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Abstract: A novel station-keeping strategy leveraging periodic revolutions of homeomorphic orbits
in the Elliptic Restricted Three-Body Problem within the pulsating frame is presented. A systemic
approach founded on arc-length continuation is presented for the discovery, computation, and
classification of periodic revolutions that morph from their traditional circular restricted three-body
counterparts to build an a priori dataset. The dataset is comprehensive in covering all possible
geometric architectures of the restricted problem. Shape similarity is quantified using Hausdorff
distance and works as a filter for the station-keeping algorithm in relation to appropriate target
conditions. Finally, an efficient scheme to quantify impulsive orbit maintenance maneuvers that
minimize the total fuel cost is presented. The proposed approach is salient in its generic applicability
across any elliptic three-body system and any periodic orbit family. Finally, average annual station-
keeping costs using the described methodology are quantified for selected “orbits of interest” in the
cis-lunar and the Sun–Earth systems. The robustness and efficacy of the approach instill confidence
in its applicability for realistic mission design scenarios.

Keywords: Three-Body Problem; Shape Similar Orbits; Halo Orbits; Periodic Motion; Elliptic Restricted

1. Introduction

The search for efficient, flexible, and robust orbit maintenance strategies has gained
increased traction with the success of the Artemis 1 mission and the prospects for future
crewed and robotic lunar exploration. Ever since the discovery of quasi-periodic orbits in
the Sun–Earth–Moon system by Robert Farquhar and Ahmed Kamel, research exploring
their use for future mission architectures has continued to be a growing interest in Lagrange
Point Orbits (LPOs) [1]. For instance, several periodic orbits have been tested as candidates
for the Lunar Gateway, and eventually, NASA earmarked an orbit from the Southern Near
Rectilinear Halo family around the Earth–Moon L2 with a 9:2 synodic resonance, as the orbit
for establishing a sustained human presence in the cis-lunar space [2,3]. Additionally, to aid
preliminary mission design and analysis, several periodic orbit initial conditions associated
with the Circular Restricted Three-Body Problem (CR3BP) have been computed and stored
for several three-body systems of interest [4]. However, metadata from the aforementioned
database are associated with periodicity established in simplified dynamics which do
not account for realistic multi-body perturbation effects, thereby limiting applicability for
realistic mission design.

Previous studies have demonstrated that rather expectantly, LPOs in the CR3BP lose their
periodicity when realistic perturbations are embedded into the dynamical system [1,5–26].
Since unmodeled perturbations significantly affect nominal spacecraft trajectory, it has been
demonstrated that autonomous trajectory re-planning, guidance, and station-keeping analyses
are of utmost importance for the success of these missions [17–19,25,27–30]. Several methods
have been used so far by researchers ranging from location-based Target Point Approach
(TPA), shape-similar trajectories, to finite-time Lyapunov exponents (FTLEs) in the form of
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the Cauchy Green Tensor (CGT) [17,18,25,27,28]. Studies performed on the effects of the
Sun’s gravity on the spacecraft as an additional perturbing force, through the Bi-Circular
Restricted Four-Body Problem (BCR4BP) in the Sun–Earth–Moon system which presented
significant positional deviation from a perfectly periodic halo orbit [6–10]. For Europa, due
to the proximity to both Io and Ganymede, the Concentric Circular Restricted Four-Body
Problem (CCR4BP) was a better approximation as all three moons are in resonance with
each other [19,20]. Another paper that focuses on the Sun–Earth–Moon system also includes
the effect of albedo on the celestial bodies themselves as an additional parameter [10]. Non-
uniform gravitational fields have also been studied in the context of perturbations to the
CR3BP whereas the primary and secondary were considered oblate spheroids with no
obliquity [10–18]. Many of these studies focus on the Europa and Enceladus as the proximity
to both the planet and moon affect the perceived gravity as a function of latitude [13–16].
These analyses provide important insights for potential future long-term scientific missions
to observe the geological activity and discover life on these icy moons.

Many studies have also focused on characterizing LPOs and studying station keeping
(SK) in a dynamical system of higher complexity. For instance, the restricted Ephemeris
model has been used as a preliminary test for SK of halo orbits which has the effect of
solar radiation pressure (SRP) embedded in the dynamical system [17,18]. Other studies
have either focused on different three-body systems or solely analyzed the effects of non-
circular orbits on the autonomous CR3BP dynamics. These studies determined the effects
of eccentricity by analyzing the dynamical behavior in the Elliptic Restricted Three-Body
Problem (ER3BP) [21–26]. It has been proved mathematically that the system dynamics
become further chaotic and more unstable for any spacecraft in the ER3BP when compared
to the original CR3BP [21]. The results are indicative of the fact that consideration of
eccentricity leading to non-autonomous motion can have profound effects on the legacy
dynamical structures from the more benign circular restricted case. Periodicity for halo
orbit counterparts has been achieved via numerical continuation and shows significant
dissimilarity from corresponding motions in the CR3BP family [22–25]. Therefore, the need
to analyze systems of intermediate fidelity using advanced numerical methods to under-
stand long-term dynamical behavior and motion structures has been established. There
have been SK methods used within the ER3BP using multiple impulses per orbit-rev and a
monodromy matrix analog [26]. The aforementioned station-keeping papers focused on
keeping the CR3BP orbit as the nominal reference orbit without carrying out a robust and
holistic search for novel periodic structures catering to an incremental addition of fidelity
to the original autonomous dynamical system.

