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Abstract: Online consumer credit services play a vital role in the contemporary consumer market.
To foster their sustainable development, it is essential to establish and strengthen the relevant risk
management mechanism. This study proposes an intelligent management framework called the
consumer default risk portrait (CDRP) to mitigate the default risks associated with online consumer
loans. The CDRP framework combines traditional credit information and Internet platform data to
depict the portrait of consumer default risks. It consists of four modules: addressing data imbalances,
establishing relationships between user characteristics and the default risk, analyzing the influence of
different variables on default, and ultimately presenting personalized consumer profiles. Empirical
findings reveal that “Repayment Periods”, “Loan Amount”, and “Debt to Income Type” emerge as
the three variables with the most significant impact on default. “Re-payment Periods” and “Debt
to Income Type” demonstrate a positive correlation with default probability, while a lower “Loan
Amount” corresponds to a higher likelihood of default. Additionally, our verification highlights that
the significance of variables varies across different samples, thereby presenting a personalized portrait
from a single sample. In conclusion, the proposed framework provides valuable suggestions and
insights for financial institutions and Internet platform managers to improve the market environment
of online consumer credit services.

Keywords: online consumer credit; consumer default risk management; user portrait; Shapley
Additive Explanations; machine learning

MSC: 68T09

1. Introduction

Consumer credit enables individuals to pay for goods or services in installments over
some time, leveraging online platforms. As a crucial financial tool, online consumer credit
service has revolutionized the conventional credit system by overcoming geographical and
temporal constraints [1]. For merchants, the “buy-now-pay-later” scheme could attract
more consumers, thereby improving sales and customer conversion. By providing online
consumer credit services, e-commerce platforms can also increase user stickiness and
improve platform activity and user experience. In short, the promotion of online consumer
credit can expand internal demand and encourage consumption, thus contributing to
economic growth [2]. Presently, leading e-commerce platforms have robustly developed
and extensively promoted this service.

The role of the online consumer credit service in the consumer market is undeniable.
However, it also encounters the challenge of evaluating consumer credit risks [3]. The
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continued growth of online consumer credit combined with the fragility of the financial
system may lead to excessive consumer debt, which is not conducive to the stability of the
financial market and economic growth [4]. For example, in the year 2008, excessive credit
expansion in the United States led to sharp fluctuations in the housing market, triggering
the subprime crisis [5]. The crisis spread to the banking systems of various countries,
with unprecedented consequences for the global economy and greatly eroded consumer
confidence [6]. Online consumer credit services have characteristics such as small loan
amounts, dispersed borrowers, lack of collateral, and easy market entry [7]. These factors
make the risks associated with such services more pronounced. Financial institutions,
including commercial banks, as well as e-commerce platforms, like Internet companies,
need to establish an enhanced mechanism for effectively managing the risks associated with
consumer loan defaults. It is essential for achieving sustainable and sound development.

In recent years, an increasing number of studies have been dedicated to managing the
default risk associated with online consumer loans [8]. However, most of them concentrate
on developing traditional credit scoring models [9–12]. Risk management is approached as
a straightforward classification problem [13]. Although regularly updated classification
algorithms can enhance the predictive performance of the model, the emphasis on achieving
higher prediction accuracy hinders model interpretability, making it challenging to gain the
trust of managers [14]. Hence, the utilization of these AI programs is severely constrained,
with some cases where they are not utilized at all [15]. Moreover, existing models only target
specific data, and there may be conscious changes in the data due to the smart behavior of
fraudsters, which affects the level of feature contribution in credit scores. Current models
are not intelligent enough to adapt to the evolving credit data [16,17]. Importantly, when
default prediction is solely based on the overall data, managers are unable to discern sample
variations in the prediction process and receive limited constructive feedback. As a result,
the core requirements of managers go unfulfilled. This paper aims to depict the default
risk portrait of consumers to address the aforementioned challenges. Leveraging the user
portrait theory, this study exceeds the scope of developing prediction models for specific
datasets or platforms. It focuses on constructing a management framework with broader
applicability and potential for dissemination. It assists financial institutions in devising
personalized marketing strategies, implementing risk management measures, and making
informed loan decisions to enhance user experience and attain effective risk control.

With the increasing demand for personalized services across multiple industries, user
portrait technology has emerged as a prominent area of interest [18]. The concept of user
portraits was initially introduced by Alan Cooper [19], considered the pioneer of interaction
design. User portraits are created by leveraging extensive user behavior data to generate a
comprehensive and detailed description of their characteristics, transforming the data into
a valuable tool for problem-solving purposes [20]. The wide application of user portraits
has also made positive contributions in intrusion detection [21], personalized recommen-
dation [22], medical [18], public opinion analysis [23], and other fields. Conventional
mainstream user profiling methods encompass collaborative filtering, content-based, and
knowledge-based approaches [24]. In the domain of credit risk, the utilization of user pro-
filing is primarily centered on machine learning methods with black-box attributes [25–28].
However, the current research is limited to the credit rating level.

The Shapley value, derived from the cooperative game theory by Shapley in 1953,
is a method used to quantify the contributions of members to the cooperative benefits in
cooperative games [29]. Based on Shapley values, Lundberg and Lee proposed the Shapley
Additive Explanations (SHAP) method to elucidate individual contributions during the
prediction process [30]. This model-independent postmortem approach considers variables
as “players” in the game and can calculate the importance of these variables with theoretical
support. This method measures the contribution level of each feature to the prediction
outcome, achieving dimensional consistency in the feature space [31]. This eliminates
dimensional discrepancies caused by varying characteristics and value ranges of features,
thus avoiding deviation problems. Additionally, calculating the average marginal contribu-
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tion of variables enables machine learning to capture complex nonlinear relationships and
analyze data heterogeneity [32]. Researchers can gain a comprehensive understanding of
dataset features and differences, offering valuable insights for subsequent data modeling,
statistical inference, and decision-making processes [33,34].

