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Abstract: This paper presents a new approach to constructing multistep combination forecasts in a
nonstationary framework with stochastic and deterministic trends. Existing forecast combination
approaches in the stationary setup typically target the in-sample asymptotic mean squared error
(AMSE), relying on its approximate equivalence with the asymptotic forecast risk (AFR). Such
equivalence, however, breaks down in a nonstationary setup. This paper develops combination
forecasts based on minimizing an accumulated prediction errors (APE) criterion that directly targets
the AFR and remains valid whether the time series is stationary or not. We show that the performance
of APE-weighted forecasts is close to that of the optimal, infeasible combination forecasts. Simulation
experiments are used to demonstrate the finite sample efficacy of the proposed procedure relative
to Mallows/Cross-Validation weighting that target the AMSE as well as underscore the importance
of accounting for both persistence and lag order uncertainty. An application to forecasting US
macroeconomic time series confirms the simulation findings and illustrates the benefits of employing
the APE criterion for real as well as nominal variables at both short and long horizons. A practical
implication of our analysis is that the degree of persistence can play an important role in the choice of
combination weights.

Keywords: averaging; combination; cross-validation; Mallows; unit root; accumulated prediction
errors

JEL Classification: C22; C53

1. Introduction

The pioneering work of Granger (1966) demonstrated that a large number of macroe-
conomic time series have a typical spectral shape dominated by a peak at low frequencies.
This finding suggests the presence of relatively long run information in the current level of
the variables, which should be taken into account when modeling their time series evolu-
tion and can potentially be exploited to yield improved forecasts. One way to incorporate
this long-run information in econometric modeling is through stochastic trends (unit roots)
and/or deterministic trends. However, given that trends are slowly evolving, there is
only limited information in any data set about how best to specify the trend or distinguish
between alternative models of the trend. For instance, unit root tests often fail to reject a
unit root despite the fact that theory does not postulate the presence of a unit root for many
macroeconomic variables [see Elliott (2006), for further discussion of this issue]. Therefore,
it appears prudent to incorporate the uncertainty arising from the presence of a stochastic
trend when constructing macroeconomic forecasts. Moreover, this uncertainty is likely to
be particularly important for longer horizons.1

A second source of uncertainty involved in the construction of forecasts relates to
the specification of short-run dynamics driving the time series. Within an autoregressive

Econometrics 2023, 11, 28. https://doi.org/10.3390/econometrics11040028 https://www.mdpi.com/journal/econometrics

https://doi.org/10.3390/econometrics11040028
https://doi.org/10.3390/econometrics11040028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0003-4341-8821
https://orcid.org/0000-0002-6773-1209
https://doi.org/10.3390/econometrics11040028
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics11040028?type=check_update&version=3


Econometrics 2023, 11, 28 2 of 43

modeling framework, this form of uncertainty can be expressed in terms of the lags of
first differences of the time series being analyzed. Since the number of lags that ought to
be included in the model is unknown in practice, there is a bias–variance trade-off facing
the forecaster: underspecifying the number of lags would lead to biased forecasts, while
including irrelevant lags would induce a higher forecast variance. The challenge therefore
lies in incorporating lag order uncertainty in a manner that best addresses this trade-off.

Motivated by these considerations, this paper proposes a new multistep forecast
combination approach designed for forecasting a highly persistent time series that simul-
taneously addresses uncertainty about the presence of a stochastic trend and uncertainty
about the nature of short-run dynamics within a unified autoregressive modeling frame-
work. Unlike extant forecast combination approaches, we develop combination forecasts
based on minimizing the so-called accumulated prediction errors (APE) criterion that di-
rectly targets the asymptotic forecast risk (AFR) instead of the in-sample asymptotic mean
squared error (AMSE). This is particularly relevant, since the equivalence between AFR and
AMSE breaks down in a nonstationary setup. Our analysis generalizes existing results by
establishing the asymptotic validity of the APE for multistep forecasts in the unit root and
(fixed) stationary cases, both for models with and without deterministic trends. We further
show that, regardless of the presence of a unit root, the performance of APE-weighted
forecasts remains close to that of the infeasible combination forecasts which assume that
the optimal (i.e., AFR minimizing) weights are known. Monte Carlo experiments are
used to (i) demonstrate the finite sample efficacy of the proposed procedure relative to
Mallows/Cross-Validation weighting that target the AMSE; (ii) underscore the importance
of accounting for uncertainty about the stochastic trend and/or the lag order. In a pseudo
out-of-sample forecasting exercise applied to US monthly macroeconomic time series, we
evaluate the performance of a variety of selection/combination-based approaches at hori-
zons of one, three, six, and twelve months. Consistent with the simulation results, the
empirical analysis provides strong evidence in favor of a version of the advocated approach
that simultaneously addresses stochastic trend and lag order uncertainty regardless of the
forecast horizon considered.

The present study builds on previous work by Hansen (2010a) and Kejriwal and Yu
(2021) who analyzed one-step ahead combination forecasts allowing for both persistence
and lag order uncertainty. In particular, Hansen (2010a) adopted a local-to-unity framework
to develop combination forecasts that combine forecasts from the restricted (i.e., imposing
a unit root) and unrestricted models with the weights obtained by minimizing a one-
step Mallows criterion. To address lag order uncertainty, he also proposed a general
combination approach that, in addition to the restricted and unrestricted model forecasts,
also combines forecasts based on different lag orders. Kejriwal and Yu (2021) provided
theoretical justification for the general combination approach and developed improved
combination forecasts that employ feasible generalized least squares (FGLS) estimates
instead of ordinary least squares (OLS) estimates of the deterministic trend component.

Our paper can be viewed as extending Hansen’s (2010a) approach in two practically
relevant directions. First, in addition to one-step ahead forecasts, we also analyze the
statistical properties of multistep combination forecasts given that uncertainty regarding
the presence of a stochastic trend is especially relevant over longer horizons. Second, in
contrast to Mallows weighting as advocated by Hansen (2010a), our combination weights
are obtained via the APE criterion that directly targets the AFR instead of the AMSE. Our
Monte Carlo and empirical comparisons of the performance of combination forecasts based
on different weighting schemes clearly illustrate the importance of directly targeting the
AFR. Thus, an important implication of our study is that the preferred choice of weighting
scheme when combining forecasts can critically depend on whether the variables involved
are stationary or not.

The recent machine learning literature has proposed a variety of forecasting methods
that exploit information in a large number of potential predictors (see, e.g., Masini et al. 2023,
for a survey). In contrast, our study is univariate in that it only utilizes past information
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about the variable of interest to develop forecasts. A natural question one may ask, then, is
what is the value added by our univariate forecasting approach when more sophisticated
machine learning approaches are available? We offer three possible responses. First, our
approach is simple to use in practice, since it only requires running OLS regressions. Second,
it is transparent in that its statistical properties can be studied analytically, which can be
useful for understanding the merits and limitations of the approach. Third, when evaluating
the performance of machine learning methods, our preferred forecasting approach can
provide a much more competitive univariate benchmark for comparison than a simple
autoregressive model with a prespecified/estimated lag order which has routinely been
used as the benchmark (see, e.g., Kim and Swanson 2018; Medeiros et al. 2021).

The rest of the paper is organized as follows. Section 2 provides a review of the related
literature. Section 3 presents the model and the related estimators. Section 4 analyzes
the AMSE and AFR as alternative measures of forecast accuracy. Section 5 discusses the
choice of combination weights based on the APE criterion. Section 6 extends the analysis to
allow for lag order uncertainty in the construction of the forecasts. Monte Carlo evidence,
including comparisons with various existing methods, is provided in Section 7. Section 8
details an empirical application to forecasting US macroeconomic time series and Section 9
concludes. Appendices A–C contain, respectively, the proofs, details of forecasting methods
considered, and additional simulation results. All computations were carried out in the
2022b version of MATLAB (2022).