A significant operational challenge in the context of long-duration “orbiter-type” space
missions is determining the appropriate cadence of the Orbit Determination (OD), SK, and
Science Objective (SO) cycle. For instance, a spacecraft, initially placed in a Low Lunar
Orbit (LLO) to perform high-resolution imaging of the lunar terrain requires constant SK
maneuvers to maintain the orbit in the presence of anomalous lunar gravity [31]. On the
other hand, SK maneuver quantification requires accurate navigation input from OD.
Therefore, a significant fraction of a revolution is attributed to OD and SK, limiting imaging
science opportunities. This hampers the overall efficiency of the mission and novel orbit
maintenance strategies that can provide an efficient cadence such that the final goal is
achieved, are of utmost importance.

In this paper, a novel, elegant, and robust methodology is proposed to generate orbits
from the well-documented CR3BP periodic orbits in the presence of the ER3BP dynamical
system. These orbits are periodic over the entire state space and bear a resemblance to their
CR3BP counterparts in shape and period as derived from continuation. They are therefore
termed “homeomorphic” to their CR3BP counterparts and the orbit revs termed as Ho-
moemorphic Periodic Orbits (HPOs) for the rest of the paper. Enforcing shape similarity
preserves the attractiveness of the discovered orbit rev (like eclipse conditions, periapse
altitude, etc.) while equipping mission designers with more realistic dynamical behavior.
The underlying algorithm employs an arc-length homotopy approach to achieve conver-
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gence using the CR3BP periodic conditions as the initial guess. The results demonstrate
the robustness and generality of the algorithm as it could apply to different periodic orbit
families in several systems and geometrical configurations.

Finally, an optimal orbit maintenance algorithm utilizing a single-impulse per-rev
architecture is employed to quantify the fuel cost that leverages the pre-computed and
tabulated periodic revs. In the optimization scheme, a “target condition” database of HPOs
is built for the ER3BP dynamics based on the desired amount of revs by matching the
position and velocity vectors although not requiring the initial and final true anomalies
to match. The associated periodic conditions are saved as metadata with the initial true
anomaly as a classifying parameter. Progression along the proposed SK architecture is
achieved by drawing from the generated dataset to identify the target future state. A single-
shooting algorithm is then used to solve for the correction maneuvers required to achieve
the final state associated with the next HPO rev. Annual fuel costs are estimated for
different “orbits of interest” in the cis-lunar and the Sun–Earth systems. Additional filtering
of the database has been explored by using the shape-similarity metric to reduce the target
state search space in the search for an optimal SK architecture. The rest of the paper is
organized as follows: Sections 1 and 2 deal with theoretical preliminaries which include
succinct descriptions of the ER3BP, numerical continuation techniques, and shape similarity
metrics. Section 3 formulates the problem of HPO searches and discusses the SK strategy
in detail. Section 4 provides results achieved by implementing the algorithms in Section 3
in the context of selected “orbits of interests”. Section 5 concludes the paper and describes
avenues for building on the current work in the future.

2. Preliminaries
2.1. Elliptic Restricted Three-Body Problem

The ER3BP is a non-autonomous dynamical system that defines the motion of a
restricted mass in the presence of a primary-secondary pair that orbits their barycenter
in an ellipse. The fixed rotation rate renders CR3BP as an autonomous Hamiltonian
system, but unfortunately, when the circular assumption is relaxed, the system is no longer
autonomous due to the changing rotation rate. Although non-autonomous, the system can
still be written in Hamiltonian form but still requires careful alteration to the equations of
motion [32]. In particular, an additional reference frame is required to derive the governing
dynamical equations. The pulsating frame, shown in Figure 1, is defined for this purpose
such that the perceived distance between the primary and secondary remains constant
relative to the frame, thereby admitting equilibrium point analogs which could be explored
for periodic conditions, akin to the Lagrange Point Orbits (LPOs) in the CR3BP.

Figure 1. (Left) Rotating and inertial reference frames in the ER3BP. (Right) Pulsating and rotating
reference frames in the ER3BP.

The pulsating frame is constructed using the set of orthonormal basis vectors {ξ, η, ν},
relative to the primary-secondary distance, and analogous to the {x, y, z} of the barycentric
synodic frame, respectively. Figure 1 depicts the inertial, rotating, and pulsating frames
schematically to better represent how they relate to one another. As a byproduct of the el-
liptical motion of the primary and secondary, the equilibrium points demonstrate pulsating
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motion, as depicted in Figure 2. Using Szebehely’s Equations [33] and implementing the
modifications proposed by Broucke [21], the ER3BP is governed by the following system
of equations:

ξ ′′ = 2η′ +
r
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2
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Coupled with the following secondary parameter definitions,

r1 =
√
(ξ + µ)2 + η2 + ν2 (2a)

r2 =
√
(ξ − 1 + µ)2 + η2 + ν2 (2b)

where p denotes the semi-latus rectum of the ‘elliptical’ system and r denotes the normal-
ized distance between the primary and secondary. Additionally, µ refers to the relative
mass parameter, and r1, r2 indicate the distance from the spacecraft to the primary or
secondary, respectively, as measured in the pulsating frame. Note that the primed/stroked
quantities in Equation (1) denote derivatives and corresponding order with respect to the
true anomaly, θ, rather than time.
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Figure 2. Drift in the equilibrium point analogs owing to the elliptic motion.

Altogether, equations in (1), in conjunction with the supplemental equations in (2),
governs motion in the ER3BP. In this model, the Jacobi normalized units, also known as
canonical units, are used such that the semi-major axis of the system is 1 Distance Unit
(DU). Additionally, the period of the system is normalized by 2π to become 1 Time Unit
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(TU), although the actual units are with respect to the true anomaly. Propagation with
true anomaly as the free variable requires knowledge of the initial spacecraft position
and velocity vectors along with the desired starting system dynamics, captured by r, r′,
and computed according to the following:

r =
p

1 + e cos(θ)
(3a)

r′ =
er2 sin(θ)

p
(3b)

For the remainder of this paper, the canonical conversions are in the context of the
Earth–Moon system, µ = 1.215058560962404× 10−2, 1 DU = 389,703 km, and 1 TU = 382,981 s
which consistent with the Three-Body Periodic Orbit Database [4]. The initial conditions
for members of the CR3BP periodic orbit families were obtained and developed as a part of
this work from this database and used as a warm-start for the algorithms. Figure 3 depicts
the deviation from traditional periodic behavior in the presence of the ER3BP dynamics
within the Earth–Moon system underscoring the loss of periodicity.

