ̌ κ̌ ς̌ 0

Property 2. Every CFI of U is order-preserving.

Proof. Let Ã̧ be a CFSA of U and let ς̌, ϱ̌ ∈ U be such that ς̌ ≤ ϱ̌. Then

ῡÃ̧(ς̌) = γÃ̧(ς̌)e
iϑ ˜A̧(ς̌)

≥ γÃ̧(ς̌ ⋄ ϱ̌)e
iϑ ˜A̧(ς̌⋄ϱ̌)

∧ γÃ̧(ϱ̌)e
iϑ ˜A̧(ϱ̌)

= (γÃ̧(ς̌ ⋄ ϱ̌) ∧ γÃ̧(ϱ̌))e
i(ϑ ˜A̧(ς̌⋄ϱ̌)∧ϑ ˜A̧(ϱ̌))

= (γÃ̧(0) ∧ γÃ̧(ϱ̌))e
i(ϑ ˜A̧(0)∧ϑ ˜A̧(ϱ̌))

= γÃ̧(ϱ̌)e
iϑ ˜A̧(ϱ̌)

≥ ῡÃ̧(ϱ̌).

Theorem 5. Every CFI of U is an CFSA of U.

Proof. Since ς̌ ⋄ ϱ̌ ≤ ς̌, it follows from Property 2 that ῡÃ̧(ς̌ ⋄ ϱ̌) ≥ ῡÃ̧(ς̌). Hence, by
Definition 9,

ῡÃ̧(ς̌ ⋄ ϱ̌) ≥ γÃ̧(ς̌)e
iϑ ˜A̧(ς̌)

= (γÃ̧(ς̌ ⋄ ϱ̌)e
iϑ ˜A̧(ς̌⋄ϱ̌)

) ∧ (γÃ̧(ϱ̌)e
iϑ ˜A̧(ϱ̌)

)

= (γÃ̧(ς̌ ⋄ ϱ̌) ∧ γÃ̧(ϱ̌))e
i(ϑ ˜A̧(ς̌⋄ϱ̌)∧ϑ ˜A̧(ϱ̌))

= (γÃ̧(ς̌) ∧ γÃ̧(ϱ̌))e
i(ϑ ˜A̧(ς̌)∧ϑ ˜A̧(ϱ̌))

≥ ῡÃ̧(ς̌) ∧ ῡÃ̧(ϱ̌),
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and so Ã̧ is a CFSA of U.

Theorem 6. Let Ã̧ be a CFI of U. If the inequality ς̌ ⋄ ϱ̌ ≤ κ̌ holds in U, then ῡÃ̧(ς̌) ≥
ῡÃ̧(ϱ̌) ∧ ῡÃ̧(κ̌).

Proof. Let Ã̧ be a CFI of U and assume that ς̌ ⋄ ϱ̌ ≤ κ̌ holds in U. Then

ῡÃ̧(ς̌ ⋄ ϱ̌) = γÃ̧(ς̌ ⋄ ϱ̌)e
iϑ ˜A̧(ς̌⋄ϱ̌)

≥ (γÃ̧((ς̌ ⋄ ϱ̌) ⋄ κ̌) ∧ γÃ̧(κ̌)) e
i
(

ϑ ˜A̧((ς̌⋄ϱ̌)⋄κ̌)∧ϑ ˜A̧(κ̌)

)

= (γÃ̧(0) ∧ γÃ̧(κ̌)) e
i
(

ϑ ˜A̧(0)∧ϑ ˜A̧(κ̌)

)

= γÃ̧(κ̌) e
iϑ ˜A̧(κ̌)

≥ ῡÃ̧(κ̌).

It follows that, ῡÃ̧(ς̌) ≥ ῡÃ̧(κ̌) ∧ ῡÃ̧(ϱ̌).

Definition 10. Let Ã̧ be a CFS of U. Then, the complement Ã̧ is defined as

C(ῡÃ̧(ς̌)) = (1 − γÃ̧(ς̌))e
i(2π−ϑ ˜A̧(ς̌))

.