2. Literature Review

A common practice in the economic forecasting literature is to apply a stationarity-
inducing transformation (e.g., differencing or detrending) to the time series of interest
and then attempt to forecast the transformed series. Consequently, most of the forecasting
procedures in current use have been developed under the assumption of data stationarity.
The traditional approach of Box and Jenkins (1970) transforms the data through differencing
which amounts to modeling the low-frequency peak in the spectrum as a zero-frequency
phenomenon and proceeds to forecast the transformed series using standard stationary au-
toregressive moving average (ARMA) models. More recently, Stock and Watson (2005, 2006)
constructed a extensive database of 132 monthly macroeconomic time series over the period
1959-2003 and applied a variety of transformations to render them stationary before using
a handful of common factors extracted from the data set using principal components as
predictors (the so-called diffusion-index methodology). Similarly, McCracken and Ng
(2016) assembled a publicly available database of 134 monthly time series referred to as
FRED-MD and updated on a timely basis by the Federal Reserve Bank of St Louis. They also
suggested a set of data transformations which is used to construct factor-based diffusion
indexes for forecasting as well as to analyze business cycle turning points.

While convenient in practice, the approach of forecasting the transformed stationary
series tends to ignore the information in the levels of the variables. In particular, it does
not properly account for the uncertainty arising from the nature of the underlying trends,
which can lead to poor forecasts if the trends are misspecified. Clements and Hendry
(2001) documented, both analytically and numerically, the detrimental consequences of
trend misspecification on the resulting forecasts in the presence of parameter estimation
uncertainty. Specifically, they found that when the sample size increases at a faster rate
than the forecast horizon, misspecifying a difference stationary process as trend stationary
or vice versa yields forecast error variances of a higher order of magnitude relative to the
correctly specified model. Consequently, the objective of our study is to construct forecasts
of the time series in levels and explicitly model the uncertainty regarding the presence of
a stochastic trend instead of transforming the time series to stationarity based on a trend
specification that is determined a priori and is possibly misspecified.

Our study is closely related to the existing literature on methods for forecasting
nonstationary time series. Diebold and Kilian (2000) showed that a unit root pretesting
strategy can improve forecast accuracy relative to restricted or unrestricted estimation. Ng
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and Vogelsang (2002) found that the use of FGLS estimates of the trend component can yield
superior forecasts relative to their OLS counterparts. Turner (2004) recommended the use of
forecasting thresholds whereby the restricted (unit root) forecast is preferred on one side of
these thresholds while the unrestricted (OLS) forecast is preferred on the other. His proposal
was based on median unbiased estimation of the local-to-unity parameter to determine
the thresholds and was shown to dominate a unit root pretesting strategy. Ing et al. (2012)
studied the impact of nonstationarity, model complexity and model misspecification on the
AFR in infinite order autoregressions.

A promising approach to addressing both stochastic trend uncertainty and lag order
uncertainty is forecast combination. Introduced in the seminal work of Bates and Granger
(1969), the idea underlying forecast combination is to exploit the bias–variance trade-off
by combining forecasts from restricted (possibly subject to bias) specifications and un-
restricted (possibly subject to overfitting) specifications using an appropriate choice of
combination weights. A voluminous amount of literature has subsequently developed,
which has analyzed the efficacy of several alternative weighting schemes for constructing
the combination forecasts (see, e.g.,Wang et al. 2022, for a recent survey). Hansen (2010a)
proposed one-step ahead combination forecasts within an autoregressive modeling frame-
work that accounts for both aforementioned sources of uncertainty, where the combination
weights are obtained by minimizing a Mallows criterion. The Mallows criterion is designed
to provide an approximately unbiased estimator of the in-sample AMSE. Hansen’s analysis
showed that the unit root pretesting strategy could be subject to high forecast risk for a
range of persistence levels, while his combination forecast performed favorably compared
to a number of methods popular in applied work and dominated the unrestricted forecast
uniformly in terms of finite sample forecast risk. Kejriwal and Yu (2021) proposed a re-
finement of Hansen’s (2010a) approach, which entails estimating the deterministic trend
component by FGLS instead of OLS. Tu and Yi 2017 analyzed one-step forecasting based on
the Mallows averaging estimator in a cointegrated vector autoregressive model and found
that it dominated the commonly used approach of pretesting for cointegration.

In a stationary setup, combination forecasts based on Mallows/cross-validation (CV)
weighting typically target the AMSE, relying on its approximate equivalence with the AFR
(e.g., Hansen 2008, 2010b; Liao and Tsay 2020). Such equivalence, however, breaks down in
a nonstationary setup. Hansen (2010a) showed, within a local-to-unity framework, that the
AMSEs of unrestricted as well as restricted (imposing a unit root) one-step ahead forecasts
are different from the corresponding expressions for their AFR in autoregressive models
(see Section 4 for further discussion on the issue of equivalence or lack thereof).

To address the lack of equivalence between AMSE and AFR, we develop combination
forecasts based on minimizing the APE criterion that directly targets the AFR instead of
the AMSE. Previous work in the context of model selection has shown the APE criterion
to remain valid whether the process is stationary or has a unit root. Specifically, Ing
(2004) showed that a normalized version of the APE is almost certain to the AFR in the
stationary case, while a similar result was obtained by Ing et al. (2009) in the unit root
case. Focusing on the first-order autoregressive case and one-step ahead forecasts, Yu et al.
(2012) extended the validity of the APE to a unit root model with a deterministic time trend.
Our study extends the use of the APE criterion to construct combination forecasts in a
nonstationary environment.

In summary, there is a plethora of approaches available in the literature for forecasting
nonstationary time series, including model selection, pretesting, and forecast combination.
Combination forecasts have often been shown to incur lower forecast risk in practice than
forecasts based on model selection or pretesting. However, the existing literature has
typically employed weighting schemes such as Mallows/CV weighting that have been
formally justified only in a stationary framework. Our study contributes to this literature
by demonstrating that when the variable of interest is potentially nonstationary, it may be
desirable to construct the combination weights using an alternative approach (the APE
criterion). Our findings are particularly relevant for macroeconomic applications, given that
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several macroeconomic time series have been documented to exhibit a degree of persistence
that is difficult to distinguish from a unit root process.

3. Model and Estimation

We consider a univariate time series yt generated as follows:

yt = mt + ut

mt = β0 + β1t + . . . + βptp

ut = αut−1 + α1∆ut−1 + · · ·+ αk∆ut−k + et

α = 1 +
ac
T

, a = 1− α1 − · · · − αk, c ≤ 0 (1)

where p ∈ {0, 1} is the order of the trend component and the stochastic component
ut follows a finite order autoregressive process of order (k + 1) process driven by the
innovations et. The uncertainty about the stochastic trend is captured by the persistence
parameter α that is modeled as local-to-unity with c = 0 corresponding to the unit root
case and c < 0 to the stationary case. The initial observations are set at u0, u−1, · · · , u−k =

Op(1).2 This section treats the true lag order k as known. Lag order uncertainty is addressed
in Section 6. Our analysis is based on the following assumptions:

Assumption 1. The sequence {et} is a martingale difference sequence with E(et|Ft−1) = 0 and
E(e2

t |Ft−1) = σ2, where 0 < σ2 < ∞, and Ft is the σ-field generated by {es; s ≤ t}. Moreover,
there exist small positive numbers φ1 and φ2 and a large positive number M1 , such that for
0 ≤ s− s′ ≤ φ2,

sup
1≤m≤t<∞, ‖vm‖=1

∣∣Ft,m,vm(s)− Ft,m,vm(s
′)
∣∣ ≤ M1(s− s′)φ1 ,

where vm = (v1, . . . , vm)′ ∈ Rm, ‖vm‖ = ∑m
j=1 v2

j and Ft,m,vm(.) denotes the distribution of
∑m

l=1 vlet+1−l .