Figure 3. Departure from periodic behavior in the ER3BP.

2.2. Numerical Continuation

As previously discussed, the CR3BP is an autonomous system, where members of
the periodic orbit families exhibit periodicity in both position and velocity without any
implicit time dependence. In contrast, the ER3BP is non-autonomous, thereby introducing
a substantial increase in problem complexity and consequential dynamical system analysis,
making the discovery of intriguing “orbits of interest” significantly more challenging.

Numerical continuation can be defined as the process of generating approximate
solutions for a system of non-linear equations in a finite-dimensional space. In general,
continuation techniques form a powerful class of numerical methods that can be utilized
to analyze the dynamical behavior of mathematical models resembling complex systems.
The underlying theme is to track the solution of a system of equations as the continuation
parameter is varied and utilizes an iterative solution scheme to map the entire solution space.
This approach enables a robust survey of the solution space and provides a methodology
to identify interesting features like bifurcations and limit spaces. Continuation methods,
often known as homotopy methods, are extremely efficient in achieving convergence for
high-fidelity systems [6–8] and low-thrust spacecraft trajectory design applications [34,35].
In this work, two continuation methods, natural parameter and arc-length continuation,
were leveraged.
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2.2.1. Natural Parameter Continuation

The simplest of the two schemes, natural parameter continuation, is a type of predictor–
corrector scheme that corrects the solutions of each step based on previous solutions
without predicting an initial approximation. Generally, it follows the path generated by
the dependent variables, which in this instance are the initial conditions of the spacecraft
and system, with respect to fixed natural parameters, either the system eccentricity or
true anomaly. By dividing the solution space into unit steps and predicting the next
solution at a future step, the dynamical system morphs from the ideal CR3BP to the higher
fidelity ER3BP. As the algorithm progresses, the positional deviation from the original
periodic halo orbit is restricted as a soft constraint to maintaining shape similarity. Note
that the solution must guarantee convergence to ensure periodicity at all intermediate
steps. A converged solution refers to matching position and velocity conditions within the
pulsating frame after one orbit for a fixed initial geometry. Natural parameter continuation
has its limitations in certain dynamical regions: (1) bifurcations form multiple branching
solutions and (2) failures near critical limit points where the solution path reverses direction.
For these cases, arc-length continuation is far more robust.

2.2.2. Arc-Length Continuation

Arc-length continuation is a powerful numerical tool for studying the behavior of
nonlinear systems. This method extends the traditional continuation approach by incor-
porating the arc-length parameter as an additional variable, allowing for a systematic
exploration of the solution branches and their associated stability properties. By tracing
the solutions along a continuous path in the parameter space, arc-length continuation
provides valuable insights into the global system behavior, enabling the identification of
critical points, limit cycles, and other important phenomena. Moreover, this technique
facilitates the tracking of solutions through bifurcation points, offering a comprehensive
understanding of system dynamics beyond the scope of classical continuation methods
like natural parameter continuation.

The arc length of a function refers to the distance that a curvature traverses as the
variables change in a system. Consider a nonlinear system governed by G(u, λ) = 0, where
u represents the state variable vector and λ denotes the parameter. Arc-length continuation
involves introducing an additional equation that constrains the solution search space and is
a function of the arc length. This constraint equation is differentiated with respect to the new
arc-length parameter, s, resulting in an additional equation Ġ(s) = 0. Note that the dots
above a variable denote derivatives with respect to the arc length. Therefore, the effective
arc length is the norm of the infinitesimal change in the solution path. The algorithm
to search for shape-similar periodic structures presented later is founded on arc-length
continuation and follows the generic architecture presented as Algorithm 1. It facilitates
a smooth and robust traversal of the solution space for periodic orbit revs in an iterative
fashion considering eccentricity, e, as the continuation parameter while maintaining the
initial system geometry. Careful considerations must therefore be imposed to ensure that
the orbits do not diverge and preserve parent orbit geometry. For instance, a freely evolving
continuation scheme may morph a CR3BP halo orbit into an ER3BP periodic planar orbit at
the desired final eccentricity. This emphasizes the need for a metric that characterizes the
degree of shape similarity.
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Algorithm 1: Generic Arc-Length Continuation Algorithm

Result: The Solution Space (ui, λi ∀ i ∈ Z+ : i ∈ [0, N])
Given: The Initial Solution (u0, λ0), Desired Parameter (λN = λ f inal)
Assume: Arc-length step size, (∆s)
Initialize: Obtain first solution with natural continuation (u1, λ1),

ẋ1 = x1−x0
||x1−x0||

, x =

[
u
λ

]
while i < N do

Initial Guess:
xg = xi ± ẋi∆s

Use (xg) to solve:
xi+1 = xg
G(xi+1) = 0
(ui+1 − ui) · u̇i + (λi+1 − λi) · λ̇i − ∆s = 0
Calculate Gu, Gλ at (xi+1)

Calculate ẋi+1 with:
[

Gu(xi+1) Gλ(xi+1)
uT

i λi

]
ẋi+1 =

[
0
1

]
Return (xi+1, ẋi+1)
i = i + 1

end

2.3. Data Filtering Using Hausdorff Distance

The previously described continuation scheme leads to an unbounded traversal of
the dense solution space. Additionally, if the orbital revs are geometrically dissimilar,
the dataset is not immediately useful for tasks like designing an optimal orbit maintenance
strategy. Therefore, a shape similarity metric was introduced to filter out orbit revs from the
comprehensive dataset that geometrically resemble the parent orbit. Although studies on
shape-similar orbits have been done, they have yet to quantify it [25]. The Hausdorff Dis-
tance (HD) is a topographic metric that determines the proximity of two sets by cataloging
and comparing the largest deformation distance between members of the sets. Determining
the supremum of all the infimum (see Figure 4) distances provides an approach whereby
shape similarity can be effectively quantified.