This paper has developed an intelligent management framework called the consumer
default risk portrait (CDRP) for controlling the risk of default in online consumer loans. The
credit data exhibits a prevalent category imbalance issue, which can significantly impact
subsequent analyses [35]. Thus, we propose the utilization of the near-miss undersampling
method to tackle the challenge of handling highly unbalanced data. Then, we establish
the relationship between user characteristics and default risk using machine learning tech-
niques, leading to the development of a prediction model. In order to break the black
box phenomenon in the application of machine learning to forecast, we utilize the SHAP
method to analyze the overall contribution and local influence mechanisms. By considering
various characteristics as dimensions, this approach facilitates a comprehensive demon-
stration of the role played by each factor in predicting default risk. Finally, we analyze the
personalized portraits of individual users to examine the heterogeneity within the sample.
Our approach has broad applicability to various complex machine learning prediction
methods, allowing us to achieve a balance between accuracy and transparency. The CDRP
framework offers managers valuable and novel insights, providing fresh perspectives for
decision making.

Our research makes several key contributions. Firstly, we primarily present the con-
struction of a consumer default risk portrait (CDRP) intelligent framework capable of
generating comprehensive risk profiles for consumers. From the technical perspective,
the proposed framework could integrate advanced machine learning algorithms and in-
terpretable models to analyze and interpret consumer data effectively. As for managers
seeking to mitigate default risk among users, this framework serves a holistic view and
risk portrait of consumer default risks. Secondly, we delve into elucidating the specific
contributions of individual features to the risk evaluation process in consumer loan sce-
narios. Based on the heightened importance of individual heterogeneity in effectively
managing consumer default risk, we employ the SHAP method to address the challenge of
personalized user “black box” issues within default risk analysis. Although the existing
literature has extensively focused on managing online consumer default risks, it has largely
neglected the exploration of individual heterogeneity. Our study pays meticulous attention
to each sample, uncovering the nuanced influence of every feature on the predicted results.
Consequently, our research offers novel insights that equip managers with a fresh vantage
point for strategic decision making in risk management practices. Thirdly, our proposed
framework demonstrates a high degree of flexibility. The utilization of the SHAP method
within the CDRP framework is model agnostic, ensuring seamless applicability across
diverse machine learning models without encountering compatibility concerns. More-
over, this integration harmoniously interfaces with sophisticated algorithms, facilitating
enhanced analytical depth and nuanced interpretations.

The rest of this study is organized as follows. Section 2 describes relevant background
research on online consumer credit default risk. The data and methodology used in this
study are demonstrated in Section 3. The results of our analyses are shown in Section 4.
Finally, Section 5 concludes this study and provides further discussion of this topic.

2. Literature Review

Previous research on online consumer loan default risks mainly focuses on credit
scoring method updates and constructing evaluation index systems as a classification
task. The advent of artificial intelligence in recent years has presented numerous prospects
for the financial sector [36]. Machine learning methods have significantly contributed to
enhancing the accuracy of default risk prediction and validating new assessment indicators.
For instance, Li et al. [37] introduced transfer learning into the consumer loan risk assess-
ment model, demonstrating higher AUC compared to models without transfer learning.
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Papouskova et al. [38] proposed a two-stage credit risk model combining unbalanced
ensemble learning and regression integration, highlighting the efficacy of heterogeneous
ensemble methods in modeling consumer credit risks. Costa et al. [39] utilized a logistic
regression model to evaluate the default risk using credit score data from a Portuguese
financial institution. Hou et al. [40] extracted characteristic data from credit data using
multi-granularity modules and employed a combination of random forest and gradient
boosting decision trees (GBDTs) to address variance and bias techniques. Wen et al. [41]
confirmed the significance of consumption information in evaluation indicators using logis-
tic regression and the light gradient boosting machine (LightGBM) algorithm. Additionally,
researchers have integrated professional knowledge with feature selection techniques and
applied machine learning methods like the genetic algorithm (GA) and K-nearest neigh-
bors (KNN) algorithm to enhance result performance [42]. These models exhibit strong
performance on specific datasets, forming a robust basis for the research conducted in this
study. However, fraudsters tend to exhibit intelligence in credit data. They often employ
ingenious techniques and strategies to evade detection and discovery [43]. Therefore, in
addition to updating forecasting models, it is essential to develop a management tool that
can be extensively and continually utilized by managers.

Despite the significant research advancements of machine learning in credit scoring,
it often faces skepticism due to its “black box” nature. Regulators demand transparency
and auditability in credit scoring models. However, excessively complex machine learning
models pose challenges in explaining the approval process to both customers and regu-
lators [44]. Consequently, merely enhancing classification accuracy can no longer meet
the management requirements for default risks. In recent years, there has been a rise in
the utilization of interpretable machine learning methods in the research on managing
default risk in online consumer lending. Xia et al. [45] demonstrated the significance of
the external credit rating variable in predicting default loans using interpretable machine
learning techniques. Zhang et al. [46] calculated the Shapley value of the feature and came
to the conclusion that the “overdue” feature contributed the most to the prediction, that
is, the longer the overdue time, the more likely the borrower will not repay the loan and
become a defaulter. Zhou et al. [47] employed the Shapley value to evaluate the scheme’s
effectiveness and discovered that an increase in the number of early morning phone calls
raised the risk of default by 13% for consumers predicted to be defaulters. However, the
research in this direction remains limited in depth, preventing us from comprehending the
specific contribution of each characteristic to individual consumers.