Assumption 2. All roots of A(L) = 1−∑k
i=1 αiLi lie outside the unit circle.

The data generating process in (1) and Assumptions 1 and 2 are adopted from Hansen
(2010a) with an additional restriction on the distribution of {et}, which ensures that the
sample second moments of the regressors are bounded in expectation (see Ing et al. 2009).
The difference between our modeling framework and Ing et al. (2009) is that they impose
an exact unit root (c = 0), while we allow c ≤ 0. For h ≥ 1, let the optimal (infeasible)
mean squared error minimizing h-step ahead forecast of yt be denoted as µt+h. It is
the conditional mean of yt+h given Ft, which is obtained from the following recursion
(Hamilton 1994, pp. 80–82):

µt+h = z′t+hβ + α(µt+h−1 − z′t+h−1β) + α1(∆µt+h−1 − ∆z′t+h−1β)

+ · · ·+ αk(∆µt+h−k − ∆z′t+h−kβ) (2)

with µt+j = yt+j if j ≤ 0; β = β0 and zt = 1 if p = 0 ; β = (β0, β1)
′ and zt = (1, t)′ if p = 1.

We can further rewrite (2) as

µt+h = z′t+hβ∗ + αµt+h−1 +
k

∑
j=1

αj∆µt+h−j (3)

where β∗ = (1− α)β0 if zt = 1 and β∗ = (β∗0, β∗1)
′ with β∗0 = (1− α)β0 + (α−∑k

j=1 αj)β1,
β∗1 = (1− α)β1 if zt = (1, t).
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We consider three alternative estimators of µt+h. The first is the unrestricted estimator
µ̂t+h obtained as

µ̂t+h = z′t+h β̂∗ + α̂µ̂t+h−1 +
k

∑
j=1

α̂j∆µ̂t+h−j (4)

with µ̂t+j = yt+j if j ≤ 0 where (β̂∗, α̂, α̂j) are the OLS estimates from the regression

ys = z′sβ∗ + αys−1 +
k

∑
j=1

αj∆ys−j + es, s = k + 2, . . . , T

Instead of using (4), one may consider a two-step strategy for estimating µt+h that entails
regressing yt on zt and obtaining the estimate β̂ of β and the residuals ût = yt − z′t β̂
in a first step and then estimating an autoregression of order k + 1 in ût to obtain the
estimates of (α, α1, . . . , αk). The forecasts are obtained from (4). However, as shown in Ng
and Vogelsang (2002), the one-step estimate µ̂t+h is preferable to the two-step estimate
with persistent data.

The second estimator is the restricted estimator µ̃t+h that imposes the unit root
restriction α = 1 and is obtained as

µ̃t+h = ∆z′t+h β̃∗ + µ̃t+h−1 +
k

∑
j=1

α̃j∆µ̃t+h−j

with µ̃t+j = yt+j if j ≤ 0 where (β̃∗, α̃, α̃j) are the OLS estimates from the regression

∆ys = ∆z′sβ∗ +
k

∑
j=1

αj∆ys−j + es, s = k + 2, . . . , T

Finally, the third estimator is based on taking a weighted average of the unrestricted
and restricted forecasts. Letting w ∈ [0, 1] be the weight assigned to the unrestricted
estimator, the averaging estimator is given by

µ̂t+h(w) = wµ̂t+h + (1− w)µ̃t+h

The relative accuracy of the three foregoing estimators can be evaluated using the
asymptotic forecast risk (AFR), which is the limit of the h-step ahead expected squared
forecast error:

f0(c, p, k, h) = lim
T→∞

T
σ2 E(µ̃T+h − µT+h)

2

f1(c, p, k, h) = lim
T→∞

T
σ2 E(µ̂T+h − µT+h)

2

fw(c, p, k, h) = lim
T→∞

T
σ2 E(µ̂T+h(w)− µT+h)

2

In order to derive analytical expressions for the AFR, we introduce the following no-
tation. Let W(.) denote a standard Brownian motion on [0, 1] and define the Ornstein–
Uhlenbeck process

dWc(r) = cWc(r) + dW(r)
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For p ∈ {0, 1}, let Xc(r) = (rp, Wc(r))′ and define the stochastic processes

W∗c (r, p) =

{
Wc(r)

Wc(r)−
∫ 1

0 Wc(s)ds
if
if

p = 0
p = 1

X∗c (r, p) =

{
Xc(r)

Xc(r)−
∫ 1

0 Xc(s)ds
if
if

p = 0
p = 1

and the functionals

T0c = −cW∗c (1, p) + I(p = 1)W(1)

T1c = X∗c (1, p)′
(∫ 1

0
X∗c (r, p)X∗c (r, p)′

)−1 ∫ 1

0
X∗c (r, p)dW(r) + I(p = 1)W(1)

Next, note that from (1), we can write

yt+h = Et(yt+h) + ηt,h

where ηt,h = ∑h−1
j=0 bjet+h−j, Et(.) denotes conditional expectation with respect to informa-

tion at time t and the coefficients bj (j = 0, . . . , h− 1) are obtained by equating coefficients
of Lj on both sides of the equation

b(L)d(L) = 1

where b(L) = ∑h−1
j=0 bjLj and d(L) = 1 − αL − (1 − L)∑k

j=1 αjLj. When α = 1, bj =

∑
j
i=0 νi, ν0 = 1 and νj; j ≥ 1, satisfies 1 + ∑∞

j=1 νjLj = 1/A(L) (see Ing et al. 2009).
Denoting α(k) = (α1, . . . , αk)

′, we define the following quantities:

SM(k) =
(

α(k− 1) Ik−1
αk 0′k−1

)
, S0

M(k) = Ik

Mh(k) =
h−1

∑
j=0

bjS
h−1−j
M (k), Γ(k) = lim

j→∞
E(sj(k)sj(k)′), sj(k) = (∆yj, . . . , ∆yj−k+1)

′

gh(k) =
{

0
tr
(
Γ(k)Mh(k)Γ−1(k)M′h(k)

) if k = 0
if k ≥ 1

With the above notation in place, we obtain the following result, which provides an
analytical representation for the AFR of the unrestricted and restricted forecasts:

Theorem 1. Under Assumptions 1 and 2 and supt E(|et|θh) < ∞, where θh = max{8, 2(h +
2)}+ ψ for some ψ > 0,

(a) f1(c, p, k, h) = f1(c, p, h) + gh(k), f1(c, p, h) =
(

∑h−1
j=0 bj

)2
E(T2

1c).

(b) f0(c, p, k, h) = f0(c, p, h) + gh(k), f0(c, p, h) =
(

∑h−1
j=0 bj

)2
E(T2

0c).

Theorem 1 shows that the AFR of both the restricted and unrestricted forecasts can
be decomposed into two components: the first component f j(c, p, h), j = 0, 1, depends
on both the underlying stochastic/deterministic trends as well as the short-run dynamics
through the coefficients {bj}; the second component gh(k) is common to the restricted and
unrestricted estimators and depends on the parameters governing the short-run dynamics
of the time series. The result generalizes Theorem 2 of Hansen (2010a) for one-step forecasts
to multistep forecasts. Interestingly, when h = 1, the AFR can be expressed as the sum
of a purely nonstationary component representing the stochastic/deterministic trends
(since b0 = 1) and a stationary short-run component which is simply the number of
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first-differenced lags, i.e., g1(k) = k. However, as Theorem 1 shows, when h > 1, such
a stationary-nonstationary decomposition no longer holds, since both components now
depend on the short-run coefficients {αj}. Theorem 1 also generalizes Theorem 2.2 of Ing
et al. (2009), which derived an expression for AFR assuming an exact unit root (c = 0) and
no deterministic component.