Example 8. Let
ῡÃ̧(ς̌)

= {(ς̌1, 0.3ei0.4π), (ς̌2, 0.6ei0.2π), (ς̌3, 0.8ei0.1π), (ς̌4, 0.2ei0.3π), (ς̌5, 0.5eiπ), (ς̌6, 0.9ei0.1π)}

be a CFS . Then,
C(ῡÃ̧(ς̌))

= {(ς̌1, 0.7ei1.6π), (ς̌2, 0.4ei1.8π), (ς̌3, 0.2ei1.9π), (ς̌4, 0.8ei1.7π), (ς̌5, 0.5eiπ), (ς̌6, 0.1ei1.9π)}.

Property 3. A CFS of U is a CFI of U iff C(ῡÃ̧) is a CFI of U.

Proof. Let Ã̧ be a CFI of U and let ς̌, ϱ̌ ∈ U. Then

C(ῡÃ̧(0)) = 1 − ῡÃ̧(0)

= (1 − γÃ̧(0))e
i(2π−ϑ ˜A̧(0))

≥ (1 − γÃ̧(ς̌))e
i(2π−ϑ ˜A̧(ς̌))

= C(ῡÃ̧(ς̌))

and

C(ῡÃ̧(ς̌)) = 1 − ῡÃ̧(ς̌)

≥ 1 − (γÃ̧(ς̌ ⋄ ϱ̌)e
i(2π−ϑ ˜A̧(ς̌⋄ϱ̌))

∧ γÃ̧(ϱ̌)e
i(2π−ϑ ˜A̧(ϱ̌))

)

= (1 − γÃ̧(ς̌ ⋄ ϱ̌))e
i(2π−ϑ ˜A̧(ς̌⋄ϱ̌))

∧ (1 − γÃ̧(ϱ̌))e
i(2π−ϑ ˜A̧(ϱ̌))

≥ C(ῡÃ̧(ς̌ ⋄ ϱ̌)) ∧ C(ῡÃ̧(ϱ̌)).
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Thus C(ῡÃ̧) is a CFI of U. The converse of the theorem can be proven in a similar way.

Definition 11. Let Ã̧1 and Ã̧2 be two CFSs of U. Then, the union Ã̧1 ∪ Ã̧2 is defined as

ῡ
(Ã̧1∪Ã̧2)

(ς̌) = (γÃ̧1
(ς̌) ∨ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∨ϑ ˜A̧2
(ς̌))

Example 9. Let

ῡÃ̧1
(ς̌) = {(ς̌1, 0.6ei0.5π), (ς̌2, 1ei0.5π), (ς̌3, 0.8ei2π), (ς̌4, 0.9ei0.4π), (ς̌5, 0.7eiπ), (ς̌6, 0.5ei0.4π)}

and
ῡÃ̧2

(ς̌)

= {(ς̌1, 0.2eiπ), (ς̌2, 0.1ei0.8π), (ς̌3, 0.8ei0.8π), (ς̌4, 0.2ei0.9π), (ς̌5, 0.9ei0.9π), (ς̌6, 0.3ei2π)}

be a CFSs. Then,

ῡ
(Ã̧1∪Ã̧2)

(ς̌) = {(ς̌1, 0.6eiπ), (ς̌2, 1ei0.8π), (ς̌3, 0.8ei2π), (ς̌4, 0.9eiπ), (ς̌5, 0.9eiπ), (ς̌6, 0.5ei2π)}.

Property 4. Let Ã̧1 and Ã̧2 be two CFIs of U. Then Ã̧1 ∪ Ã̧2 is a CFI of U.