To sum up, the current research on online consumer loans remains inadequate. Firstly,
most of them are limited to selecting credit evaluation indicators and forecasting methods
without considering the diverse nature of credit data in different consumer loan scenarios.
However, due to the variability of credit data, adapting to different consumer loan data
becomes challenging. Hence, there is a pressing need for an intelligent management
tool for online consumer loans that can be widely adopted by managers. Secondly, an
opaque machine learning model fails to meet the requirements for credit scoring, resulting
in hesitation from both managers and consumers regarding its reliability. Lastly, the
current focus of interpretability research primarily revolves around evaluating macroscopic
features, disregarding the unique performance of different features in diverse samples.
Therefore, the significance of constructing personalized consumer portraits cannot be
overlooked. Leveraging these insights, this study introduces a consumer default risk
portrait (CDRP) framework designed for versatile application across diverse datasets in
online consumer lending contexts, offering both interpretability and personalized features.

3. Data and Methodology
3.1. Data

The data utilized in this study are sourced from a collaborative loan venture estab-
lished between a domestic commercial bank and an e-commerce platform. Users on the
platform can browse and purchase products offered by different dealers. Moreover, they
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are provided with the option to make installment payments and submit their application
information online at the time of order settlement. Initially, the e-commerce platform
employs its internally developed risk control system to assess and select user applications.
Subsequently, the approved application form is forwarded to the commercial bank for a
secondary review. After the loan application is approved, the commercial bank disburses
funds to the dealer according to a predefined proportion agreed upon with the platform.
During the post-loan management phase, the platform undertakes the task of initiating
communication with users, issuing reminders to customers for timely deposits of monthly
payments into the designated account, and transmitting payment instructions to the bank.
If users are unable to fully repay by the agreed-upon date, additional daily penalty interest
will be charged until both the principal amount and interest are settled.

3.2. Variables Description

In this study, a total of 23 independent variables and 1 dependent variable were
included, as shown in Table 1. The dependent variable’s value is determined based on
whether the user has experienced overdue payments. A value of 1 indicates the user has
experienced overdue payments, whereas a value of 0 signifies the user has not experienced
overdue payments. The dataset comprises 79,656 samples, with 6.5% exhibiting overdue
payments. Based on the recommendations provided by experts in consumer credit risk
management at banks, we gathered 23 variables categorized into three distinct groups:
basic information, traditional credit investigation, and platform information.

Table 1. Descriptive statistics of variable.

Variable Definition Mean SD Min Max

Dependent Variable
Overdue Whether users have exceeded the

repayment date for when repaying 0.0654 0.2472 0 1

Basic information
Gender Gender of the user (0 = female, 1 = male) 0.6003 0.4898 0 1

Age Age of the user 30.0244 5.4145 23 55
Marital status Marriage probability rating of the user 1.6602 0.6981 1 3

Working industry Working industry of the user 7.1753 2.5073 1 9
Traditional credit investigation

Revolving line The average value of cc quota 1.5645 0.7032 1 5

Revolving line utilization The average level of cc quota utilization
rate 1.8724 1.0709 1 4

Delinquency history The number of uncleared LN 2.2005 0.8442 1 4

Past loan number Number of LN approval cause queries in
the last month 1.1020 0.3236 1 3

Lending time
Maximum mob from card issuance (all
credit cards) time to report generation
time

2.9178 1.2729 1 4

Lending organization number The number of card issuers of CC 1.8186 0.7623 1 5
Lending number Number of CC cards 2.5105 1.1099 1 5

Credit grade whether the Bank’s credit score is greater
than 700 0.0062 0.0784 0 1

Repayment periods Duration of loan 209.8841 133.8044 29 396
Loan amount The amount of borrowing 3277.0772 4769.4677 99 40,000

Debt to income type Day rate 0.0154 0.0031 0.0083 0.0195
platform information

Social networking Number of cities where users have logged
in in the past 90 days 1.8111 0.7328 1 3

Number of Online Search Scenarios The number of channels that users access
in the platform. 2.3746 0.7181 1 3

Number of Days in Online Search The number of days to access the platform 2.7432 0.4938 1 3
Number of Days in Online Takeaway

Search
The number of days the user has accessed
the Takeaway channel 1.9409 0.8823 1 3

Number of Days in Online Groupon
Search

The number of days a user has visited a
Groupon channel 2.3569 0.7270 1 3

Amount of Online transactions The number of successful transactions
made by the user 2.7925 0.5134 1 3

Number of Online Transaction Scenarios The service types provided by the
platform 1.8694 0.3369 1 2

Number of Online Transaction The frequency of users’ consumption on
the platform in the past 365 days 1.8773 0.3281 1 2
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The basic information comprises “Gender”, “Age”, “Marital status”, and “Working
industry”. “Gender” is categorized as either male or female. “Age” is derived from the
birth year indicated on the ID card. “Marital status” is classified as either married or
unmarried. “Working industry” is categorized into 10 specific types, including agriculture,
forestry, fishery, animal husbandry, manufacturing, social service industry, and so on.

The information of the traditional credit investigation group comes from the user
history credit investigation issued by the credit investigation system of the People’s Bank
of China, which contains 11 variables. “Revolving Line” means that the maximum account
limit is set at the same card issuer with the same status deadline, and the average is calcu-
lated. “Revolving Line Utilization” refers to the ratio between the total amount used and
the total maximum credit line for a credit card under normal conditions. “Delinquency
History” is the number of loans that go unpaid. “Past Research Number” refers to the
number of inquiries made by non-platform companies for loan approval in the last month.
“Lending time” is the maximum mob of all credit card cut-off data generation time. “Orga-
nization Number” indicates the number of credit card issuers. “Card Number” indicates
the number of credit cards held by the user. “Credit Grade” is a categorical indicator that
determines whether the Bank’s credit score is greater than 700. “Repayment Periods” are
calculated by the number of days from the borrowing date to the maturity date. The “Loan
Amount” is the total amount borrowed by a consumer in the last 30 days. “Debt to Income
Type” refers to the ratio of a consumer’s income to its debt.