Figure 4. Schematic depicting the infimum distance between set B and a selected point in A.

Computing HD for quantification of shape similarity between two continuous orbits
is affected by the discretization or sampling density. Therefore, an optimal sampling
density was identified by conducting a convergence analysis. It is hereby noted that, once
discretization was performed, the infimum was calculated by employing a simple vector
difference approach. Figure 5 shows the convergence of HD for two distinct orbits from
the same parent counterpart—Halo Orbit from the Northern EML1 Family, C = 3.0326 for
one rev and two revs. Figure 6 shows the same process applied to a Northern EML3 with
C = 2.3849 for an identical initial geometry. For all four cases, the orbits were sampled at
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increasing densities up to 1000 with a parent orbit reference sampling density of 5000 points.
It was observed that the HD magnitude converged for sampling density ≥200 as shown for
the HPOs. Numerical identification of the optimal sampling density led to a more efficient
algorithm workflow. Furthermore, HD effectively enables the filtering of orbit revs that
are shape-similar or homeomorphic to their parent orbit from the unbounded dataset of
possible periodic orbit revs spanning the entire solution space.
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Figure 5. Convergence test of estimated HD between the parent EML1 orbit and HPO for Nrev = 1, 2.

10
1

10
2

10
3

Sampling Points

0.075

0.08

0.085

0.09

H
a
u
s
d
o
rf

f 
D

is
ta

n
c
e

N
rev

 = 1

10
1

10
2

10
3

Sampling Points

0.08

0.085

0.09

0.095

H
a
u
s
d
o
rf

f 
D

is
ta

n
c
e

N
rev

 = 2

Figure 6. Convergence test of estimated HD between the parent EML3 orbit and HPO for Nrev = 1, 2.

After a filtered dataset has been prepared, target conditions for a shooting scheme can
be immediately ascertained by comparing the HD of the current orbit rev with the HD for
the other revs in the dataset. Any maintenance algorithm can therefore be informed about
possible “attractive” choices for future targeting. Essentially, the HD parameters can be
embedded in the maintenance algorithm and make it substantially more efficient through
an informed selection of boundary conditions.

3. Problem Formulation

In the context of the current work, the initial problem is the discovery of periodic orbit
revs and the generation of a holistic dataset. Constraining the morphed shape and size of
these orbits close to their CR3BP “parent orbits” while maintaining periodicity in a higher
fidelity system is a particularly challenging endeavor. Although the solution space is also
populated with multi-rev solutions, the unmodeled perturbing effects often significantly
alter the shape of the converged revs and may compromise the mission requirements.
After cataloging the converged HPOs at several initial true anomalies for a given primary-
secondary system, target states for the SK shooting algorithm are extracted relative to
the initial true anomaly. Although there are infinitely many impulsive SK configurations
that can account for the deviations due to unmodeled system dynamics and navigation
errors, in this study, the location is limited to the plane crossings made by the spacecraft.
A detailed description of the methodology along with the underlying algorithm is presented
in a subsequent section. Comparing the energy cost at each cycle and selecting the lowest
combined value for insertion to the periodic orbits reveals an optimal single-pulse per-rev
SK architecture. By alternating the cycles of observation and SK continuously, these orbits
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are expected to resemble their traditional periodic counterparts while also being maintained
for the expected duration of the mission.

3.1. The HOPE Algorithm

The HOmeomorphic Periodic revs Evaluation (HOPE) algorithm utilizes an arc-length
homotopy approach that converges to periodic initial conditions in the higher fidelity
ER3BP system. The algorithm utilizes eccentricity as the continuation parameter for a
fixed initial true anomaly. By segmenting the process, a sequential and iterative algorithm
flow was achieved and presented in Algorithm 2. The calculations were performed on
MATLAB R2023a using a mex version of MATLAB’s ode45 with absolute tolerances of
10−10 and relative tolerances of 10−6. In fsolve, ‘MaxIteration’ was set at 10,000, whereas
‘MaxFunctionEvaluation’ was set at 1000 with both step and function tolerances of 10−12

for the Earth–Moon system.

Algorithm 2: Homeomorphic Periodic Revolutions Evaluation (HOPE) Algorithm

Result: ER3BP Periodic Orbits (Ij ∀ j ∈ Z+ : j ∈ [0, M]),
I = [ξ, η, ν, ξ ′, η′, ν′, T, θ0]

T

Given: Mass ratio and eccentricity (µ, e), p = 1 − e2, CR3BP Periodic Orbit
(x, y, z, x′, y′, z′, T0)

Set: (ui, λi ∀ i ∈ Z+ : i ∈ [0, N]), λ0 = 0, λN = e, u0 = [x, y, z, x′, y′, z′, T0]
T ,

x0 = [uT
0 λ0]