Proof. Let Ã̧1 and Ã̧2 be two CFIs of U and let ς̌, ϱ̌ ∈ U. Then

ῡ
(Ã̧1∪Ã̧2)

(0) = (γÃ̧1
(0) ∨ γÃ̧2

(0))e
i(ϑ ˜A̧1

(0)∨ϑ ˜A̧2
(0))

≥ (γÃ̧1
(ς̌) ∨ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∨ϑ ˜A̧2
(ς̌))

= ῡ
(Ã̧1∪Ã̧2)

(ς̌)

and

ῡ
(Ã̧1∪Ã̧2)

(ς̌) = (γÃ̧1
(ς̌) ∨ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∨ϑ ˜A̧2
(ς̌))

≥ ((γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧1

(ϱ̌)) ∨ (γÃ̧2
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ϱ̌)))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧1
(ϱ̌))∨(ϑ ˜A̧2

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ϱ̌))

If one is contained in the other, then

≥ ((γÃ̧1
(ς̌ ⋄ ϱ̌) ∨ γÃ̧2

(ς̌ ⋄ ϱ̌)) ∧ (γÃ̧1
(ϱ̌) ∨ γÃ̧2

(ϱ̌)))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∨ϑ ˜A̧2
(ς̌⋄ϱ̌))∧(ϑ ˜A̧1

(ϱ̌)∨ϑ ˜A̧2
(ϱ̌)))

= (γÃ̧1
(ς̌ ⋄ ϱ̌) ∨ γÃ̧2

(ς̌ ⋄ ϱ̌))e
i(ϑ ˜A̧1

(ς̌⋄ϱ̌)∨ϑ ˜A̧2
(ς̌⋄ϱ̌))

∧

(γÃ̧1
(ϱ̌) ∨ γÃ̧2

(ϱ̌))e
i(ϑ ˜A̧1

(ϱ̌)∨ϑ ˜A̧2
(ϱ̌))

≥ ῡ
(Ã̧1∪Ã̧2)

(ς̌ ⋄ ϱ̌) ∧ ῡ
(Ã̧1∪Ã̧2)

(ϱ̌).

Therefore, Ã̧1 ∪ Ã̧2 is a CFI of U.

Example 10. Take a BCK-algebra U = {0, ς̌, ϱ̌, κ̌, κ̌} with Table 5.
Now define CFS Ã̧1 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡÃ̧1

(ς̌) 0.9ei0.7π 0.7ei0.5π 0.5ei0.3π 0.3ei0.1π 0.3ei0.1π
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It is easy to show that Ã̧1 is a CFI of U.
Now define CFS Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡÃ̧2

(ς̌) 0.6ei0.5π 0.4ei0.6π 0.6ei0.5π 0.4ei0.6π 0.4ei0.6π

It is easy to show that Ã̧2 is a CFI of U.
Now define CFS Ã̧1 ∪ Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡ
(Ã̧1∪Ã̧2)

(ς̌) 0.9ei0.7π 0.7ei0.6π 0.6ei0.5π 0.4ei0.6π 0.4ei0.6π

It is easy to show that Ã̧1 ∪ Ã̧2 is a CFI of U.

Table 5. Cayley’s table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌ κ̌

0 0 0 0 0 0
ς̌ ς̌ 0 ς̌ 0 0
ϱ̌ ϱ̌ ϱ̌ 0 0 0
κ̌ κ̌ κ̌ κ̌ 0 0
κ̌ κ̌ κ̌ κ̌ κ̌ 0

Definition 12. Let Ã̧1 and Ã̧2 be two CFSs of U. Then, the intersection Ã̧1 ∩ Ã̧2 is defined as

ῡ
(Ã̧1∩Ã̧2)

(ς̌) = (γÃ̧1
(ς̌) ∧ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∧ϑ ˜A̧2
(ς̌))

Example 11. Let

ῡÃ̧1
(ς̌) = {(ς̌1, 0.6ei0.5π), (ς̌2, 1ei0.5π), (ς̌3, 0.8ei2π), (ς̌4, 0.5ei0.4π), (ς̌5, 0.9ei0.4π), (ς̌6, 0.7eiπ)}

and
ῡÃ̧2

(ς̌)