The platform information group is provided by the platform and comes from the
user’s activity process such as commodity browsing and trading on the platform in the
past 90 days, which contains a total of eight variables. “Social Networking” refers to the
number of active cities, active means the day in the city login behavior. “Number of Online
Search Scenarios” is the number of channels that users access in the platform. “Number of
Days in Online Search” indicates the number of days to access the platform. “Number of
Days in Online Takeaway Search” indicates the number of days the user has accessed the
Takeaway channel. “Number of Days in Online Groupon Search” indicates the number
of days a user has visited a Groupon channel. “Amount of Online transactions” refers to
the number of successful transactions made by the user. According to the service types
provided by the platform, “Number of Online Transaction Scenarios” is divided into four
categories, covered by user consumption include dining, take-out, travel, and others. based
on the frequency of users’ consumption on the platform in the past 365 days, “Number of
Online Transaction” divided into five levels.

3.3. Methodology

The development of the CDRP revolves around online consumer default risk portrait,
as illustrated in Figure 1. The framework relies on traditional credit information data, basic
user information, and Internet platform data as fundamental components for managing
consumer credit risks. It comprises four distinct modules. The first module, data processing,
tackles the challenge of data imbalance. Numerous methods can be utilized in this module
to address the corresponding issue of unbalanced data. This section focuses on elucidating
the implementation of the near-miss method as an example. In the following module,
model-building machine-learning techniques are employed to establish the relationship
between user characteristics and default risks, thereby aiding in the development of predic-
tive models. In the third module, feature analysis, the SHAP method is used to assess both
the global and local contributions of different features. Finally, the user portrait module
allows for the creation of personalized profiles for individual users, facilitating the analysis
of sample heterogeneity.
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Figure 1. The CDRP framework. (a) Solve unbalanced data problem. We could employ various ap-
proaches within this module to tackle the challenge of imbalanced data. (b) Establish the relationship
between user characteristics and default risk. Machine-learning techniques are employed to develop
the predictive models. (c) Analytical feature contribution. The SHAP method is employed to evaluate
both the global and local contributions of all features. (d) Analyze user profiles. Create user profiles
based on the individual feature contributions of distinct users.

3.3.1. Data Processing

The CDRP framework employs diverse strategies to address imbalanced data based
on unique data attributes. Imbalanced datasets exhibit notably larger sample sizes within
one category compared to others, potentially resulting in model oversensitivity to domi-
nant classes and inadequate categorization of minority classes. In the context of default
risk prediction, imbalanced data impedes timely default identification. This research
evaluates the effectiveness of the data point methodology by utilizing an undersampling
approach based on the near-miss method [48]. This technique establishes an equilibrium
in class distributions, thereby enhancing classification accuracy within highly imbalanced
datasets [49]. The near-miss method finds extensive applications in managing default risks
within unbalanced datasets [48]. Serving as a tool for addressing imbalances, near-miss
concentrates on prototype selection by opting for the most representative majority class
samples during training, thereby mitigating the information loss often associated with
random undersampling methods [35].

Near-miss aims to choose majority class samples that are nearest to minority class
samples to enhance the clarity of the decision boundary between the two classes. The
distance calculation formula is as follows:

d =

√
(x1 − y1)

2 + (x2 − y2)
2 + . . . + (xn − yn)

2 =

√
n

∑
i=1

(xi − yi)
2 (1)

This method computes the average distance between each majority sample and the
minority sample, then selects the majority sample with the shortest distance. Thus, nea-
miss reduces the quantity of majority class samples while preserving the distinctiveness of
decision boundaries.

NearMiss-1 chooses the majority sample closest on average to the nearest k-minority
sample, while NearMiss-2 picks the majority sample with the closest mean distance to the
farthest k-minority sample. Near Algorithm 1: Miss-3 involves selecting k closest majority
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samples per minority sample to enclose each minority sample within the majority samples.
While NearMiss-1 and NearMiss-2 require calculating the k-nearest neighbors for every
multi-class sample, this incurs substantial computational costs. However, NearMiss-1 is
vulnerable to the impact of outliers. We opt for utilizing NearMiss-3 to handle online
consumer credit default risk data as a foundation for further analysis.

Algorithm 1: NearMiss-3

Input: non-defaulted samples set, default sample set, number of neighbors k.
1. Initializes an empty set of undersampled samples named undersampled_samples.
2. For each default sample:

2.1 Calculate the distance between this defaulted sample and all non-defaulted samples, then select k
nearest majority class samples, named nearest_majority_samples.

2.2 Add the default sample to undersampled_samples.
2.3 Add samples from nearest_majority_samples to undersampled_samples.

3. Return undersampled_samples as the sample set after undersampling.

3.3.2. Model Building

The pre-processed data can be used to build predictive models using any complex ma-
chine learning method to achieve the desired accuracy. This section utilized the LightGBM
(LGB) algorithm as an example. LGB algorithm is a fast, distributed, and high-performance
gradient lifting framework-based decision tree algorithm [50]. It is widely used in sorting,
classification, regression, and many other machine learning tasks. LGB is mainly developed
based on histogram algorithms. The basic idea of histogram algorithms is to first discretize
continuous floating-point eigenvalues into k integers to build a histogram with a width
of k. k integers as an index accumulate the statistics of the entire data in the histogram.
After traversing all the data, the optimal segmentation point is found according to the
discrete value of the histogram. LGB is the optimization of error acceleration on this basis.
The histogram of the node can be obtained by the difference between the father node and
the brother node, which can greatly improve the running speed. For example, the leaf
node with a small amount of computation is calculated first, and the node with a large
histogram is obtained by using the histogram difference so that the calculation cost of each
node histogram can be reduced. In general, the LGB algorithm can improve the training
speed and reduce the memory consumption while ensuring the accuracy by optimizing the
growth strategy of decision tree and applying histogram algorithm, so that it can process
large-scale data and realize fast training.