T , θ0 = 0◦, j = 0, ∆s as desired
while θ0 < 360◦ do

Initialize: x1, ẋ1 from x0
while i < N do

Guess: xg = xi + ẋi∆s
Solve dynamical system, Equations (1) and (2), starting with: xi+1 = xg;
Match: initial and final u states
Return: (xi+1, ẋi+1)
i = i + 1

end
Re-converge at final eccentricity: G(uN , e) = 0
Set: Ij = [uT

N θ0]
T

Discard: (x, ẋ, N)
θ0 = θ0 + 360◦/M
j = j + 1

end
Compile: I as desired by M times

The algorithm was “warm-started” with the CR3BP “parent” orbit conditions and
was differentially corrected to obtain new periodic conditions. Although the system could
be “cold-started” with randomly generated initial conditions, convergence was invariably
harder to achieve for such cases. Furthermore, even for the converged solutions, there is no
guarantee that such a solution would be homeomorphic. Note that in Equation (3a) and (3b)
for the circular assumptions, the r and r′ parameters have values of 1 and 0, respectively.
However, the pulsating frame used to analyze the ER3BP system leads to temporal variation
in the r and r′; the geometry is then continually defined under Keplerian assumptions.
Next, continuation is performed starting with a constant initial true anomaly, θ0, with the
eccentricity continually modified in incremental steps until the desired eccentricity value
is achieved and similar to the real dynamical system (e.g., e = 0.0549 for the Earth–
Moon system [1,36]). This is unlike the real Earth–Moon which has a temporally evolving
eccentricity that varies in the range of 0.0255 to 0.0775 but is restricted to allow preliminary
analysis [36].

It is hereby noted that an initialization is necessary as the derivatives of the function
with respect to the arc length are not explicitly known at the first iteration step. Natural
parameter continuation is adept at estimating the derivatives and with two states and
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their derivatives known, the loop iterates to solve the arc length and dynamic constraints
along with the derivatives of the future step computed as the Jacobian of the system.
As previously mentioned, the algorithm is warm-started with the CR3BP periodic orbit
condition and then continues to explore the solution space as the parameters are changed.
Furthermore, note that the Jacobian may not always be full rank and for those cases,
the path closest to the original state values may be selected instead so that the algorithm
progresses as this is an indication of a bifurcation. Due to the chaotic nature of the dynamics
and the densely populated solution space for periodic orbit revs, convergence is expected
to be sensitive to numerical tolerances and must be constrained to ensure that the solutions
do not diverge into other orbital families. The output is recorded for all converged orbits
belonging to the current solution path, which displays periodic behavior over required revs.
An “eccentricity continuation path” is traversed for all the initial geometry configurations
every 0.25◦ since system periapsis. Due to the arc-length step being decoupled from natural
parameter values, a stop feature is implemented once the desired eccentricity is obtained.

Results from the aforementioned EML1 northern halo orbit with a period of 12 days
has a state description as shown in Table 1 and has the corresponding dataset depicted in
Figures 7–10. The HOPE algorithm generated the depicted periodic revs using a constant
arc-length step size of 3.5 × 10−4 for all conditions.

Table 1. EML1 halo orbit parameters in normalized units (DU,VU) [4].

Parameter x0 y0 z0 x′0 y′
0 z′0

Value 8.392 × 10−1 0 1.553 × 10−1 −4.273 × 10−16 2.602 × 10−1 6.178 × 10−16
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Figure 7. Bounded ν-amplitudes for Nrev = 1, 2 HPO families with different initial geometries.
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Figure 9. Plot depicting the filtered dataset for Nrev = 1 at all initial geometry configurations.
Reference halo orbit has Az = 93,400 km.
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Figure 10. Plot depicting the filtered dataset for Nrev = 2 at all initial geometry configurations.
Reference halo orbit has Az = 93,400 km.

Since the motion is defined in the pulsating frame, it is important to note that the
ν-axis projections can be treated as an effective Z-amplitude. For gaining heuristic in-
sights into the nature of solutions, the ν-amplitudes were plotted vs. eccentricity for both
Nrev = 1, 2 HPOs (see Figure 7). Graphical comparisons elucidate the relative shape diver-
gence due to eccentricity continuation. It is also hereby noted that due to the chaotic nature
of the system, establishing convergence for Nrev = 2 solutions requires a substantially
larger computational effort. However, a successful survey of the entire solution space leads
to local solutions that satisfy the periodicity constraint given the initial conditions and a
prescribed number of revolutions. The HOPE algorithm was tested and demonstrated
to be robust in generating HPOs for Nrev = 1, 2 for several orbit families and systems
even though convergence was neither guaranteed nor shape similarity always possible.
The combined set of initial state descriptors along with shape-similarity metrics were
embedded into the dataset and then used to extract geometrically informed boundary con-
ditions for the impulsive SK algorithm. Stitching together partially periodic revs maintains
continuity in position and helps maintain the next Nrev revolutions for free. Small velocity
discontinuities were permitted to provide flexibility and carefully balance the trade-off
between shape similarity and periodicity to avoid over-constraining the system. For the
aforementioned L1 northern halo orbit, the maximum allowable HD was based on the
one-rev position periodic orbit set. Given that the two-rev orbits, whether fully periodic
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or not, would require more leeway, filtering criteria were more relaxed with a maximum
allowable HD that was twice as large as the respective one-rev case.

3.2. Station Keeping

Once the dataset of all the possible periodic orbits is generated, the station-keeping
process in Algorithm 3 was implemented to quantify maintenance costs for sustaining
presence in the neighborhood of any CR3BP periodic orbit of interest. To commence the
process, the dynamical system and starting true anomaly must be selected, thus determin-
ing the starting periodic revolution which is natural to the respective celestial geometry.
Mission duration will give the necessary amount of time the spacecraft must station-keep
to satisfy the desired lifetime requirements. After the ith periodic rev is finished, the space-
craft is propagated across all the future plane crossings that are accessible to commence
the maneuvers. With all the possible combinations of impulses based on Figure 11 and
the number of periodic orbits within the generated dataset, the selection is restricted to
minimize the impulse costs at each crossing by an estimated “ideal” transfer time. Note
that this requires an underlying assumption that the respective periods of the orbits are
relatively close. Although this may not always be true, the resulting correction leg is bound
to be quasi-optimal given the other constraints.