The next result, which follows as a direct consequence of Theorem 1, shows that the
optimal combination weight is independent of the forecast horizon and the moving average
coefficients {bj} but depends on the nuisance parameter c:

Corollary 1. The AFR of the combination forecast is given by

fw(c, p, k, h) =

(
h−1

∑
j=0

bj

)2{
w2E(T2

1c) + (1− w)2E(T2
0c) + 2w(1− w)E(T1cT0c)

}
+ gh(k)

with optimal (i.e., AFR minimizing) weight

w∗ =
E(T2

0c)− E(T0cT1c)

E(T2
0c) + E(T2

1c)− 2E(T0cT1c)

4. Asymptotic Mean Squared Error and Asymptotic Forecast Risk

An alternative measure of forecast accuracy is the in-sample asymptotic mean squared
error (AMSE) defined as

mu(c, p, k, h) = lim
T→∞

1
σ2

T−h

∑
t=1

E(µ̂t+h − µt+h)
2

for the unrestricted estimator with similar expressions in place for the restricted and av-
eraging estimators. Hansen (2008) established the approximate equivalence between this
measure and the AFR under the assumption of strict stationarity. Accordingly, existing
forecast combination approaches developed in the stationary framework are based on
targeting the AMSE by appealing to its equivalence with the AFR. Hansen (2008) proposed
estimating the weights by minimizing a Mallows (2000) criterion which yields an asymp-
totically unbiased estimate of the AMSE. Similarly, Hansen (2010b) demonstrated that
a leave-h-out cross validation criterion delivers an asymptotically unbiased estimate of
the AMSE.

This equivalence result, however, breaks down in a nonstationary setup. For instance,
when the process has a unit root with no drift and the regression does not include a
deterministic component, it follows from the results in Hansen (2010a) that the AMSE
of the one-step ahead forecast coincides with the expected value of the squared limiting
Dickey–Fuller t-statistic. This expectation has been shown to be about 1.141 by Gonzalo and
Pitarakis (1998) and Meng (2005) using analytical and numerical integration techniques,
respectively. In contrast, Ing (2001) theoretically established that the AFR of the one-
step ahead forecast for the same data generating process and regression is two. More
recently, Hansen (2010a) demonstrated the lack of equivalence within a local-to-unity
framework, showing that the AMSE of unrestricted as well as restricted (imposing a unit
root) one-step ahead forecasts are different from the corresponding expressions for their
AFR in autoregressive models with a general lag order and a deterministically trending
component. Notwithstanding this result, he suggested using a Mallows criterion to estimate
the combination weights and evaluated the adequacy of the resulting combination forecast
in finite samples via simulations. A similar approach was taken by Kejriwal and Yu (2021),
who also employed Mallows weighting but estimated the deterministic component by
FGLS in order to improve upon the accuracy of OLS-based forecasts.

To illustrate the failure of equivalence, Figure 1 plots the AMSE and the AFR of the
unrestricted estimator for the case p = 0 and k = 0.3 The figure clearly illustrates that while
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the two measures of forecast accuracy follow a similar path for c sufficiently far from zero,
they tend to diverge as the process becomes more persistent. This pattern remains robust
across different forecast horizons and suggests that a forecast combination approach that
directly targets AFR instead of AMSE can potentially generate more accurate forecasts of
highly persistent time series when forecast risk is used as a metric for forecast evaluation.

Figure 1. In-sample AMSE versus asymptotic forecast risk (p = 0, k = 0).

5. Choice of Combination Weights

The optimal combination forecast µ̂t+h(w∗) is infeasible in practice, since the weight
w∗ depends on the unknown local-to-unity parameter c that is not consistently estimable.
Given the lack of equivalence between AMSE and AFR for nonstationary time series as
discussed in the previous section, we pursue an alternative approach to estimating the
combination weights that directly targets the AFR, which is a more direct and practical
measure of forecast accuracy than AMSE. In particular, the estimated weight ŵ is obtained
by minimizing the so-called accumulated prediction errors (APE) criterion defined as

APE(w) =
T−h

∑
i=mh

{yi+h − µ̂i+h(w)}2 =
T−h

∑
i=mh

{w(yi+h − µ̂i+h) + (1− w)(yi+h − µ̃i+h)}2 (5)

with respect to w, where w ∈ [0, 1], µ̂i+h(w) is the h-step ahead combination forecast based
only on data up to period i, and mh denotes the smallest positive number such that the
forecasts µ̂i+h and µ̃i+h are well defined for all i ≥ mh. The solution is given by



Econometrics 2023, 11, 28 10 of 43

ŵ =
∑T−h

i=mh
(yi+h − µ̃i+h)

2 −∑T−h
i=mh

(yi+h − µ̂i+h)(yi+h − µ̃i+h)

∑T−h
i=mh

(yi+h − µ̃i+h)2 + ∑T−h
i=mh

(yi+h − µ̂i+h)2 − 2 ∑T−h
i=mh

(yi+h − µ̂i+h)(yi+h − µ̃i+h)

The APE criterion with h = 1 was first introduced by Rissanen (1986) in the context of
model selection. Wei (1987) derived the asymptotic properties of APE in general regression
models and specialized his results to stationary and nonstationary autoregressive processes
with h = 1. Ing (2004) demonstrated the strong consistency of the APE-based lag order
estimator in stationary autoregressive models for h ≥ 1. In particular, he showed that a
normalized version of the APE is almost certain to converge to the AFR in large samples. Ing
et al. (2009) extended the analysis to autoregressive processes with a unit root. The results in
Wei (1987), Ing (2004) and Ing et al. (2009) all relied on the law of iterated logarithm which
ensures that, in large samples, APE is almost certain to be equivalent to log T times the AFR.
It is, however, important to note that while this convergence result holds pointwise for |α|
≤ 1, it does not hold uniformly over α. In particular, it does not hold in the local-to-unity
setup considered in this paper for c < 0.4 Nevertheless, the following result shows that the
APE criterion remains asymptotically valid in the current framework at the two limits of
c which represent the unit root and fixed stationary cases:

Theorem 2. For a given k, let APE0 = ∑T−h
i=mh
{yi+h − µ̃i+h}2, APE1 = ∑T−h

i=mh
{yi+h − µ̂i+h}2.

Under Assumptions 1 and 2 and supt E(|et|r) < ∞, for some r > 2,
(a) For c = O(T), limT→∞ (σ2 log T)−1

(
APE1 −∑T−h

i=mh
η2

i,h

)
= limc→−∞ f1(c, p, k, h).

(b) limc→0 limT→∞ (σ2 log T)−1
(

APE0 −∑T−h
i=mh

η2
i,h

)
= limc→0 f0(c, p, k, h).

Remark 1. In a similar vein, Hansen (2010a) developed feasible combination weights by evaluating
the Mallows criterion at the two limits of c, given that the criterion depends on c and is therefore
infeasible in practice. Thus, while his analysis demonstrated that the infeasible Mallows criterion
is an asymptotically unbiased estimate of the AMSE for any c, the feasible version of the criterion
remains valid only in the two limit cases. When estimation is performed using FGLS instead of OLS,
Kejriwal and Yu (2021) showed that the infeasible Mallows criterion also depends on the parameter
a in (1) which governs the short-run dynamics. Evaluating the criterion at the two limits, however,
eliminates the dependence on both nuisance parameters.

Figure 2 plots the AFR of the optimal (infeasible) and APE-based combination forecasts
for p = 1 and k = 0.5 For comparison, the unrestricted and restricted forecasts are also
presented. As expected, the forecast risk of the restricted estimator increases with |c| , while
the risk function of the unrestricted estimator is relatively flat as a function of c. Regardless
of the forecast horizon, the feasible combination forecast maintains a risk profile close to
that of the optimal forecast. In particular, the risk of the APE-weighted forecast is uniformly
lower than that of the unrestricted estimator across values of c , as well as lower than that
of the restricted estimator unless c is very close to zero. These results suggest that the loss
in forecast accuracy due to the unknown degree of persistence is relatively small when
constructing the combination weights based on the APE criterion. In Sections 7 and 8,
we conduct extensive comparisons of the APE-based combination forecasts with both the
Mallows and cross-validation based combination forecasts.
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Figure 2. Asymptotic forecast risk of infeasible (optimal) and feasible (APE-based) combination
forecasts (p = 1, k = 0).