In particular, let S represent the training set space. The variance gains of splitting
feature j at point d for a fixed node is defined as [51]

Vj/S(d) =
1

nS



(
∑

{xi∈S:xij≤d}
gi

)2

nj
l/S(d)

+

(
∑

{xi∈S:xij>d}
gi

)2

nj
r/S(d)

, (2)

where nS = ∑ I[xi ∈ S], nj
l/S(d) = ∑ I

[
xi ∈ S : xij ≤ d

]
and nj

r/S(d) = ∑ I
[
xi ∈ S : xij > d

]
.

Let a be the sampling ratio of large gradient data and b be the sampling ratio of small
gradient data. Based on this, we can determine the frequency at which each sample is sam-
pled during the training process. Divide the instance according to the following equation:

Ṽj(d) =
1
n


(

∑
xi∈Al

gi +
1−a

b ∑
xi∈Bl

gi

)2

nj
l(d)

+

(
∑

xi∈Ar

gi +
1−a

b ∑
xi∈Br

gi

)2

nj
r(d)

 (3)
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where Al =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij > d
}

, Bl =
{

xi ∈ B : xij ≤ d
}

, Br ={
xi ∈ B : xij > d

}
. LightGBM significantly reduces computational expenses by utilizing

the estimated Ṽj(d) over a smaller instance subset to determine the split point.

3.3.3. Feature Analysis

Following the prediction results generated by a suitable model, our framework em-
ploys the concept of Shapley values to address the “black box problem” inherent in machine
learning operations, enabling a meticulous examination of default risk factors. The Shapley
value is a technique developed by Shapley in 1953, rooted in cooperative game theory, de-
signed to measure individual contributions to group benefits within cooperative games [29].
Lundberg and Lee proposed the Shapley Additive Explanations (SHAP) method on the
basis of the Shapley values to explain the individual contribution to the prediction process.
This model-independent postmortem approach treats variables as “players” in the game
and can calculate the importance of these variables with theoretical support [30]. The
SHAP method measures the contribution degree of each feature to the prediction result
and achieves dimensional consistency in the feature space. This eliminates dimensional
differences due to different ranges of features and eigenvalues, thus avoiding bias problems.
In addition, calculating the average marginal contribution of variables enables machine
learning to capture complex non-linear relationships and analyze data heterogeneity.

Suppose there are p features in the online consumer credit default risk prediction
model, and for the j − th feature, its contribution to predicting default is a weighted sum
over all possible combinations of feature values:

ϕj(val) = ∑S⊆{x1,...,xp}\{xj}
|S|!(p−|S|−1)!

p!
(
val
(
S ∪

{
xj
})

− val(S)
)

(4)

where S refers to all subsets of features in the prediction model, x is the vector that needs to
interpret the eigenvalues of the sample, and val refers to the prediction results of the model
under the eigenvalues in S.

However, online consumer credit data usually contains more features, so with the
increase in the number of features, the number of feature subsets will increase exponentially.
Therefore, this patent uses the approximate value of Monte Carlo sampling to approximate
the contribution value of the j − th feature to the prediction of default by calculating the
average marginal effect:

ϕ̂j =
1
M

M

∑
m=1

(
f̂
(

xm
+j

)
− f̂

(
xm
−j

))
(5)

where f̂
(

xm
+j

)
is the prediction of x, maintaining the value of feature j, and other feature

values that do not belong to S are replaced by the feature values of the random data points.
f̂
(

xm
−j

)
means that all eigenvalues that do not belong to S are replaced by eigenvalues of

random data points.
To express the interpretation of Shapley values as a linear model, Equation (5) can be

simplified to

g
(
z′
)
= ϕ0 +

M

∑
j=1

ϕjz′j (6)

where g is the explanatory model, z′ ∈ {0, 1}M is the set of features, M represents the
maximum number of sets, and ϕj ∈ R is the Shapley value of the j − th feature.

The SHAP method has local accuracy, missingness, and consistency.

f (x) = g
(
x′
)
= ϕ0 +

M

∑
j=1

ϕjx′j (7)
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If ϕ0 = EX( f̂ (x)), and let all features exist, then

f (x) = ϕ0 +
M

∑
j=1

ϕjx′j = EX( f̂ (X)) +
M

∑
j=1

ϕj (8)

Missingness indicates the reduction to zero of the missing features.

x′j = 0 ⇒ ϕj = 0 (9)

Missing features can have arbitrary Shapley values without compromising local accuracy.
Let fx(z′) = f (hx(z′)), and z\j′ denote z′j = 0. For any f and f ′,

f ′x
(
z′
)
− f ′x

(
z′\j

)
≥ fx

(
z′
)
− fx

(
z′\j

)
(10)

Iterate this process for each feature to calculate the Shapley values across all features.
During global analysis, a bar chart aids in comprehending the contribution and impact
of each feature on default prediction, facilitating the determination of feature importance
rankings. In the context of local analysis, this methodology allows for the examination of
how alterations in various feature values influence predicted outcomes, thereby revealing
correlations between features and predictions.

The SHAP methods offer a lucid and intuitive mechanism to elucidate the impact
of individual features on the model’s predictions while quantitatively evaluating the
significance of each feature. This affords valuable insights into the predictive mechanisms
of machine learning models and furnishes dependable backing and direction for business
decision-making processes.

3.3.4. User Portrait

Because in global and local analysis, we can only discuss the overall impact of features.
However, it is clear that each sample has its specificity, and the average contribution of
features hides the heterogeneous effects of features. Therefore, the CDRP framework paints
user portraits for a single set of data through the user portrait theory. We combine user
analysis with black-box-specific machine learning methods to tap into sample heterogeneity.
Based on Shapley values, the CDRP framework helps to interpret the model’s predictions
for this user by means of a waterfall diagram, enhancing the trust and interpretability of
the model.