Figure 11. Conceptualization of the optimal single-impulse per-rev SK architecture.

The equations of motion are in terms of the true anomaly within the pulsating frame
and true estimates for the ∆v require multiple conversion steps. Exploring the kinematic
derivatives with respect to time requires derivative change [21] as follows:

dθ

dt
=

√
p

r2 (4)

The inclusion of Equation (4) allows the true velocity values to be calculated given
the current state. For the conversion of the velocity vectors in the pulsating frame to the
rotating frame requires the product rule resulting in the following:x′

y′

z′

 = r′

ξ
η
ν

+ r

ξ ′

η′

ν′

 (5)
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In terms of magnitude, the inertial and rotating frame vectors are the same with the
only change being the direction which is rotated about the z-axis by the true anomaly and
the origin which can be translated. For the spacecraft’s position, the conversion from the
pulsating to rotating frames is via a simple scaling factor r as the frame pulsates.

Algorithm 3: Station-Keeping Algorithm

Result: Station-keeping costs (∆v), spacecraft trajectory (ξ, η, ν, ξ ′, η′, ν′), system
geometry (θ)

Given: HOPE dataset, mass ratio and eccentricity, and starting HPO (µ, e, Is),
p = 1 − e2

Propagate: selected starting HPO for prescribed amount of revs
Determine: normalized time of mission duration (τ0), τ0 = t

TU
Reduce: remaining mission duration by period traveled, in radians (τ = τ0 − Ts)
while τ > 0 do

Retrieve: final state conditions of HPO (Q0), Q = [ξ, η, ν, ξ ′, η′, ν′, r, r′]
Determine: conditions at all consecutive plane crossings until divergence occurs

as determined by the maximum Hausdorff distance permitted (Qi),
Calculate: true anomalies at each position (θi),

θ =

{
cos−1( p−r

re ), r′ ≥ 0
2π − cos−1( p−r

re ), r′ < 0
for i = 0,1,2,... do

Determine: time change to match target periodic states (∆θij), ∆θij = θj − θi,
Estimate: ideal maneuvering value based on the CR3BP period (∆θideal):

∆θideal = T − θi,
if ∆θ ≤ 0 then

add 2π
end
Search: within that approximate true anomaly condition region in the

HOPE dataset
Calculate: impulses necessary to match target periodic state (∆vij),

∆vij = δvi + δv f ,

δv = (DU
TU )(

√
p

r )[∆ξ ′ ∆η′ ∆ν′]T , combining Equations (4) and (5) and
de-normalizing

Note: minimize δv f
Select: lowest cost maneuver (∆vi, Ij), ∆vi = min(|∆vij|)
Note: if necessary, search all solution combinations, i.e., ∀ j
Return: velocity change, selected orbit and travel time to target orbit
(∆vi, Ij, ∆θij)

end
Select: lowest cost maneuver (i, j), such that G(Qi, Ij) = min(∆v)
Propagate: from starting point to selected maneuvering state (Q0 to Qi)
Propagate: station-keeping maneuver (∆vi, ∆θij)
Propagate: selected periodic orbit (Ij, Tj)
Convert: frames from pulsating to rotating with Equation (5) and
[x y z]T = r[ξ η ν]T

Rotate: frame along z-axis from rotating to inertial frames as desired
Return: all states (ξ, η, ν, ξ ′, η′, ν′, θ) and total station-keeping costs (∆v)
Reduce: remaining mission duration by orbital periodand travel time (τ),

τ = τ + θ0 − θi − ∆θij − Tj

end

Since this station-keeping mechanism solves the problem on a per-orbit basis, the ∆v
costs per-orbit are non-uniform depending on the state of the system and the spacecraft.
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Furthermore, the solutions will invariably depend on the initial celestial geometry. There-
fore, launch considerations and mission architecture must account for the interdependence
between geometry and maintenance fuel consumption.

4. Results

Given the success of the Artemis I mission and the planned Lunar Gateway, studying
the insertion and maintenance of periodic orbit analogs in the Earth–Moon system is
crucial for the advanced mission design of future missions. Utilizing the dataset as seen in
Figures 9 and 10, the necessary station-keeping costs for 1 year of operations are shown.
This process was repeated at intervals of 1◦ for various initial system geometries.

As evident from Figure 12, although initial geometry can significantly alter the single-
impulse station-keeping costs to maintain the orbit, the costs are still bounded across
the entire domain for the Az = 93,400 km CR3BP parent halo orbit. To elaborate further,
Figure 13 depicts the accumulated per-rev costs to maintain 32 revs over a period of a year
for the most and least optimal scenarios.
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Figure 12. Trend capturing the effect of initial geometry on station-keeping costs for sustaining a
1-year lifetime on the selected EML1 northern halo orbit .
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Figure 13. Cumulative station-keeping costs for the EML1 northern halo orbit over a 1-year lifetime
for θ = 204◦ (left) and θ = 239◦ (right).

Each impulse performed is represented as a discontinuous jump from one rev to
another in Figure 13. For the trajectory with an initial true anomaly of 204◦, the total annual
station-keeping cost with the single-impulse per-rev architecture is 192 m/s or about 6 m/s
per-rev on average. Some Nrev = 2 solutions are used, but not often which then makes
the particular maneuvers quite expensive. Furthermore, the cost per-rev is consistent
throughout the path taken. Nevertheless, other initial states lead to improved results,
as seen from the initial true anomaly of 239◦ which has better stability. This characteristic
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can be seen from the repetitive maneuvers that appear to occur, especially those of Nrev = 2
solutions which decrease the costs significantly. The total annual station-keeping cost
comes out as 135 m/s or about 4.2 m/s per-rev on average. This leads to a distribution of
maneuvering costs since the SK costs vary from 1.71 m/s to 12.4 m/s per-rev. It should be
noted that the costs would further decrease if more frequent maneuvers are implemented
in far more unstable local regions, but this paper only characterizes strictly one impulse
per-rev scenarios.

