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Abstract: Continuous non-invasive blood pressure (CNBP) monitoring is of the utmost importance
in detecting and managing hypertension, a leading cause of death in the United States. Extensive
research has delved into pioneering methods for predicting systolic and diastolic blood pressure
values by leveraging pulse arrival time (PAT), the time difference between the proximal and distal
signal peaks. The most widely employed pairing involves electrocardiography (ECG) and photo-
plethysmography (PPG). Possessing similar characteristics in terms of measuring blood flow changes,
a recently investigated optical signal known as speckleplethysmography (SPG) showed its stability
and high signal-to-noise ratio compared with PPG. Thus, SPG is a potential surrogate to pair with
ECG for CNBP estimation. The present study aims to unlock the untapped potential of SPG as a
signal for non-invasive blood pressure monitoring based on PAT. To ascertain SPG’s capabilities, eight
subjects were enrolled in multiple recording sessions. A third-party device was employed for ECG
and PPG measurements, while a commercial device served as the reference for arterial blood pressure
(ABP). SPG measurements were obtained using a prototype smartphone-based system. Following
the completion of three scenarios—sitting, walking, and running—the subjects’ signals and ABP
were recorded to investigate the predictive capacity of systolic blood pressure. The collected data
were processed and prepared for machine learning models, including support vector regression and
decision tree regression. The models’ effectiveness was evaluated using root-mean-square error and
mean absolute percentage error. In most instances, predictions utilizing PATSPG exhibited compa-
rable or superior performance to PATPPG (i.e., SPG Rest ± 12.4 mmHg vs. PPG Rest ± 13.7 mmHg
for RSME, and SPG 8% vs. PPG 9% for MAPE). Furthermore, incorporating an additional feature,
namely the previous SBP value, resulted in reduced prediction errors for both signals in multiple
model configurations (i.e., SPG Rest ± 12.4 mmHg to ±3.7 mmHg for RSME, and SPG Rest 8% to
3% for MAPE). These preliminary tests of SPG underscore the remarkable potential of this novel
signal in PAT-based blood pressure predictions. Subsequent studies involving a larger cohort of test
subjects and advancements in the SPG acquisition system hold promise for further improving the
effectiveness of this newly explored signal in blood pressure monitoring.

Keywords: blood pressure; continuous non-invasive methods; pulse arrival time; speckleplethys-
mography

1. Introduction

Blood pressure (BP) is a critical parameter for assessing patient well-being. BP mon-
itoring is essential to reduce mortality and morbidity. BP consists of systolic (SBP) and
diastolic (DBP) values, which reflect arterial pressure during heartbeats and rest periods.
Typically, SBP and DBP should be below 120 mmHg and 80 mmHg, respectively. When SBP
and DBP are consistently 130 mmHg and 80 mmHg or higher, this indicates high BP (HBP)
or hypertension, which increases the risk of heart attacks and stroke—two leading causes
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of mortality in the U.S. Thus, continuous BP measurement is essential in daily settings for
at-risk individuals.

BP is a dynamic physiological parameter that changes over time due to factors such as
age, activity, and mental stress [1,2]. Non-continuous BP measurements cannot fully reveal
these dynamic characteristics of BP on individuals; thus, continuous BP monitoring can
become much more informative if it is widely available and easy to obtain. Furthermore,
continuous measuring sensors can be feasibly designed to be cuffless and wearable. The
Penaz method, also known as a volume clamp, and tonometry [3,4] are popular continuous,
non-invasive BP methods. The Penaz method is cuff-based and optically measures the
arterial volume in a limb, such as a finger or a toe, by applying pressure via an occluding
cuff. The accuracy of volume clamp methods is known to be sensitive to the automatic
recalibration process, resulting in overestimated SBP frequently [3]. Additionally, continual
use of volume clamps increases the risk of venous congestion in the measuring site, and
repeated and long-term wear to the same region become very uncomfortable and even
painful for the subject, making this method not viable for long-term wear [3,5]. Tonometry
measures arterial pressure by applying force over a superficial artery to distort the vessel.
This can be performed through a wristband or with a hand-held instrument and records
pulsatility from applied force flattening the chosen superficial artery, which overcomes
issues with blood vessel occlusion [4]. However, tonometry methods can become prob-
lematic as they are sensitive to imprecise placements of the device and easily result in
inaccurate readings, especially with patient movement. Considering this, establishing a
calibrated baseline of tonometry readings remains challenging and currently not a viable
path for CNBP.