4. Results and Analysis
4.1. Evaluation Criteria

To compare the performance of different models and select the model with the best
performance for further explanation, we used five common indicators to evaluate the
predictive power of the model [52]. Prior to discussing this topic, let us present the relevant
concepts. The confusion matrix [53] is one of the commonly used indicators to evaluate
machine-learning classification models. Based on the confusion matrix, classification results
can be divided into true positive (TP), false positive (FP), false negative (FN), and true
negative (TN). TP represents the number of samples correctly classified as positive, that
is, the number of samples that are actually positive and are classified as positive by the
classifier; FP represents the number of samples misclassified as positive, that is, the number
of samples that are actually negative but are classified as positive by the classifier; FN
represents the number of samples incorrectly classified as negative, that is, the number
of samples that the classifier is actually positive but classified as negative; TN represents
the number of samples correctly classified as negative, i.e., the number of samples that
are actually negative and are classified as negative by the classifier. As a result, the
five evaluation indicators used in this paper are Accuracy, Specificity, Sensitivity, G-means,
and AUC.
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(1) Accuracy, the prevalent evaluation metric, refers to the proportion of correctly
classified samples among the total samples. Typically, in scenarios with balanced sample
sizes, higher accuracy signifies superior model performance [54]. However, given the focus
on unbalanced data in this study, accuracy serves merely as a point of reference.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

(2) Specificity in binary classification denotes the model’s capacity to accurately fore-
cast negative instances. It gauges the model’s ability in correctly identifying true negative
cases as negatives [54].

Speci f icity = TN/(TN + FP) (12)

(3) Sensitivity, often referred to as Recall, represents the ratio of correctly identified
positive instances by the model among all actual positive samples [54].

Sensitivity = TP/(TP + FN) (13)

(4) The G-means metric, derived from the square root of the product of Precision and
Recall, serves as a comprehensive indicator to assess both model precision and recall. This
measure proves particularly valuable in scenarios involving imbalanced datasets. Elevated
values of the geometric mean signify enhanced overall model performance [55].

G − means =
√

Accuracy × Speci f icity (14)

(5) AUC depends on the area under the ROC curve. The ROC curve was mapped with
Sensitivity as the ordinate and 1-Specificity as the abscissa. Simply put, the larger the AUC
value, the better the model performs [56].

4.2. Prediction Performance

The models underwent rigorous evaluation through the five-fold cross-validation
method to ensure the validity of the experiment. Ten benchmark models commonly
utilized in credit scoring were employed: linear discriminant analysis (LDA), logistic
regression (LOG), Gaussian Naive Bayes (NB), K-nearest neighbors (KNN), decision tree
(DT), support vector machine (SVM), stochastic gradient descent (SGD), random forest
(RF), XGBoost (XGB), and LightGBM (LGB). The selection of these ten benchmark models
was predicated on their demonstration of diverse learning methods and technologies:
LDA is situated within statistical classification methodologies [57]. LOG represents a
prevalent linear classification algorithm [58]. NB stands as an uncomplicated yet effective
probabilistic model hinged on the Bayesian theorem and assumptions of feature conditional
independence [59]. KNN operates as an instance-based learning mechanism that classifies
by gauging distances between distinct samples [60]. DT leverages tree structures to make
decisions, functioning as a non-parametric supervised learning tool [61]. SVM serves as a
binary classification model, achieving classification by identifying the maximum margin
hyperplane [62]. SGD embodies an optimization method [63]. RF is classified under
ensemble learning mechanisms [64]. XGB signifies an improved rendition of gradient
boosting decision trees [65]. LGB embodies an ensemble learning approach grounded in
the gradient boosting technique [51]. These models encompass both conventional statistical
learning techniques and sophisticated machine learning models, spanning from basic linear
associations to intricate nonlinear representations and encompassing individual models as
well as ensemble models. The nine machine learning models cover a wide array of prevalent
machine learning methodologies, it contributes to facilitating a thorough assessment of
the performance and applicability of manifold machine learning models within the realm
of online consumer default risk prediction scenarios. Simultaneously, it exemplifies the
multifaceted applicability of the CDRP framework. Moreover, the selection of these models
augments the assurance of comprehensive evaluation and reliability, fosters deeper insights,
and provides invaluable benchmarks for future research initiatives.
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The analysis was carried out using Python 3.6.5. Table 2 shows the predictive perfor-
mance of each model, with the best results highlighted in bold.

Table 2. The prediction performance of different machine learning classifier.

Model Accuracy Specificity Sensitivity G-Means AUC

LGB 0.71 0.71 0.68 0.70 0.70
LDA 0.66 0.66 0.70 0.68 0.68
Logit 0.67 0.66 0.70 0.68 0.68
NB 0.63 0.63 0.73 0.68 0.68

KNN 0.74 0.76 0.43 0.57 0.60
DT 0.88 0.94 0.13 0.35 0.53

SVM 0.70 0.71 0.63 0.66 0.67
SGB 0.19 0.14 0.95 0.36 0.55
RF 0.93 0.99 0.01 0.08 0.50

XGB 0.78 0.79 0.55 0.66 0.67

The results indicate a high Accuracy of 0.93 for the RF classifier. However, the Sensitiv-
ity and AUC performances are significantly poor, at 0.01 and 0.08, respectively, suggesting
a substantial impact from imbalanced data categories. The LGB model exhibited Accu-
racy, Specificity, Sensitivity, G-means, and AUC values of 0.71, 0.71, 0.68, 0.70, and 0.70,
respectively. The LGB model stands out as the most robust and consistent among all
considered models. Consequently, the LGB model was selected for further analysis of
variable contribution.