For a more intuitive representation, the paths were mapped onto the pulsating frame
shown in Figure 14 where the red dot denotes the starting position state and the green dot
denotes the final position state. Due to the orbital period being out of resonance with the
lunar orbit, the spacecraft must continuously perform corrective maneuvers to maintain
a shape-similar trajectory for an extended period of time. The magenta vectors show the
impulses necessary to maintain the orbit which have a strong dependence on the starting
conditions. The solid black lines indicate the HPO revs, whereas the dashed blue lines
represent the intermediate trajectories denoting the post-maneuver path that transfers the
spacecraft to the next selected rev. It is immediately evident based on a graphical analysis
of the trajectories in Figure 14, that the hypothesis proposing a direct correlation between
shape similarity of the orbital revs holds true. Unsurprisingly, with the single-impulse
per-rev architecture, the “local” optimal location was at the apoapsis of the current rev.
This leads to lower station-keeping costs which are seen in Figures 12 and 13. Considering
that this only shows the perspective from the pulsating frame with respect to the Lagrange
points, the true path for the lowest cost trajectory was also plotted as observed in the
Moon-Centered Rotating Frame.

Figure 14. Pulsating frame trajectories for the EML1 northern halo orbit. Magenta arrows denote the
optimal impulsive maneuvers.

When viewing the trajectory from the Moon-Centered Rotating Frame in Figure 15,
the distortion produced by the eccentricity can be further observed. The cumulative
trajectory as observed in this frame forms a shape akin to a truncated cone as the pulsating
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frame expands and contracts. This leads to a variation in the Z-amplitude (Az) of 0.0298 DU
or 11,600 km due to the eccentricity. This variation is consistent throughout all the successive
HPO revs and for every configuration due to an absence of resonance with the Moon’s
motion. Typically, the periodic orbit revs were followed during the closest approaches
of the Earth and Moon, but the intermediate transfer trajectories occurred as the overall
system slowed down at a much farther distance, thus reducing the costs required to transfer
arcs. At its closest approach, the Moon’s gravity is dominant, and therefore impulses are
necessary to prevent ejection towards the Moon. Likewise, when the spacecraft is at
its furthest, the Earth’s gravity is dominant; therefore, impulses are required to prevent
the spacecraft from ejecting towards the Earth. The station-keeping trajectory tends to
maneuver in a direction away from the dominant force to minimize opposing effects. Thus,
optimal domains could be analyzed and this insight can be further refined to design a
multi-impulse per-rev maintenance architecture.

Figure 15. x-z and y-z projections of the most optimal case plotted in the Moon-Centered Rotating
Frame. Magenta arrows denote the optimal impulsive maneuvers.

A worthwhile consideration previously noted is the scalar change in lunar eccen-
tricity. Although not incorporated in this work, this effect can be easily simulated by
changing the primary-secondary distance in Equation (1) and initial conditions from
Equation (3a) and (3b) to accurately model the effect of the non-linear eccentricity as a func-
tion of the true anomaly. Given that the periodicity of these orbits can be sensitive to minor
changes, this would drastically alter the dataset and subsequent station-keeping costs.

Since the launch of the James Webb Space Telescope (JWST) on the 25th of December
2021, the telescope has provided a large amount of data and scientific information [37]. Due
to the infrared nature of the telescope, it had to be stationed at a location that was relatively
near the Earth but constantly facing away from the Sun. The nominal L2 Southern Halo
Orbit with Az = 984,000 km and C = 3.000747 was selected as an ideal location to perform
observations, studying the selected orbit and quantifying the maintenance costs over a
20-year lifespan would help with ∆v budgeting during preliminary mission design. A lack
of accurate orbit parameters means that a parent orbit based on the graphical representation
was selected as an approximate analog orbit which has the initial states shown in Table 2.
In this case µ = 3.0542 × 10−6, 1 DU = 149,597,871 km, and 1 TU = 5,022,635 s for the Sun–
Earth system [4]. Furthermore, the step and function tolerances for fsolve were altered to
10−16 for better convergence.

Table 2. JWST L2 Southern Halo Orbit parameters in normalized units (DU,VU) [4,38].

Parameter x0 y0 z0 x′0 y′
0 z′0

Value 1.011 0 −2.924 × 10−3 −7.745 × 10−16 −1.010 × 10−2 6.547 × 10−16



Aerospace 2024, 11, 407 17 of 21

The nominal orbit in the Sun–Earth system has a period of 180 days, just under
6 months. Since the eccentricity is not constant, the value used was based on an averaged
estimate near 2030 (e.g., e = 0.0167 [39]). The filtered database of shape-similar revs
was utilized to perform station-keeping quantification for several initial geometries and
Figure 16 provides a depiction similar to the previous case. The output was observed to
show high sensitivity to the starting initial geometry. Even a small offset, close to a single
degree, between sequential scenarios translates to drastic changes in the station-keeping
costs. In Figure 17, two trajectories were presented to compare and contrast incurred costs.
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Figure 16. Trend capturing the effect of initial geometry on station-keeping costs for sustaining a
20-year lifetime of the JWST.
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Figure 17. Cumulative station-keeping costs for the JWST orbit over a 20-year lifetime for θ = 50◦

(left) and θ = 158◦ (right).