= {(ς̌1, 0.2eiπ), (ς̌2, 0.1ei0.8π), (ς̌3, 0.7ei0.7π), (ς̌4, 0.1ei0.9π), (ς̌5, 0.9ei0.7π), (ς̌6, 0.6ei0.6π)}

be a CFSs. Then,
ῡ
(Ã̧1∩Ã̧2)

(ς̌)

= {(ς̌1, 0.2ei0.5π), (ς̌2, 0.1ei0.5π), (ς̌3, 0.7ei0.7π), (ς̌4, 0.1ei0.4π), (ς̌5, 0.9ei0.4π), (ς̌6, 0.6e0.6iπ)}.

Property 5. Let Ã̧1 and Ã̧2 be two CFIs of U. Then Ã̧1 ∩ Ã̧2 is a CFI of U.

Proof. Let Ã̧1 and Ã̧2 be two CFIs of U and let ς̌, ϱ̌ ∈ U. Then,

ῡ
(Ã̧1∩Ã̧2)

(0) = (γÃ̧1
(0) ∧ γÃ̧2

(0))e
i(ϑ ˜A̧1

(0)∧ϑ ˜A̧2
(0))

≥ (γÃ̧1
(ς̌) ∧ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∧ϑ ˜A̧2
(ς̌))

= ῡ
(Ã̧1∩Ã̧2)

(ς̌)
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and

ῡ
(Ã̧1∩Ã̧2)

(ς̌) = (γÃ̧1
(ς̌) ∧ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∧ϑ ˜A̧2
(ς̌))

≥ ((γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧1

(ϱ̌)) ∧ (γÃ̧2
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ϱ̌)))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧1
(ϱ̌))∧(ϑ ˜A̧2

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ϱ̌))

= ((γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ς̌ ⋄ ϱ̌)) ∧ (γÃ̧1
(ϱ̌) ∧ γÃ̧2

(ϱ̌)))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ς̌⋄ϱ̌))∧(ϑ ˜A̧1

(ϱ̌)∧ϑ ˜A̧2
(ϱ̌)))

= (γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ς̌ ⋄ ϱ̌))e
i(ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ς̌⋄ϱ̌))

∧

(γÃ̧1
(ϱ̌) ∧ γÃ̧2

(ϱ̌))e
i(ϑ ˜A̧1

(ϱ̌)∧ϑ ˜A̧2
(ϱ̌))

≥ ῡ
(Ã̧1∩Ã̧2)

(ς̌ ⋄ ϱ̌) ∧ ῡ
(Ã̧1∩Ã̧2)

(ϱ̌).

Therefore, Ã̧1 ∩ Ã̧2 is a CFI of U.

Example 12. Take a BCK-algebra U = {0, ς̌, ϱ̌, κ̌, κ̌} with Table 6.
Now define CFS Ã̧1 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡÃ̧1

(ς̌) 0.6ei0.8π 0.5ei0.7π 0.4ei0.6π 0.4ei0.6π 0.4ei0.6π

It is easy to show that Ã̧1 is a CFI of U.
Now define CFS Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡÃ̧2

(ς̌) 0.8ei0.6π 0.7ei0.5π 0.6ei0.3π 0.6ei0.3π 0.6ei0.3π

It is easy to show that Ã̧2 is a CFI of U.
Now define CFS Ã̧1 ∩ Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡ
(Ã̧1∩Ã̧2)

(ς̌) 0.6ei0.6π 0.5ei0.5π 0.4ei0.3π 0.4ei0.3π 0.4ei0.3π

It is easy to show that Ã̧1 ∩ Ã̧2 is a CFI of U.