6. Lag Order Uncertainty

This section extends the preceding analysis to the case where the lag order k is un-
known. In order to accommodate lag order uncertainty, the set of models on which the
combination forecast is based needs to be expanded to include models with different lag
orders. Such a forecast can potentially trade off the misspecification bias inherent from
the omission of relevant lags against the problem of overfitting induced by the inclusion
of unnecessary lags. Kejriwal and Yu (2021) showed that the essence of this trade-off can
be captured analytically by adopting a local asymptotic framework in which the coeffi-
cients of the short-run dynamics lie in a O(T−1/2)-neighborhood of zero in addition to the
O(T−1) parameterization for the persistence parameter as specified in (1). Specifically, we
make the following assumption as in Kejriwal and Yu (2021):

Assumption 3. We assume that αi =
δi

T1/2 , i = 1, . . . , k, where δ = (δ1, . . . , δk)
′ is fixed and

independent of T.

Assumption 3 ensures that the squared misspecification bias from omitting relevant
lags is of the same order as the sampling variance introduced by estimating additional
lags. Modeling {αi} as fixed would make the bias due to misspecification diverge with
the sample size and thus leave no scope for exploiting the trade-off between inclusion and
exclusion of lags when constructing the combination forecasts.

We include sub-models with l ∈ {0, 1, . . . , K}, K ≥ k, with the corresponding restricted
and unrestricted forecasts given by µ̃t(l) and µ̂t(l), respectively. Let I(l < k) = 1 if l <
k, and zero otherwise. Define ξh(δ, l, k) = Mh(k)(0′l , δl+1, . . . , δk)

′, where 0l is an (l ×
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1) vector of zeros. Further, let rh(δ, l, k) = ξh(δ, l, k)′ξh(δ, l, k). The following result derives
the AFR of the forecasts in the presence of lag order uncertainty:

Theorem 3. Under Assumptions 1–3 and supt E(|et|θh) < ∞, where θh = max{8, 2(h + 2)}+
ψ for some ψ > 0,
(a) limT→∞

T
σ2 E(µ̂T+h(l)− µT+h)

2 = h2E(T2
1c) + gh(l) + rh(δ, l, k).

(b) limT→∞
T
σ2 E(µ̃T+h(l)− µT+h)

2 = h2E(T2
0c) + gh(l) + rh(δ, l, k).

Theorem 3 shows that large sample forecast accuracy now depends on an additional
misspecification component [rh(δ, l, k)] emanating from the omission of relevant lags. The
larger the magnitudes of the coefficients corresponding to the omitted lags, the larger
the contribution of this component to the forecast risk. Moreover, under Assumption 3,
gh(l) = tr(Mh(l)M′h(l)) varies with h for h < l but is constant for all h ≥ l. Similarly,
rh(δ, l, k) varies with h for h < k but is constant thereafter. Thus, the forecast horizon only
makes a limited contribution to the two short-run components of the asymptotic forecast
risk. Another notable feature of Theorem 3 is that, in contrast to the case where the lag
order is assumed known (Theorem 1), the contribution of the trend component is now
proportional to the square of the forecast horizon. This difference is due to the fact that the
coefficients bj → 1 for all j since αi → 0 for i = 1, . . . , k by virtue of Assumption 3.

We consider two types of combination forecasts. The first is a “partial averaging”
forecast that only addresses lag order uncertainty by averaging over the K + 1 unrestricted
forecasts:

µ̂t+h(Ŵ) =
K

∑
l=0

ŵl µ̂t(l) (6)

The weights Ŵ = (ŵ0, ŵ1, . . . , ŵK)
′ are obtained by minimizing the APE criterion

APEP(W) =
T−h

∑
i=mh

{
K

∑
l=0

[wl(yi+h − µ̂i+h(l))]

}2

(7)

where wl ≥ 0 (l = 0, . . . , K), ∑K
l=0 wl = 1. We refer to (6) as the APE-based partial

averaging (APA) forecast.
The second forecast is a “general averaging” forecast that accounts for both persistence

and lag order uncertainty and thus combines the forecasts from all 2(K + 1) sub-models:

µ̆t+h(W̆) =
K

∑
l=0

(w̆1l µ̂t(l) + w̆0l µ̃t(l)) (8)

The weights W̆ = (w̆01, w̆02, . . . , w̆0K, w̆11, w̆12, . . . , w̆1K)
′ are obtained by minimizing a

generalized APE criterion of the form

APEG(W) =
T−h

∑
i=mh

{
K

∑
l=0

[w1l(yi+h − µ̂i+h(l)) + w0l(yi+h − µ̃i+h(l))]

}2

(9)

where w1l ≥ 0, w0l ≥ 0 (l = 0, . . . , K), ∑K
l=0(w0l + w1l) = 1. We refer to (8) as the APE-

based general averaging (AGA) forecast. Comparing the APA and AGA forecasts will serve
to isolate the effects of the two sources of uncertainty on forecast accuracy.

The following result establishes the limiting behavior of the APE criterion in the
presence of lag-order uncertainty:

Theorem 4. Let APE0(l) = ∑T−h
i=mh
{yi+h − µ̃i+h(l)}2, APE1(l) = ∑T−h

i=mh
{yi+h − µ̂i+h(l)}2.

Under Assumptions 1–3 and supt E(|et|r) < ∞, for some r > 2,
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(a) For c = O(T), lim
T→∞

(σ2 log T)−1

(
APE1(l)− σ2rh(δ, l, k)−

T−h
∑

i=mh

η2
i,h

)
= h2 lim

c→−∞
E(T2

1c) +

gh(l).

(b) lim
c→0

lim
T→∞

(σ2 log T)−1

(
APE0(l)− σ2rh(δ, l, k)−

T−h
∑

i=mh

η2
i,h

)
= h2lim

c→0
E(T2

0c) + gh(l).

Theorem 4 shows that while APE captures the components of AFR that are attributable
to persistence uncertainty and estimation of the short-run dynamics, it does not account
for lag-order uncertainty in the limit. As shown in the proof of Theorem 4, this is because
the former two components grow at a logarithmic rate while the bias component due to
lag order misspecification is bounded [i.e., O(1)]. Nonetheless, given that the logarithmic
function is slowly varying, it can be expected that in small samples, the APE is still effective
at capturing the bias that occurs due to misspecification of the number of lags. Indeed, as
shown subsequently in the simulations, the APE criterion offers considerable improvements
over its competitors, even under lag-order misspecification.

7. Monte Carlo Simulations

This section reports the results of a set of Monte Carlo experiments designed to
(1) evaluate the finite sample performance of the proposed approach relative to extant
approaches; (2) quantify the importance of accounting for each source of uncertainty in
terms of its effect on finite sample forecast risk. Section 7.1 lays out the experimental
design. Section 7.2 details the different forecasting procedures included in the analysis.
Sections 7.3 and 7.4 present the results. Results are obtained for p ∈ {0, 1}. For brevity, we
report the results only for p = 1. The results for p = 0 are qualitatively similar, although
the improvements offered by the proposed approach are more pronounced for p = 1 than
p = 0. The full set of results is available upon request.