4.3. Feature Contribution
4.3.1. Variable Global Importance in Prediction

Variable global importance refers to the contribution of each feature to the overall
model performance. In other words, it quantifies the impact of each feature on the model’s
predictive outcomes, aiding in the understanding and assessment of the roles different
features play within the model. Variable global importance helps identify the most crit-
ical features influencing model performance, thereby facilitating model optimization or
system design.

To assess the significance of factors in predicting overdue payments, we computed
the Shapley values of 23 variables. Figure 2 illustrates the absolute values of the variable
Shapley in a visual representation. The x-axis indicates the contribution of each variable,
while the y-axis displays the 23 variables ordered by their contribution levels. The figure
provides a clearer visualization of the significance of each variable in predicting overdue
payments. The top ten crucial variables are as follows: “Repayment periods”, “Loan
amount”, “Debt to income type”, “Revolving line utilization”, “Gender”, “Age”, “Lending
number”, “Number of days online takeaway search”, “Working industry”, and “Revolving
line”. Notably, the “Repayment periods” exhibit a significant lead in predicting defaults,
succeeded by “Loan amount” and “Debt to income type”, with the importance of other
variables gradually diminishing.

Figure 3 provides a direct representation of the Shapley values for each variable, aiding
in understanding the positive or negative impact of features on predicted outcomes. The
x-axis illustrates the contribution of each variable, while the y-axis displays all variables
arranged in descending order based on their Shapley values. When compared to Figure 2,
Figure 3 distinctly reveals that the Shapley values for “Number of Days in Online Search”
and “Lending Organization Number” are negative, indicating an adverse effect on the
predicted default outcome. In contrast, the remaining variables exhibit a positive influence
on the predicted default outcome.
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the y-axis shows the 23 variables arranged according to their respective contribution.

4.3.2. Variable Local Distribution in Prediction

While the bar chart provides a succinct overview of feature importance rankings,
it falls short in providing detailed information. Consequently, amalgamating feature
importance and effects through the summary diagram facilitates a more comprehensive
understanding of the relationship between the feature values and predictive outcomes.
Variable local distribution denotes the dispersion of feature values within a specified
sample, offering insights into the specific values of each feature in the sample. This
description sheds light on the internal feature values within the given sample. Variable
local distribution enables managers to discern the significance and impact of individual
features on a particular sample, thereby enhancing their understanding of how the model
generates precise predictions.

The summary diagram depicted in Figure 4 aids in comprehending the distribution of
Shapley values associated with each feature. Each point in the graph is the Shapley value
of a feature and an instance, the position on the y-axis is determined by the feature, the
position on the x-axis is determined by the Shapley value, and the color from blue to red
represents the feature value from low to high. The overlap points of the sample shake up
and down the y-axis, from which we can understand the distribution of Shapley values for
each feature. Again, all features are ranked according to their importance.



Mathematics 2024, 12, 1582 14 of 19

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 20 
 

 

the position on the x-axis is determined by the Shapley value, and the color from blue to 

red represents the feature value from low to high. The overlap points of the sample shake 

up and down the y-axis, from which we can understand the distribution of Shapley values 

for each feature. Again, all features are ranked according to their importance. 

Figure 4 indicates that a longer “Repayment period” correlates with an increased 

predicted default risk. The larger the “Loan amount”, the lower risk of default is pre-

dicted. This effect explains the behavior of the model, but it does not necessarily imply 

causality in reality. In a study conducted in 2012 on the factors of default in farmers’ loan 

repayment, Dadson concluded through the Probit model that a longer repayment period 

is more likely to reduce the probability of default [66]. This is contrary to the conclusion 

obtained in our online consumer credit scenario and also means that, in online consumer 

credit services, a longer repayment period may give customers the illusion of delayed 

repayment, making them less sensitive to repayment responsibilities, resulting in more 

frequent loan repayment delays, thus increasing the potential risk of default. It also re-

minds managers how to set repayment deadlines more scientifically. 

 

Figure 4. Distribution of local importance. Each point in the graph is the Shapley value of a feature 

and an instance. The position on the y-axis is determined by the feature, the position on the x-axis 

is determined by the Shapley value, and the color gradient from blue to red signifies the feature 

value ranging from low to high. 

4.4. Risk Personality Portrait 

Global and local analyses offer insights into the average contribution of features, yet 

from the perspective of personalized profiling, understanding individual users becomes 

paramount. In this context, both managers and users must grasp the model’s interpreta-

tion of each user’s anticipated behavior. The final stage of this framework involves con-

structing a waterfall graph utilizing Shapley values to create personalized default risk 

portraits for individual users, aligning with the user portrait theory. This tailored ap-

proach not only enhances risk assessment accuracy but also empowers both managers to 

comprehend and respond effectively to personalized risk profiles, thereby fostering a 

more proactive and targeted risk management strategy. 

Figure 5 displays the Shapley waterfall diagram of the first six sample data. 

[ ( )]E f x  represents the mean value of the model’s predictions for the sample dataset, 

i.e., the predictions start from a uniform baseline [ ( )]E f x . The x-axis is the value of 

log-odds pairs of prediction results, so the prediction results can be converted into a con-

tinuous range of values, making the interpretation results more general and comparable. 

The y-axis shows the value for each feature of the sample. The Shapley value for each 

Figure 4. Distribution of local importance. Each point in the graph is the Shapley value of a feature
and an instance. The position on the y-axis is determined by the feature, the position on the x-axis is
determined by the Shapley value, and the color gradient from blue to red signifies the feature value
ranging from low to high.

Figure 4 indicates that a longer “Repayment period” correlates with an increased
predicted default risk. The larger the “Loan amount”, the lower risk of default is predicted.
This effect explains the behavior of the model, but it does not necessarily imply causality in
reality. In a study conducted in 2012 on the factors of default in farmers’ loan repayment,
Dadson concluded through the Probit model that a longer repayment period is more likely
to reduce the probability of default [66]. This is contrary to the conclusion obtained in our
online consumer credit scenario and also means that, in online consumer credit services, a
longer repayment period may give customers the illusion of delayed repayment, making
them less sensitive to repayment responsibilities, resulting in more frequent loan repayment
delays, thus increasing the potential risk of default. It also reminds managers how to set
repayment deadlines more scientifically.