Table 6. Cayley’s table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌ κ̌

0 0 0 0 0 0
ς̌ ς̌ 0 ς̌ 0 0
ϱ̌ ϱ̌ ϱ̌ 0 0 0
κ̌ κ̌ κ̌ κ̌ 0 0
κ̌ κ̌ κ̌ κ̌ ϱ̌ 0

Definition 13. Let Ã̧1 and Ã̧2 be two CFSs of U. Then, the simple difference Ã̧1 \ Ã̧2 is defined as

ῡ
(Ã̧1\Ã̧2)

(ς̌) = (γÃ̧1
(ς̌) ∧ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∧ϑ ˜A̧2
(ς̌))

Example 13. Let
ῡÃ̧1

(ς̌)

= {(ς̌1, 0.8ei0.1π), (ς̌2, 0.4ei0.6π), (ς̌3, 1eiπ), (ς̌4, 0.7ei0.2π), (ς̌5, 0.3ei0.5π), (ς̌6, 0.9ei0.9π)}
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and
ῡÃ̧2

(ς̌)

= {(ς̌1, 0.2eiπ), (ς̌2, 1ei0.8π), (ς̌3, 0.5ei0.2π), (ς̌4, 0.1ei0.9π), (ς̌5, 0.9ei0.7π), (ς̌6, 0.4ei0.1π)}

be a CFSs. Then,
ῡ
(Ã̧1\Ã̧2)

(ς̌) =

{(ς̌1, 0.2ei0.1π), (ς̌2, 0.4ei0.6π), (ς̌3, 0.5ei0.2π), (ς̌4, 0.1ei0.2π), (ς̌5, 0.3ei0.5π), (ς̌6, 0.4ei0.1π)}.

Property 6. Let Ã̧1 and Ã̧2 be two CFIs of U. Then Ã̧1 \ Ã̧2 is a CFI of U.

Proof. Let Ã̧1 and Ã̧2 be two CFIs of U and let ς̌, ϱ̌ ∈ U. Then

ῡ
(Ã̧1\Ã̧2)

(0) = (γÃ̧1
(0) ∧ γÃ̧2

(0))e
i(ϑ ˜A̧1

(0)∧ϑ ˜A̧2
(0))

≥ (γÃ̧1
(ς̌) ∧ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∧ϑ ˜A̧2
(ς̌))

= ῡ
(Ã̧1\Ã̧2)

(ς̌)

and

ῡ
(Ã̧1\Ã̧2)

(ς̌) = (γÃ̧1
(ς̌) ∧ γÃ̧2

(ς̌))e
i(ϑ ˜A̧1

(ς̌)∧ϑ ˜A̧2
(ς̌))

≥ ((γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧1

(ϱ̌)) ∧ (γÃ̧2
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ϱ̌)))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧1
(ϱ̌))∧(ϑ ˜A̧2

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ϱ̌))

= ((γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ς̌ ⋄ ϱ̌)) ∧ (γÃ̧1
(ϱ̌) ∧ γÃ̧2

(ϱ̌)))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ς̌⋄ϱ̌))∧(ϑ ˜A̧1

(ϱ̌)∧ϑ ˜A̧2
(ϱ̌)))

= (γÃ̧1
(ς̌ ⋄ ϱ̌) ∧ γÃ̧2

(ς̌ ⋄ ϱ̌))e
i(ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ς̌⋄ϱ̌))

∧

(γÃ̧1
(ϱ̌) ∧ γÃ̧2

(ϱ̌))e
i(ϑ ˜A̧1

(ϱ̌)∧ϑ ˜A̧2
(ϱ̌))

≥ ῡ
(Ã̧1\Ã̧2)

(ς̌ ⋄ ϱ̌) ∧ ῡ
(Ã̧1\Ã̧2)

(ϱ̌).

Therefore, Ã̧1 \ Ã̧2 is a CFI of U.