For the trajectory with an initial true anomaly of 50◦, Figure 17 shows that the total
annual station-keeping cost comes out to be 363 m/s or about 8.86 m/s per-rev on average.
Several Nrev = 2 solutions were used, but not very often due to the instability of the system,
thus rendering the particular orbit rev maneuvers quite expensive. For the initial and
final segments of the path, the single rev orbits are selected rather than the intermediate
segment between orbits 10 and 25 where the costs can be as low as 2.16 m/s which more
closely resembles costs to the real JWST. The least optimal condition starts at an initial
true anomaly of 158◦, requiring large impulses to prevent escape from the system. This is
visualized in Figure 18 within the pulsating frame.

Considering that the orbital period for the nominal JWST orbit has 2:1 resonance
with the Earth, most of the station-keeping maneuvers were performed under similar
geometric conditions. Since the orbital period does not exactly match the resonance value,
the spacecraft must continuously correct at the precessing true anomaly values. The ma-
genta vector that indicates the impulses are much more significant for the latter case which
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is also reflected in the accumulated costs over the 20-year mission lifetime. For the more
optimal case, a magnified sub-image is provided to show that most maneuvers tended
to be perpendicular to the trajectory path. The shape similarity of the path once again
shows that the proximity of the trajectory to the parent orbit lowered station-keeping costs.
There is enough stability for certain HPOs that the optimal impulsive maneuver is shown
to be at the x-y plane rather than at apoapse. For a more insightful visual representation,
in Figure 19 the spacecraft path is plotted in the Earth-Centered Rotating Frame.

Figure 18. Pulsating frame trajectories for the JWST orbit.

Figure 19. x-z and y-z projections of an optimal JWST SK orbit bundle observed in the Earth-Centered
Rotating Frame without a depiction of the impulsive maneuvers.

The trajectory in Figure 19 better resembles the true path taken by the spacecraft as it
traversed the L2 region. Even though the system’s eccentricity is smaller when compared
to the Earth–Moon system, the overall orbit size is significantly larger. A Z-amplitude (Az)
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variation of 4.321 × 10−4 DU or 64,640 km was observed due to the eccentric secondary
orbit, which is commensurate to the real orbit profile for the JWST mission. The presence of
certain resonant orbit revs and initial geometric conditions where convergence was difficult
due to instability leads to a complex and almost enigmatic correlation between ∆V and Az.
Careful analysis could only reveal a weak correlation. It is therefore hypothesized that the
stability index of the individual HPO revs is possibly a much more significant factor. In
the front view within Figure 19, the positional deviation from the ideal CR3BP halo orbit
is quite noticeable, as the Earth is provided there for scale. Since both the Earth and Sun
were on the same side of the orbit, there was no preference as to when the station-keeping
maneuvers were necessary. This path also stays completely out of the Earth–Moon system
shadows as JWST was designed to be a solar-powered telescope. It is hereby noted that
SRP is an important forcing function not considered a part of this work. A more accurate
result and SK quantification would also consider this effect but such analysis is amenable
to the described methodology.

Since the revs in the EML1 halo discussed earlier were very unstable and sensitive
to perturbations, all the course corrections were performed immediately after one pe-
riod of each rev. On the other hand, for the JWST there was enough stability for certain
orbits to sustain multiple x-y plane crossings, resulting in lower average annual fuel con-
sumption. Although this architecture limits the maximum impulse count to one per-rev,
the real telescope performs such a maneuver on a monthly basis [38]. This is effectively six
station-keeping maneuvers per-rev, which is not very far off from the design in this paper.
Therefore, the conservative costs of the optimal trajectory using the single-impulse per-rev
architecture is expected to be within an order of magnitude of the true values for a 20-year
mission lifetime.

5. Conclusions

A novel methodology for the discovery of ER3BP periodic counterparts of the CR3BP
parent orbit was presented. Additionally, total mission orbit maintenance costs were esti-
mated using a single-impulse per-rev architecture. First, numerical continuation methods
were implemented to generate an a priori dataset of quasi-periodic orbits in the ER3BP
based on the initial true anomaly and eccentricity of the primary-secondary system. Evalu-
ating these results for Nrev = 1, 2, in addition to striking a balance between the periodicity
and homeomorphism, was used as an input for an orbital maintenance algorithm to eval-
uate the fuel requirements to maintain the spacecraft for a given mission lifetime and
insertion conditions. The proposed method performs a maneuver at either the end of the
periodic orbit or at one of the sequential plane crossings to get the spacecraft to insert
into the next quasi-periodic orbits. If necessary, an additional impulse is used to match all
the velocities and thereby the conditions necessary for periodicity. Two case studies were
presented in the Earth–Moon and Sun–Earth systems to demonstrate the applicability and
robustness of the described methodology.

An L1 northern halo orbit was analyzed in the cis-lunar space with a period of 12 days
for annual station-keeping costs, for a total average of 32 revs. The most- and least-optimal
trajectories were studied in further detail, which came to an overall cost of 135 m/s and
192 m/s, respectively. It was observed that as the trajectory arc more closely resembled
the original parent orbit, the lower the SK costs were. Generally, the impulses were
to prevent the escaping of the spacecraft toward any of the two major bodies. Effects
of the eccentricity led to larger variations in the orbital size but maintained the overall
shape. Given that the JWST was recently launched and is currently providing positional
information, the corresponding L2 Southern Halo was analyzed using the same approach
for a twenty-year life expectancy of the telescope. The 180-day period resulted in an average
of 41 revs used for mission success. An optimal trajectory was studied in further detail
with an overall cost of 363 m/s. Such a value is not very far off from the real mission specs
as the SK architecture was only slightly more conservative in its estimate. The effectiveness
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of the proposed approach instills confidence in its applicability for preliminary mission
design and quantification of orbit maintenance estimation.
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