7.1. Experimental Design

We adopt a design similar to that in Hansen (2010a) and Kejriwal and Yu (2021)
to facilitate direct comparisons. The data generating process (DGP) is based on (1) and

specified as follows: (a) the innovations et
i.i.d.∼ N(0, 1); (b) the trend parameters are set

at β0 = β1 = 0; (c) the true lag order k ∈ {0, 6, 12} with αj = −(−θ)j for j = 1, . . . , k and
θ = 0.6. The maximum number of first-differenced lags included is set at K = 12. The
sample size is set at T ∈ {100, 200}. The local-to-unity parameter c varies from −20 to
0, implying α ranging from 0.8 to 1 for T = 100 and α ranging from 0.9 to 1 for T = 200.
At each c value, the finite-sample forecast risk TE

[
(µ̂T+h − µT+h)

2] is computed for all
estimators considered, where h ∈ {1, 3, 6, 12}. All experiments are based on 10,000 Monte
Carlo replications.

We report two sets of results. The first assumes k is known, thereby allowing us to
demonstrate the effect of persistence uncertainty on forecast accuracy while abstracting
from lag order uncertainty. The second allows k to be unknown and facilitates the compari-
son between forecasts that address both forms of uncertainty with those that only account
for lag order uncertainty.

7.2. Forecasting Methods

The benchmark forecast in both the known and unknown lag cases is calculated from
a standard autoregressive model of order K + 1 estimated by OLS:

yt = β∗0 + β∗1t + αyt−1 +
K

∑
j=1

αj∆yt−j + εt (10)

When the number of lags is assumed to be known (Section 7.3), we compare a set of six
forecasting methods: (1) Mallows selection (Mal-Sel); (2) Cross-validation selection (CVh-
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Sel); (3) APE selection (APE-Sel); (4) Mallows averaging (Mal-Ave); (5) Cross-validation
averaging (CVh-Ave); (6) APE averaging (APE-Ave). With an unknown number of lags,
the following six methods are compared6: (1) Mallows partial averaging (MPA); (2) Cross-
validation partial averaging (CPA); (3) APE partial averaging (APA); (4) Mallows general
averaging (MGA); (5) Cross-validation general averaging (CGA); (6) APE general averaging
(AGA). For brevity, a detailed description of these methods is not presented here but is
included in Appendix B.

Both the APE selection and combination forecasts require a choice of mh. To our
knowledge, no data-dependent methods for choosing mh are available in the existing
literature. We therefore examined the viability of alternative choices via simulations.
Specifically, for each persistence level (value of c), we computed the minimum forecast risk
over all values of mh in the range [15, 70] with a step-size of 5 (assuming a known number
of lags k). While no single value was found to be uniformly dominant across persistence
levels/horizons, mh = 20 turned out to be a reasonable choice overall.7 To justify this
choice, Figure A1 in Appendix C plots the difference between the optimal forecast risk
and the risk of the APE selection forecasts for mh = 20 expressed as a percentage of the
forecast risk for mh = 20. The corresponding results for the APE combination forecasts are
presented in Figure A2. It is evident that using mh = 20 entails only a marginal increase
in forecast risk (at most 5%) for the combination forecasts over the optimal forecast risk
across different persistence levels and horizons. In contrast, the optimal choice of mh for
the selection forecasts is somewhat more unstable and appears to depend more heavily
on the forecast horizon and the level of persistence. This robustness in behavior provides
additional motivation for employing a combination approach to forecasting in practice.

7.3. Forecast Risk with Known Lag Order

Figures 3a–5b plot the risk of the six methods relative to the benchmark. First, we
consider the case k = 0. Several features of the results are noteworthy.

(a)

Figure 3. Cont.
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(b)

Figure 3. (a). Forecast risk with known lag order (k = 0, T = 100). (b). Forecast risk with known lag
order (k = 0, T = 200).

First, the selection forecasts typically exhibit higher risk than the corresponding com-
bination forecasts across sample sizes and horizons. Second, when T = 100, the APE
combination forecast is clearly the dominant method, performing discernibly better than
forecasts based on either of the two competing weighting schemes. When T = 200, its
dominance continues except when |c| is sufficiently large (the exact magnitude being
horizon-dependent), in which case the benchmark delivers the most accurate forecasts
and averaging over the restricted model becomes less attractive. Third, the relative perfor-
mance of the Mallows and cross-validation weighting schemes depends on the horizon: at
h = 1, the two schemes yield virtually indistinguishable forecasts; when h ∈ {3, 6}, Mallows
weighting yields uniformly lower risk over the parameter space; at h = 12, Mallows weight-
ing is preferred when persistence is high (c close to zero) while cross-validation weighting
dominates for lower levels of persistence.

In the presence of higher order serial correlation (k > 0), the superior performance of
the APE combination forecast becomes even more evident: it now dominates all competing
forecasts regardless of horizon and sample size. In particular, APE weighting outperforms
the benchmark at all persistence levels, even at T = 200, unlike the k = 0 case. The
intuition for this difference in relative performance between the cases with and without
higher-order serial correlation is that in the former case, averaging is comparatively more
beneficial, since imposing the unit root restriction can potentially reduce the estimation
uncertainty associated with the coefficients of the lagged differences. This reduction in
sampling uncertainty in turn engenders a reduction in the overall risk of the combination
forecast relative to the unrestricted benchmark forecast. Another notable difference from
the k = 0 case is that while Mallows and cross-validation weighting are comparable for
h ∈ {1, 3}, the former now dominates for h ∈ {6, 12} uniformly over the parameter space.
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(a)

(b)

Figure 4. (a). Forecast risk with known lag order (k = 6, T = 100). (b). Forecast risk with known lag
order (k = 6, T = 200).



Econometrics 2023, 11, 28 17 of 43

(a)

(b)

Figure 5. (a). Forecast risk with known lag order (k = 12, T = 100). (b). Forecast risk with known lag
order (k = 12, T = 200).
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7.4. Forecast Risk with Unknown Lag Order

Figures 6a–8b plot the relative risk of the six combination forecasts which comprise the
three partial forecasts that only account for lag-order uncertainty and the three general fore-
casts that account for both lag-order and stochastic trend uncertainty. A clear implication of
these results is that general averaging methods typically exhibit considerably lower forecast
risk than partial averaging methods unless the process has relatively low persistence, in
which case averaging over the unit root model increases the forecast risk incurred by the
general averaging methods. The improvements offered by general averaging hold across
both horizons and the number of lags (k) in the true DGP and become more prominent as
the sample size increases.

(a)

(b)

Figure 6. (a). Forecast risk with unknown lag order (k = 0, T = 100). (b). Forecast risk with unknown
lag order (k = 0, T = 200).
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Among the three weighting schemes, APE-based weights are the preferred choice
except when h ∈ {6, 12} and T = 100 , where Mallows weighting turns out to be the
dominant approach if persistence is relatively low. A potential explanation for this result is
that with long horizons and a small sample size, the APE criterion is based on a relatively
smaller number of prediction errors, which increases the sampling variability associated
with the resulting weights, thereby increasing the risk of the combination forecast. As in
the known lag-order case, the choice between Mallows and cross-validation weighting
is horizon-dependent: when h = 1, cross-validation weighting is preferred while when
h > 1, Mallows weighting is preferred, with the magnitude of reduction in forecast risk
increasing as h increases.

(a)

(b)

Figure 7. (a). Forecast risk with unknown lag order (k = 6, T = 100). (b). Forecast risk with unknown
lag order (k = 6, T = 200).
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In summary, the results from the simulation experiments make a strong case for
employing APE weights when constructing the combination forecasts and clearly highlight
the benefits of targeting forecast risk rather than in-sample mean squared error. The
comparison of general and partial combination forecasts also underscore the importance of
concomitantly controlling for both stochastic trend uncertainty and lag-order uncertainty
in generating accurate forecasts.