Example 14. Take a BCK-algebra U = {0, ς̌, ϱ̌, κ̌, κ̌} with Table 7.
Now define CFS Ã̧1 on U as

U 0 ς̌ ϱ̌ κ̌

ῡÃ̧1
(ς̌) 0.8ei0.7π 0.6ei0.5π 0.2ei0.3π 0.2ei0.3π

It is easy to show that Ã̧1 is a CFI of U.
Now define CFS Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌

ῡÃ̧2
(ς̌) 0.5ei0.8π 0.5ei0.8π 0.3ei0.6π 0.3ei0.6π

It is easy to show that Ã̧2 is a CFI of U.
Now define CFS Ã̧1 \ Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌

ῡ
(Ã̧1\Ã̧2)

(ς̌) 0.5ei0.7π 0.5ei0.5π 0.2ei0.3π 0.2ei0.3π
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It is easy to show that Ã̧1 \ Ã̧2 is a CFI of U.

Table 7. Cayley’s table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌

0 0 0 0 0
ς̌ ς̌ 0 0 ς̌
ϱ̌ ϱ̌ ϱ̌ 0 0
κ̌ κ̌ κ̌ κ̌ 0

Definition 14. Let Ã̧1 and Ã̧2 be two CFSs of U. Then, the bounded difference Ã̧1 ⊖ Ã̧2 is
defined as

ῡ
(Ã̧1⊖Ã̧2)

(ς̌) = (0 ∨ (γÃ̧1
(ς̌)− γÃ̧2

(ς̌)))e
i(ϑ ˜A̧1

(ς̌)∨ϑ ˜A̧2
(ς̌))

Example 15. Let

ῡÃ̧1
(ς̌) = {(ς̌1, 0.6ei0.5π), (ς̌2, 1ei0.5π), (ς̌3, 0.8ei2π), (ς̌4, 0.5ei0.4π), (ς̌5, 0.9ei0.4π), (ς̌6, 0.7eiπ)}

and
ῡÃ̧2

(ς̌)

= {(ς̌1, 0.2eiπ), (ς̌2, 0.1ei0.8π), (ς̌3, 0.8ei0.8π), (ς̌4, 0.1ei0.9π), (ς̌5, 0ei0.7π), (ς̌6, 0.7ei0.7π)}

be a CFSs. Then
ῡ
(Ã̧1⊖Ã̧2)

(ς̌)

= {(ς̌1, 0.4eiπ), (ς̌2, 0.9ei0.8π), (ς̌3, 0ei2π), (ς̌4, 0.4ei0.9π), (ς̌5, 0.9ei0.7π), (ς̌6, 0eiπ)}.

Property 7. Let Ã̧1 and Ã̧2 be two CFIs of U. Then Ã̧1 ⊖ Ã̧2 is a CFI of U.

Proof. Let Ã̧1 and Ã̧2 be two CFIs of U and let ς̌, ϱ̌ ∈ U. Then

ῡ
(Ã̧1⊖Ã̧2)

(0) = (0 ∨ (γÃ̧1
(0)− γÃ̧2

(0)))e
i(ϑ ˜A̧1

(0)∨ϑ ˜A̧2
(0))

≥ (0 ∨ (γÃ̧1
(ς̌)− γÃ̧2

(ς̌)))e
i(ϑ ˜A̧1

(ς̌)∨ϑ ˜A̧2
(ς̌))

= ῡ
(Ã̧1⊖Ã̧2)

(ς̌)

and

ῡ
(Ã̧1⊖Ã̧2)

(ς̌) = (0 ∨ (γÃ̧1
(ς̌)− γÃ̧2

(ς̌)))e
i(ϑ ˜A̧1

(ς̌)∨ϑ ˜A̧2
(ς̌))

≥ (0 ∨ ((γÃ̧1
(ς̌ ⋄ ϱ̌)− γÃ̧2

(ς̌ ⋄ ϱ̌)) ∧ (γÃ̧1
(ϱ̌)− γÃ̧2

(ϱ̌))))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧1
(ϱ̌))∨(ϑ ˜A̧2

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ϱ̌))

= ((0 ∨ (γÃ̧1
(ς̌ ⋄ ϱ̌)− γÃ̧2

(ς̌ ⋄ ϱ̌))) ∧ (0 ∨ (γÃ̧1
(ϱ̌)− γÃ̧2

(ϱ̌))))

e
i((ϑ ˜A̧1

(ς̌⋄ϱ̌)∧ϑ ˜A̧2
(ς̌⋄ϱ̌))∨(ϑ ˜A̧1

(ϱ̌)∧ϑ ˜A̧2
(ϱ̌)))