Currently, the best and most common home-based BP monitoring technology has
been using commercial BP cuffs [6]. However, as previously stated, CNBP cannot be re-
alistically achieved with this method. Recently, alternative methods have been explored
for continuous indirect BP monitoring using signals such as electrocardiography (ECG)
and photoplethysmography (PPG) [1–5,7,8]. ECG is a widely utilized biosignal within the
medical domain, particularly in clinical contexts, for diagnosing cardiovascular conditions
and monitoring vital signs [9]. PPG constitutes an optical measurement frequently em-
ployed in pulse oximetry within clinical environments to assess oxygen saturation levels.
This optical methodology gauges blood flow in a region of interest (ROI) by measuring
optical absorption or reflection along the optical path. Essentially, PPG detects changes
in blood volume using a photoelectric technique [10]. PPG sensors are categorized into
two main measurement configurations: transmission mode and reflection mode. In the
transmission mode, the setup includes a light-emitting diode (LED) positioned on one side
of the tissue of the ROI, with a photodetector (PD) on the opposing side. Here, the light
emitted traverses through the tissue, modulated by the underlying vasculature, and the
modulated optical energy is then detected on the other side. Conversely, in the reflection
mode, both components (LED and PD) are situated on the same side of the tissue, typically
on the same plane. The optical signal penetrates the tissue, and the PD receives the reflected
light with fluctuations due to tissue absorption. While the transmission mode is primarily
limited to the earlobe, fingertip, and toe, the reflection mode extends to additional locations
as long as the ROI is a flat area (e.g., the forehead, forearm, supraorbital artery, under the
legs, and the wrist) [11].

Pulse arrival time (PAT), representing the time it takes for the heartbeat peak to reach
the peripheral ROI, enables non-invasive BP estimation through linear and non-linear
equations and supervised machine learning regression models [12–14]. PPG and ECG are
a greatly explored pair using this technique; however, recently, a new biosignal similar
to PPG has surfaced in research around non-invasive measurements and has been under-
investigated.

Speckleplethysmography (SPG) has emerged as a promising alternative to PPG for
measuring heart rate variability, microvascular flow, and resistance [15–19]. SPG relies on
laser speckle contrast imaging (LSCI) to monitor blood flow changes [20], also known as
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Affixed Transmission Speckle Analysis (ATSA) [21]. SPG devices employ a laser source
emitting rays through tissue thickness into a CMOS camera on the opposite side or on the
same side similar to PPG’s transmission and reflectance modes. The camera captures a
raw video with a minimum of 30 frames per second (fps) and applies image processing
techniques to identify speckles from the laser within the red channel of each frame. The
quantity of speckles detected correlates with the blood flow at that time point, and their
temporal changes constitute the SPG waveform [22–24]. This method is a recently realized
waveform to measure heart rate variability [19]. SPG offers advantages like higher signal-to-
noise ratio (SNR) and consistent performance across temperatures [25] as well as potential
for wearables adaptation due to its promising results using reflectance mode compared to
PPG [26]. Our study explores the potential of SPG for PAT-based BP monitoring. We used
machine learning models to compare SPG and PPG techniques and proved that SPG signals
from off-the-shelf smartphones can non-invasively monitor accurate blood pressure in real-
world scenarios, supported by empirical evidence that shows solid correlations between
PAT measurements obtained from SPG signals and reference blood pressure measurements
obtained using standard clinical methods. Our work showcases the value of SPG-based
blood pressure estimation systems in the realm of telemedicine, remote patient monitoring,
and personalized healthcare, with the practical considerations and challenges that come
with adopting and deploying SPG-based blood pressure estimation systems in clinical and
home settings.

2. Materials and Methods

An in-house system was developed to effectively collect SPG, ECG, PPG, and arterial
BP (ABP) concurrently (Figure 1A). To capture SPG, a smartphone camera (Samsung
Galaxy A10e rear camera) and a 635 nm red laser diode were used (Figure 1C). ECG and
PPG were recorded using a third-party device (AFE4950EVM from Texas Instruments).
The ABP readings were acquired with an Omron inflatable cuff for post-experimental
accuracy metrics.
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respectively. (B) Activities each subject completes per session including (from left to right): (i) sitting
at rest, (ii) walking on a treadmill at 3 mph (LE), and (iii) running on the treadmill at 5 mph for
2.5 min (HE). After each activity, the subject’s signals are immediately recorded. (C) The phone-based
transmission-mode SPG system and signal processing method diagram. (D) The SPG signal in the
time domain with the corresponding ECG and PPG signals. The panel shows how PATPPG and
PATSPG are obtained.