(a)

(b)

Figure 8. (a). Forecast risk with unknown lag order (k = 12, T = 200). (b). Forecast risk with
unknown lag order (k = 12, T = 100).
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8. Empirical Application

This section conducts a pseudo out-of-sample forecast comparison of the different
multistep forecast combination methods using a set of US macroeconomic time series. Our
objectives are to empirically assess (1) the efficacy of different averaging/selection methods
relative to a standard autoregressive benchmark; (2) the importance of averaging over
both the persistence level and the lag order; and (3) the relative performance of alternative
weight choices for constructing the combination forecasts.

Our analysis employs the FRED-MD data set compiled by McCracken and Ng (2016),
which contains 123 monthly macroeconomic variables over the period January 1960–
December 2018.8 McCracken and Ng (2016) suggested a set of seven transformation codes
designed to render each series stationary: (1) no transformation; (2) ∆yt; (3) ∆2yt; (4) log(yt);
(5) ∆log(yt); (6) ∆2 log(yt); (7) ∆(yt/yt−1 − 1). To ensure that the series fit our framework,
which allows for highly persistent time series with/without deterministic trends, we adopt
the following transformation codes as modified by Kejriwal and Yu (2021): (1’) no transfor-
mation; (2’) yt; (3’) ∆yt, (4’) log(yt); (5’) log(yt); (6’) ∆ log(yt); (7’) yt/yt−1 − 1. For series
that correspond to codes (1’) and (4’), we construct the forecasts from a model with no
deterministic trend (p = 0), while for the remaining codes, we use forecasts from a model
that include a linear deterministic trend (p = 1). We also report results for eight core series
as in Stock and Watson (2002), comprising four real and four nominal variables. As in
the simulation experiments, four alternative forecast horizons are considered: h ∈ {1, 3, 6,
12}. We use a rolling window scheme with an initial estimation period of January 1960–
December 1969 so that the forecast evaluation period is January 1970–December 2018
(588 observations). The size of the estimation window changes depending on the forecast
horizon h. For example, when h = 1, the initial training sample contains 120 observations
from January 1960–December 1969 while for h = 3, it contains only 118 observations from
January 1960–October 1969. This ensures that the forecast origin is January 1970 for all
forecast horizons considered. We compare ten different methods in terms of the mean
squared forecast error (MSFE) computed as the average of the squared forecast errors:
(1) MPA: Mallows partial averaging over the number of lags only in the unrestricted model;
(2) MGA: Mallows general averaging over both the unit root restriction and the number
of lags; (3) CPA: leave-h-out cross-validation (CV-h) averaging over the number of lags
only in the unrestricted model; (4) CGA: leave-h-out cross-validation averaging over both
the unit root restriction and the number of lags; (5) APA: accumulated prediction error
averaging over the number of lags only in the unrestricted model; (6) AGA: accumulated
prediction error averaging over both the unit root restriction and the number of lags; (7) MS:
Mallows selection from all models (unrestricted and restricted) that vary with the number
of lags; (8) CVhS: leave-h-out cross-validation selection from all models (unrestricted and
restricted) that vary with the number of lags; (9) APES: accumulated prediction error selec-
tion from all models (unrestricted and restricted) that vary with the number of lags; (10) AR:
unrestricted autoregressive model (benchmark). The maximum number of allowable first
differenced lags in each method is set at K = 12. The benchmark forecast is computed
from unrestricted OLS estimation of an autoregressive model of the form (10) that uses
12 first-differenced lags of the dependent variable and includes/excludes a deterministic
trend depending on the transformation code the series corresponds to, as discussed above.

Table 1a (h = 1, 3) and Table 1b (h = 6, 12) report the percentages of wins and losses
based on the MSFE for the 123 series. Specifically, they show the percentage of 123 series
for which a method listed in a row outperforms a method listed in a column, and all other
methods (last column). A summary of the results in Table 1(a and b) is given below:

1. The averaging methods uniformly dominate their selection counterparts at all fore-
cast horizons. For instance, Mallows/cross-validation averaging outperform the
corresponding selection procedures in more than 90% of the series at each horizon.
The performance of AGA relative to APES is relatively more dependent on the hori-
zon, with improvements observed in 77% (65%) of the series for h = 1 (h = 12),
respectively.
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2. Given a particular weighting scheme, averaging over both the unit root restriction
and number of lags (general averaging) outperforms averaging over only the number
of lags (partial averaging) at all horizons. For instance, when h = 1, MGA (CGA,
AGA) dominate MPA (CPA, APA) in 95% (81%, 79%) of the series, respectively, based
on pairwise comparisons. A similar pattern is observed for multi-step forecasts.

3. Across all horizons, AGA emerges as the leading procedure due to its ability to deliver
forecasts with the lowest MSFE among all methods for the maximum number of series
(last column of Table 1(a and b)). This approach also dominates each of the competing
approaches in terms of pairwise comparisons. The APES approach ranks second
among all methods so that forecasting based on the accumulated prediction errors
criterion (either AGA or APES) outperforms the other approaches for more than 50%
of the series over each horizon (the specific percentages are 68.3% for h = 1, 3; 57.7%
for h = 6; 55.3% for h = 12).

Next, we examine the performance of the forecasting methods for different types of
series based on their groupwise classification by McCracken and Ng (2016) in an attempt to
uncover the extent to which the best methods vary by the type of series analyzed. In particu-
lar, McCracken and Ng (2016) classified the series into eight distinct groups: (1) output and
income; (2) labor market; (3) housing; (4) consumption, orders and inventories; (5) money
and credits; (6) interest and exchange rates; (7) prices; (8) stock market. For each of these
groups, Table 2 reports the method(s) with the lowest MSFE for the most series compared to
all other competing methods. We also report the number of horizons in which (a) averaging
outperforms selection and vice-versa; (b) averaging over both the unit root restriction and
number of lags (general averaging—GA) methods is superior to averaging over only the
number of lags (partial averaging—PA) and vice-versa; (c) each of the three weighting
schemes dominates the other two. The results are consistent with those in Table 1(a and b)
and clearly demonstrate (1) the dominance of averaging over selection (with the exception
of Group 3) ; (2) the benefits of accounting for both stochastic trend uncertainty and lag
order uncertainty (GA) relative to only the latter (PA) for five out of the eight groups; (3) the
superiority of APE weighting over the two competing weighting schemes (the exception is
Group 5, where cross-validation weighting is the dominant approach).

Finally, we present a comparison of the different methods with respect to their ability
to forecast the eight core series analyzed in Stock and Watson (2002). Table 3 reports the
MSFE of the eight methods relative to the benchmark model (10) for four real variables
(industrial production, real personal income less transfers, real manufacturing and trade
sales, number of employees on nonagricultural payrolls) while Table 4 reports the cor-
responding results for four nominal variables (the consumer price index, the personal
consumption expenditure implicit price deflator, the consumer price index less food and
energy, and the producer price index for finished goods). To assess whether the difference
between the proposed methods and the benchmark model is statistically significant, we
use a two-tailed Diebold–Mariano test statistic (Diebold and Mariano 1995). A number less
than one indicates better forecast performance than the benchmark and vice versa. The
method with smallest relative MSFE for a given series is highlighted in bold.

Consider first the results for real variables (Table 3). The performance of the best
method is statistically significant (at the 10% level) relative to the benchmark in twelve out
of the sixteen cases. Consistent with the results in Tables 1(a and b) and 2, general averaging
typically dominates partial averaging, the exceptions being nonagricultural employment
for h ≤ 6, industrial production at h = 12, and real manufacturing and trade sales for
h = 6, 12, where APES is the dominant procedure. The AGA approach turns out to have the
highest relative forecast accuracy in 50% of all cases, with the improvements offered over
rival approaches being particularly notable at h = 12. While cross-validation weighting
does not yield the best forecasting procedure in any of the cases, Mallows weighting is
the preferred approach in only two cases, although the improvements are statistically
insignificant. Turning to the nominal variables (Table 4), the best method significantly
outperforms the benchmark in ten cases. Again, general averaging is usually preferred to
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partial averaging, the exception being the case h = 12, where APA outperforms all other
methods for three of the four variables. As with the real variables, the AGA forecast is the
most accurate in 50% of all cases, though the improvements are now comparable across
horizons. Finally, cross-validation weighting partly redeems itself by providing the best
forecast in four cases, while Mallows weighting is the preferred method in only one case.