4.4. Risk Personality Portrait

Global and local analyses offer insights into the average contribution of features, yet
from the perspective of personalized profiling, understanding individual users becomes
paramount. In this context, both managers and users must grasp the model’s interpretation
of each user’s anticipated behavior. The final stage of this framework involves constructing
a waterfall graph utilizing Shapley values to create personalized default risk portraits for
individual users, aligning with the user portrait theory. This tailored approach not only
enhances risk assessment accuracy but also empowers both managers to comprehend and
respond effectively to personalized risk profiles, thereby fostering a more proactive and
targeted risk management strategy.

Figure 5 displays the Shapley waterfall diagram of the first six sample data. E[ f (x)]
represents the mean value of the model’s predictions for the sample dataset, i.e., the
predictions start from a uniform baseline E[ f (x)]. The x-axis is the value of log-odds pairs
of prediction results, so the prediction results can be converted into a continuous range of
values, making the interpretation results more general and comparable. The y-axis shows
the value for each feature of the sample. The Shapley value for each feature is an arrow,
with positive values pushing the prediction and negative values reducing the prediction.
For example, for the first sample corresponding to Figure 5a, compared with the base
value, the user’s “Repayment Periods” was 93 days, which greatly reduced the probability
of being predicted to default; on the other hand, the “Loan Amount” was 1980, which
increased the probability of being predicted to default to some extent. By looking at the
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Shapley waterfall diagram of the first six sample predictions, it can be found that not every
user fits the conclusions obtained in the feature contribution analysis. For example, for the
second sample corresponding to Figure 5b, characteristic “Repayment Periods” are not
the most influential factor, but “Loan Amount” has a greater impact. This further shows
that only the macro analysis of features is not enough to understand the heterogeneity of
samples, and it also reflects the importance of personalized user portraits.
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In theory, the concept of default risk personality portrait serves to elucidate the
foundational principles of machine learning models for individualized risk prediction in
risk management, thereby enhancing model transparency and interpretability. In practice,
it provides guidance for model refinement and feature engineering enhancements, aiming
to boost the precision and robustness of credit risk management models.

5. Conclusions and Discussion

Given the widespread adoption and advancement of online consumer credit services,
this study proposes CDRP, an intelligent management framework for assessing default
risk in online consumer loans. The framework enables the integration of diverse data
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from various platforms to create personalized user default risk portrait. To illustrate its
implementation, consumer credit data from a commercial bank is utilized, incorporating
both traditional credit information and Internet platform information. Data preprocessing
involves near-miss undersampling to address data imbalance. Following predictions made
by the LGB algorithm, interpretable machine learning methods are employed to evaluate
the contribution of each indicator during the prediction process, encompassing discussions
on global importance and local contributions. Furthermore, leveraging the user portrait
theory, managers gain valuable insights through the personalized analysis of individual
samples, aiding their decision-making process.

This paper provides a detailed explanation of 23 variables. By effectively comparing
these variables on a standardized scale, this study determines their contribution ranking in
predicting default and provides managerial guidance. Furthermore, an in-depth analysis
reveals the varied performance of each variable in default prediction, indicating their posi-
tive or negative impact on consumer loan default. This expands managerial perspectives
on controlling default risks. Additionally, the creation of personalized user default risk
portrait offers a fresh managerial perspective. In conclusion, the framework presented in
this study broke current research limitations and enhances comprehension regarding the
management of consumer credit default risks.

The framework development and research findings presented in this study signifi-
cantly contribute to the existing knowledge body within the realm of online consumer risk
management. The consumer default risk portrait (CDRP) framework not only effectively
harnesses consumer default risk data but also enhances the interpretability of risk assess-
ment models. It is crucial for both managers and technicians to comprehend how the model
interprets the anticipated behaviors of individual users. The framework proposed in this
research serves to elucidate the rationales behind the model’s predictions for individual
users through personalized portraits. It aids technicians in enhancing prediction model
performance and ensuring model fairness. It also assists managers in devising targeted
management strategies and optimizing resource allocation. For instance, our analysis
reveals that “Repayment periods”, “Loan amount”, and “Debt to income type” are the top
three variables significantly influencing default risk prediction outcomes. In the section
of variable local distribution in prediction, we observe that as the “Repayment period”
increases, the predicted risk of default increases. This suggests that in online consumer
credit services, longer repayment periods might create a perception of delayed repayment
among customers, potentially reducing their sensitivity towards repayment obligations
and leading to more frequent delays in loan repayments, consequently elevating the risk
of default. This finding alerts managers of the importance of setting repayment deadlines
judiciously. Furthermore, we provide personalized portraits for six samples individually,
shedding light on the specific feature contributions to each predicted outcome. Through
these individualized results, the significance of crafting personalized portraits in the context
of default risk management is further underscored.

Despite the contributions of this study to online consumer default forecasting, it also
has some limitations. On the one hand, as mentioned above, credit data are subject to
variability due to the “smarts” of fraudsters. How to deal with dynamically updated
data to complete dynamic modeling is also a major challenge facing the management
framework. On the other hand, CDRP ignores the economic costs of the management
process. From an economic perspective, cost and profitability are also factors that managers
pay close attention to. Therefore, it is worth developing a more “cost-effective” regulatory
framework to help promote economic growth. Lastly, by explaining the rationale behind
each prediction through the CDRP framework, we also hope that we can gain a deeper
understanding of the model’s decision-making process, further refining the model to
improve interpretability while maintaining accuracy.
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