2.1. Experimental Procedure

Each session involved three stages: Resting for 2.5 min (Rest); walking at 3 mph on
a treadmill for 2.5 min (Light Exercise—LE); and running at 5 mph for 2.5 min (Heavy
Exercise—HE) (Figure 1B). The treadmill was used to standardize the impact of the activities
across all subjects. After completing each stage, the subject’s ABP was measured using
the Omron device, positioned on their left upper arm. Simultaneously, the subject had
their fifth and second digits attached to the PPG and SPG sensors, respectively, using
their left hand (Figure 1A). PPG was recorded using reflectance mode, while SPG was
recorded in transmission mode due to the nature of their respective measurement systems.
ECG measurements were obtained through a 3-lead chest configuration employing snap
electrodes affixed to the subject’s chest. The ECG signal was sampled at a frequency of
500 Hz, while the PPG signal was sampled at 50 Hz, which were the frequency sampling
rates set by the TI board. These signals were then saved to a .csv file on the computer
connected to the TI board. The SPG signal was sampled at a frame rate of 30 fps, which
was the maximum achievable with the A10e Samsung smartphone. These signals were
monitored for a duration of 60 s while the subject maintained a relaxed posture and were
synchronized using timestamps from both devices.

2.2. Data Processing and Models

A Python script was developed to process the video and BP data [26]. The .csv
file containing the ECG and PPG data is read and reworked into data frames with their
timestamps. The SPG was derived by extracting the red intensity of each frame from the
videos, and is calculated as [19]:

SPG =
1

2TK2 (1)

where T represents the exposure time of the image, and K denotes the average speckle
contrast squared. These values plus their timestamp are saved to another data frame.
If needed, all the signals have their wandering baseline removed using an open-source
algorithm, and a Savitzky–Golay filter is applied to smoothen the signal, similar to [27]. The
filtered ECG and PPG signals were downsampled to match the rate of the SPG recordings.
They were exhibited alongside the SPG signal to facilitate subsequent PAT computations
(Figure 1D). The signals were plotted in 10 s windows and analyzed by hand.

In this study, we employed two supervised machine learning regression models:
support vector (SV) regression and decision tree (DT) regression. SV regression seeks
the best-fitting line or hyperplane by maximizing the margin between data points and
the regression line, while DT regression partitions the feature space to predict the target
variable based on average values within each region. These models were selected based on
their reported improved accuracy and efficacy [13,14]. The first feature employed in the
models is the PAT obtained from the respective signal pairs (PATsignal), while the second
feature is the previous SBP value (SBPn−1). Each model was assessed using two distinct
feature configurations: one exclusively utilizing PATsignal and the other comprising SBPn−1
and PATsignal . Due to the two PAT pairs, two different ML models were utilized, as well as
the different features incorporated. Between the three exercise datasets, 24 total models
were trained, tested, and compared for accuracy between the two signal methods.
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3. Results

In total, nine data points were recorded from each of the eight subjects, corresponding
to the three performed activities over three sessions. For consistency, the three sessions took
place either in the morning or evening, with a time difference of less than 48 h between
each subject’s first and last sessions. The sessions consisted of the same format and order
of activities: Rest, LE, and HE. For each exercise dataset, 24 one-minute sessions were
recorded and used for their respective models. Different testing times were chosen to
observe variations in BP throughout the day. The subjects’ ages ranged from 21 to 30
years of age, with various levels of fitness. Five subjects lived a sedentary lifestyle, two
infrequently visited the gym, and one regularly worked out five or more times a week.
Two of the eight subjects were female, while the rest were male, and only one subject
had prior hypertension-related issues. The data recorded from this individual did not
significantly deviate from the other data points and was thus included in the final datasets.
Additionally, the individuals were asked about their amount and quality of sleep as well as
caffeine intake before each session. Seven out of eight subjects reported having good sleep
prior to the test, and six out of eight subjects consumed caffeine earlier that day before
the experiment. Between the three sessions per subject, no significant differences in BP
values and signals were noted. Fitness level did result in different average heartrates and
BP values but not enough to greatly influence the end results. Additionally, sleep quality
and caffeine consumption did not result in consistent outlier data.

From these sessions, PAT was derived from the ECG, PPG, and SPG signal peaks. A
distinct segment of the signals (Figure 1D) was selected to determine PAT by calculating the
peak-to-peak differences between ECG and PPG, as well as the peak-to-peak between ECG
and SPG. Some measurements resulted in unclear PPG or SPG signal peaks and were con-
sequently excluded from further consideration. The data points were then categorized into
three separate datasets based on the activity performed by the subject before measurement:
Rest, LE, and HE.