= (0 ∨ (γÃ̧1
(ς̌ ⋄ ϱ̌)− γÃ̧2

(ς̌ ⋄ ϱ̌)))e
i(ϑ ˜A̧1

(ς̌⋄ϱ̌)∨ϑ ˜A̧2
(ς̌⋄ϱ̌))

∧

(0 ∨ (γÃ̧1
(ϱ̌)⊖ γÃ̧2

(ϱ̌)))e
i(ϑ ˜A̧1

(ϱ̌)∨ϑ ˜A̧2
(ϱ̌))

≥ ῡ
(Ã̧1⊖Ã̧2)

(ς̌ ⋄ ϱ̌) ∧ ῡ
(Ã̧1⊖Ã̧2)

(ϱ̌).

Therefore, Ã̧1 ⊖ Ã̧2 is a CFI of U.
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Example 16. Take a BCK-algebra U = {0, ς̌, ϱ̌, κ̌, κ̌} with Table 8.
Now define CFS Ã̧1 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡÃ̧1

(ς̌) 0.7ei2π 0.6ei1.5π 0.3ei0.5π 0.1ei0π 0.2eiπ

It is easy to show that Ã̧1 is a CFI of U.
Now define CFS Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡÃ̧2

(ς̌) 0.6eiπ 0.4ei0.8π 0.2ei0.4π 0ei0.2π 0.2ei0.6π

It is easy to show that Ã̧2 is a CFI of U.
Now define CFS Ã̧1 ⊖ Ã̧2 on U as

U 0 ς̌ ϱ̌ κ̌ κ̌
ῡ
(Ã̧1⊖Ã̧2)

(ς̌) 0.1eiπ 0.1ei1.5π 0.1ei0.5π 0.1ei0.2π 0eiπ

It is easy to show that Ã̧1 ⊖ Ã̧2 is a CFI of U.

Table 8. Cayley’s table representing the binary operation denoted by “⋄”.

⋄ 0 ς̌ ϱ̌ κ̌ κ̌

0 0 0 0 0 0
ς̌ ς̌ 0 ς̌ 0 0
ϱ̌ ϱ̌ ϱ̌ 0 ϱ̌ 0
κ̌ κ̌ κ̌ κ̌ 0 κ̌
κ̌ κ̌ κ̌ κ̌ κ̌ 0

5. Comparison Analysis of the Proposed Approach

We provide a theoretical description of the comparison analysis of our proposed
approach using the complex fuzzy sets method proposed in [16,17].

1. Representation and Membership:

• The complex fuzzy sets and ideals represent the degree of membership in com-
plex numbers.

2. Algebraic Structure:

• Complex fuzzy sets are more general constructs that can be defined on any set,
while complex fuzzy ideals are specifically defined on algebraic structures such
as BCK/BCI-algebras.

3. Closure Properties:

• Both complex fuzzy sets and complex fuzzy ideals exhibit closure properties,
but in different contexts. Complex fuzzy sets may not necessarily maintain clo-
sure properties under operations defined on the underlying algebraic structure,
whereas complex fuzzy ideals typically maintain closure properties under the
algebraic operations of the BCK/BCI-algebras.

4. Applications:

• Complex fuzzy sets have been applied in various fields, including decision
making, pattern recognition, and control systems.

• Complex fuzzy ideals are particularly useful in algebraic structures for analyzing
the behavior of operations in the presence of uncertainty.

5. Complexity and Analysis:

• Complex fuzzy sets, while still complex, are easier to analyze in some cases
because they are not constrained by algebraic structure operations.
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• Complex fuzzy ideals may involve more intricate mathematical analysis due
to their algebraic nature and the interplay of complex numbers with algebraic
operations.