Prior to training SV and DT models, the datasets for SBP, SPG-based PAT (PATSPG),
and PPG-based PAT (PATPPG) were scrutinized for outliers using box plots. The total
numbers of data points per dataset after removing outliers was 18, 17, and 19 for Rest, LE,
and HE, respectively. Given the relatively small size of the dataset and the need to ensure
robust assessment of the models’ performance, the testing sample for each dataset was nine
of the data points from one random subject. The models were trained using all but nine
data points from the random subject, six of the nine data points were utilized as a validation
dataset to choose the proper models, and the remaining subjects’ data were reserved for
testing the model’s performance. This was used to essentially mimic the leave-one-out
cross-validation scheme small datasets use to combat and mitigate overfitting. Root-mean-
square errors (RMSEs) and mean absolute percentage errors (MAPEs) were calculated to
evaluate the predictions of the regression models (Tables 1 and 2). Bland–Altman plots were
generated, revealing a strong agreement between PPG and SPG in PAT trends (Figure 2).
The p values of each activity dataset were calculated and resulted in p < 0.0001 for all three
datasets, further demonstrating strong evidence for using SPG in place of PPG for blood
pressure estimations. Additionally, Figure 3 demonstrates the predicted results (the dots)
compared to the standard deviation (the range) on the mean (the end of the bar plots).

Table 1. The root-square-mean error (RSME) comparison of SPG and PPG using PAT and previous
BP measurements for features in supervised machine learning models. Values are bolded when they
demonstrate SPG performing better or the same as PPG.

RSME
(± mmHg)

SV
(1 Feat.)

SV
(2 Feat.)

DT
(1 Feat.)

DT
(2 Feat.)

SPG Rest 12.4 3.7 3.9 2.8

PPG Rest 13.7 3.7 22.5 1.9
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Table 1. Cont.

RSME
(± mmHg)

SV
(1 Feat.)

SV
(2 Feat.)

DT
(1 Feat.)

DT
(2 Feat.)

SPG LE 16.1 15.9 20.1 2.2

PPG LE 15.3 15.9 14.1 3.7

SPG HE 20 19.3 22.7 25.9

PPG HE 21 19.3 11.9 17.2

Table 2. The mean absolute percent error (MAPE) comparison of SPG and PPG using PAT and
previous BP measurements for features in supervised machine learning models. Values are bolded
when they demonstrate SPG performing better or the same as PPG.

MAPE
(%)

SV
(1 Feat.)

SV
(2 Feat.)

DT
(1 Feat.)

DT
(2 Feat.)

SPG Rest 8 3 3 2

PPG Rest 9 3 15 1

SPG LE 11 10 14 2

PPG LE 10 10 9 3

SPG HE 10 11 11 14

PPG HE 11 11 7 9
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4. Discussion

The study demonstrates SPG’s potential as a substitute for PPG in PAT-based BP
estimation. SPG generally yields comparable or smaller errors than PPG in predicting SBP,
as seen by the bolded values in Tables 1 and 2. Even in the other results where PPG has
a lower error, SPG performs decently in comparison. For the SV models, SPG predicts
within 1.5 mmHg for RSME and 1% for MAPE compared to the PPG results. From the
DT models, the error is higher but lessens when the second feature is included in training.
Incorporating the previous SBP value reduces the RMSE, particularly in the Rest dataset
with the SV model and the LE dataset with the DT model (Table 1), indicating potential
accuracy improvement. This feature is essentially acting as a form of calibration for the
model and will be investigated further in a future study. For the SV models, this second
feature unexpectedly resulted in the same RSME and MAPE values as PPG, indicating how
the previous blood pressure value greatly influences the model’s predictions.

The SV model’s robustness against overfitting and reliance on the previous SBP
value explain its significant improvement on the Rest dataset in both tables [28]. The DT
model’s reduced error using two features for the LE dataset may be due to overfitting
tendencies exacerbated by the smaller LE dataset due to more outliers [29]. Additionally,
this overfitting may have contributed to the wide range of results for both SPG and PPG
over all three activity datasets. Model selection and feature inclusion highly influence BP
estimation accuracy for SPG and PPG.

RMSE and MAPE values increase with higher physical activity levels, elevated heart
rate, and blood pressure due to the increase in motion artifacts that negatively affect BP
estimation accuracy. SV models show a uniformed error increase within acceptable values,
while DT models exhibit a more arbitrary and pronounced increase, highlighting differ-
ent evaluation approaches and DT’s susceptibility to overfitting with small datasets [29].
Figure 3 further demonstrates DT’s overfitting, as some of the results for both feature
configurations deviate more than the standard deviation of the dataset. The unexpected
error spike in the PPG Rest dataset (Tables 1 and 2) when using only one feature empha-
sizes the importance of incorporating a second feature, which reduced error significantly,
illustrated by Figure 3B in all dataset results. Feature selection is crucial for accurate BP
estimation using SPG and PPG, and the diverging error trends between the models using
small datasets highlight the need for careful model selection and evaluation, considering
their strengths and weaknesses.

The Bland–Altman plots reveal a negative mean difference between the PATSPG and
PATPPG datasets, which is due to SPG peaking before PPG despite being recorded from
the same region of interest. The limits of agreement tighten from Rest to HE, which
might indicate overfitting being the reason that LE and HE had increasingly higher errors
compared to the Rest based models. Over the three datasets, the Bland–Altman plots have
a mean difference within 0.12 of zero, indicating that PATSPG can potentially be a reliable
and consistent alternative to PATPPG for future blood pressure estimation. Furthermore,
each activity dataset resulted in p < 0.0001, demonstrating the results were not due to
random chance and are statistically significant findings.

Limitations of the SPG system used include the absence of real-time SPG signal
visualization, leading to data collection issues and unusable data points for the datasets.
Signal synchronization relied on timestamps and knowledge of SPG peak timing relative
to PPG and ECG. Stable hand positioning was also required for signal quality. These
limitations can be addressed by developing a wearable system enabling simultaneous
measurement of all signals, enhancing real-time visualization, signal acquisition quality,
and synchronization. Due to the current technological developments of smart watches,
cloud computing, and smaller chips, a custom wearable can be developed and validated
for future experiments. The relatively small experiment size suggests the need for larger
studies with at least 50 subjects to examine the impact of daily activities on BP, avoid
overfitting issues, and obtain more reliable and generalizable results. Furthermore, the lack
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of difference between morning and evening sessions needs to be investigated more with a
larger group to determine its role on BP and the biosignals.

Using PAT versus pulse transit time (PTT) is also a topic to investigate with SPG-based
BP estimation. PTT is the time that an arterial pressure wave takes to propagate along the
walls of a given segment of the arterial tree. PAT is defined as the aggregate of PTT and the
pre-ejection period (PEP) delay, expressed as:

PAT = PTT + PEP (2)

Here, PEP represents the duration required for converting the electrical signal into a
mechanical pumping force, leading to isovolumetric contraction and subsequent opening
of the aortic valve. PEP can be quantified by determining the delay between the R-wave
of the ECG signal [3,4]. Given the intricacy involved in acquiring PEP when multiple
physiological signals are necessary, the utilization of PAT to estimate BP has gained traction.
However, the precision of PAT-based BP estimation remains a subject of debate [30]. Due to
this, comparing the PAT and PTT derived from the signal pairs may reveal how inaccurate
PAT is for SPG-based BP estimation and whether the ease of calculating this value compared
to PTT is worth the potential loss of accuracy.

Another point that needs to be investigated further is whether to focus on a calibrated
system or develop a calibration-free system. This study had a form of calibration by using
the subject’s previous SBP value in training and testing the models. This helped improve
the accuracy for all SVM results and all but the HE results in the DT models. For real-time
deployment of the system, a small calibration period could be used to benefit from higher
accuracy like this setup, but calibration-free systems may prove to be more user friendly
and have less computation cost and time.

5. Conclusions

This study highlights the potential use of SPG as a viable alternative to PPG in PAT-
based BP estimation. The agreement observed in the Bland–Altman plots (Figure 2) further
strengthens the case for the reliability and accuracy of SPG measurements. The inclusion of
additional features and careful model selection have demonstrated their influence on the
accuracy of BP estimation using SPG and PPG. However, it is crucial to address the limita-
tions of the SPG system, such as the absence of real-time signal visualization and signal
synchronization challenges. Developing a wearable system capable of simultaneous signal
acquisition would overcome these limitations and enable more reliable and convenient BP
measurements during various activities.

Future research should focus on expanding the sample size to ensure the robustness
and generalizability of the results. Incorporating other features, such as the SPG intensity
ratio feature, and adopting dynamic adaptive regression models tailored to different activity
levels are potential avenues for higher accuracy of BP estimation using both PPG- and SPG-
based PAT, capturing the intricacies of BP regulation and the cardiovascular system. Further
investigations should also explore additional features and algorithmic improvements to
advance the field of non-invasive BP estimation and its clinical applications.
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