6. Advantages

1. Complex fuzzy ideals generalize classical fuzzy ideals in algebraic structures such as
BCK/BCI-algebras.

2. BCK/BCI-algebras with complex fuzzy ideals can adapt to uncertain environments
by dynamically adjusting the degree of membership of the elements to the ideals.

3. Complex fuzzy ideals are naturally integrated into fuzzy logic systems, allowing
seamless reasoning and inference within the context of BCK/BCI-algebras.

4. Complex fuzzy ideals preserve the closure of algebraic operations and ensure consis-
tency with the underlying algebraic structure.

5. Complex fuzzy ideals facilitate algebraic analysis tasks such as congruence relations
and lattice structures and enable deeper investigation of algebraic properties.

7. Conclusions

The expansion of crisp sets to fuzzy sets in terms of membership functions is analogous
to the expansion of integers to real numbers. Just as integers (Z) were extended to the
real number line (R), the range of membership functions expands from {0, 1} to the unit
interval [0, 1]. According to this historical progression, the development of sets of numbers
did not end with real numbers. This process continued with the introduction of complex
numbers (C). Likewise, this extension could lead to further advances in fuzzy set theory.

This article contributes to the concept of complex fuzzy sets characterized by membership
functions extending beyond [0, 1] to the unit circle in the complex plane. Ramot et al. [16,17]
presented this in their paper, which features a membership function with values in the
complex domain.

In this work, we used complex fuzzy sets to obtain the generalization of fuzzy set
theory in BCK/BCI-algebras. We introduced the notion of a complex fuzzy subalgebra
in a BCK/BCI-algebra and examined related properties. We have defined and studied
the modal and level operators of complex fuzzy subalgebras in BCK/BCI-algebras. We
have studied various operations and the laws of a complex fuzzy system, including union,
intersection, complement, and simple and bounded differences of complex fuzzy ideals in
BCK/BCI-algebras. We have provided our proposed approach in the form of an algorithm.

Future work could explore further real-world applications of complex fuzzy sets,
and linear complex Diophantine fuzzy sets could also be investigated. Furthermore, we
will introduce complex intuitionistic fuzzy ideals in BCK-algebras with applications in the
TOPSIS, Electure-I, and Electure-II methods using multi-criteria decision problems.
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Appendix A

The following, we show some algorithms for studying the structure of complex fuzzy
subalgebras and ideals in BCK/BCI-algebras using Definition 4 and definition 9.
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Appendix A.1. Algorithm for Complex Fuzzy Subalgebras in BCK/BCI-Algebras

def 4 is_complex_fuzzy_subalgebra(U, ⋄, Ã̧):
stop = False
i = 1
while i ≤ |U| and not stop:
if ῡÃ̧(0) < ῡÃ̧(ς̌i):
stop = True
i += 1
j = 1
while j ≤ |U| and not stop:
if ῡÃ̧(ς̌i ⋄ ϱ̌j) < ῡÃ̧(ς̌i) ∧ ῡÃ̧(ϱ̌j):
stop = True
j += 1
if stop:
print(“Ã̧ is not a complex fuzzy subalgebra of U”)
else:
print(“Ã̧ is a complex fuzzy subalgebra of U”)

Appendix A.2. Algorithm for Complex Fuzzy Ideals in BCK/BCI-Algebras

def 9 is_complex_fuzzy_ideal(U, ⋄, Ã̧):
stop = False
i = 1
while i ≤ |U| and not stop:
if ῡÃ̧(0) < ῡÃ̧(ς̌i):
stop = True
i += 1
j = 1
while j ≤ |U| and not stop:
if ῡÃ̧(ς̌i) < ῡÃ̧(ς̌i ⋄ ϱ̌j) ∧ ῡÃ̧(ϱ̌j):
stop = True
j += 1
if stop:
print(“Ã̧ is not a complex fuzzy ideal of U”)
else:
print(“Ã̧ is a complex fuzzy ideal of U”)
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