Table 1. Percentage wins/losses of different forecasting methods for (a) h = 1 and h = 3 and (b) h = 6
and h = 12.

Methods MPA MGA CPA CGA APA AGA MS CVhS APES AR All

(a) h = 1 & h = 3

MPA 0.0 4.9 22.0 3.3 43.9 7.3 96.7 58.5 25.2 100.0 0.0
MGA 95.1 0.0 61.8 13.8 61.8 13.0 99.2 71.5 40.7 100.0 4.9
CPA 78.0 38.2 0.0 18.7 66.7 16.3 95.1 81.3 36.6 100.0 5.7
CGA 96.7 86.2 81.3 0.0 78.0 23.6 98.4 95.9 53.7 100.0 8.9
APA 56.1 38.2 33.3 22.0 0.0 21.1 71.5 54.5 35.0 78.9 11.4
AGA 92.7 87.0 83.7 76.4 78.9 0.0 97.6 93.5 77.2 100.0 54.5
MS 3.3 0.8 4.9 1.6 28.5 2.4 0.0 18.7 9.8 90.2 0.0

CVhS 41.5 28.5 18.7 4.1 45.5 6.5 81.3 0.0 22.0 95.1 0.8
APES 74.8 59.3 63.4 46.3 65.0 22.8 90.2 78.0 0.0 95.9 13.8

AR 0.0 0.0 0.0 0.0 21.1 0.0 9.8 4.9 4.1 0.0 0.0

MPA 0.0 6.5 43.1 8.1 50.4 10.6 87.0 58.5 23.6 97.6 0.8
MGA 93.5 0.0 65.9 43.1 67.5 17.1 97.6 73.2 36.6 99.2 8.9
CPA 56.9 34.1 0.0 15.4 59.3 16.3 81.3 68.3 30.1 96.7 4.1
CGA 91.9 56.9 84.6 0.0 84.6 23.6 95.1 93.5 43.1 99.2 10.6
APA 49.6 32.5 40.7 15.4 0.0 14.6 62.6 48.0 29.3 71.5 6.5
AGA 89.4 82.9 83.7 76.4 85.4 0.0 95.9 93.5 69.9 100.0 41.5
MS 13.0 2.4 18.7 4.9 37.4 4.1 0.0 34.1 10.6 80.5 0.0

CVhS 41.5 26.8 31.7 6.5 52.0 6.5 65.9 0.0 14.6 89.4 0.8
APES 76.4 63.4 69.9 56.9 70.7 30.1 89.4 85.4 0.0 95.1 26.8

AR 2.4 0.8 3.3 0.8 28.5 0.0 19.5 10.6 4.9 0.0 0.0

(b) h = 6 & h = 12

MPA 0.0 7.3 61.8 12.2 57.7 21.1 82.9 57.7 32.5 95.9 3.3
MGA 92.7 0.0 83.7 52.0 83.7 34.1 98.4 83.7 46.3 98.4 13.0
CPA 38.2 16.3 0.0 13.8 60.2 21.1 65.0 60.2 30.1 87.0 8.1
CGA 87.8 48.0 86.2 0.0 86.2 35.8 93.5 96.7 44.7 98.4 13.8
APA 42.3 16.3 39.8 13.8 0.0 21.1 56.1 47.2 30.9 65.9 3.3
AGA 78.9 65.9 78.9 64.2 78.9 0.0 92.7 82.9 69.9 99.2 34.1
MS 17.1 1.6 35.0 6.5 43.9 7.3 0.0 36.6 17.1 78.0 0.0

CVhS 42.3 16.3 39.8 3.3 52.8 17.1 63.4 0.0 19.5 78.0 0.8
APES 67.5 53.7 69.9 55.3 69.1 30.1 82.9 80.5 0.0 96.7 23.6

AR 4.1 1.6 13.0 1.6 34.1 0.8 22.0 22.0 3.3 0.0 0.0

MPA 0.0 10.6 60.2 16.3 74.8 21.1 85.4 46.3 23.6 91.9 1.6
MGA 89.4 0.0 75.6 48.0 84.6 27.6 97.6 70.7 30.9 97.6 10.6
CPA 39.8 24.4 0.0 13.8 66.7 25.2 58.5 47.2 26.8 81.3 8.9
CGA 83.7 52.0 86.2 0.0 81.3 36.6 91.9 91.9 40.7 98.4 10.6
APA 25.2 15.4 33.3 18.7 0.0 22.8 47.2 35.8 28.5 65.9 8.1
AGA 78.9 72.4 74.8 63.4 77.2 0.0 87.8 77.2 65.0 95.9 31.7
MS 14.6 2.4 41.5 8.1 52.8 12.2 0.0 33.3 15.4 78.9 0.8

CVhS 53.7 29.3 52.8 8.1 64.2 22.8 66.7 0.0 26.8 82.9 4.1
APES 76.4 69.1 73.2 59.3 71.5 35.0 84.6 73.2 0.0 91.9 23.6

AR 8.1 2.4 18.7 1.6 34.1 4.1 21.1 17.1 8.1 0.0 0.0

Note: Percentage of the 123 series for which a method listed in a row outperforms a method in a column, and
all other methods (last column). AR refers to the benchmark autoregressive model that uses 12 lags of the first
differences (see Section 8 of the main text for details). The best method overall is highlighted in bold.
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Table 2. Best forecasting methods by group.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

h 1 AGA AGA AGA AGA APA AGA AGA AGA
3 AGA AGA APES AGA CGA APES APA AGA

AGA
6 AGA APES APES AGA CPA AGA MGA AGA

CGA AGA
12 APES AGA AGA AGA CGA AGA APA AGA

APES

GA � PA 3 3 1 4 1 3 2 4
PA � GA 0 0 0 0 2 0 1 0

AVE � SEL 3 3 1 4 4 3 4 4
SEL � AVE 1 1 2 0 0 1 0 0

M � (CVh,APE) 0 0 0 0 0 0 0 0
CVh � (APE,M) 0 0 0 0 3 0 0 0
APE � (M,CVh) 4 4 4 4 1 4 3 4

Note: The groups are defined as in McCracken and Ng (2016): (1) output and income; (2) labor market; (3)
housing; (4) consumption, orders, and inventories; (5) money and credits; (6) interest and exchange rates; (7)
prices; (8) stock market. The last 7 rows counts excluded pairwise ties.

Table 3. Relative MSFE of core real macroeconomic time series.

Method Ind. Prod. Per.
Income M&T Sales Nonag.

Emp. Ind. Prod. Per.
Income M&T Sales Nonag.

Emp.

h 1 6
MPA 0.971 ** 0.964 0.983 0.956 *** 0.978 0.991 0.985 0.952 *
MGA 0.965 *** 0.959 * 0.970 ** 0.948 *** 0.945 0.949 0.934 0.918 ***
CPA 0.967 ** 0.919 * 0.983 0.961 *** 0.993 0.999 1.009 0.961 *
CGA 0.957 *** 0.908 * 0.968 ** 0.949 *** 0.952 0.968 0.953 0.936 **
APA 1.040 0.930 0.995 1.262 *** 1.122 1.033 1.043 1.360 ***
AGA 0.947 *** 0.889 ** 0.956 ** 0.923 *** 0.974 0.891 * 0.916 * 0.925 *
MS 0.984 0.992 0.992 0.946 *** 1.009 1.021 0.983 0.939 **

CVhS 0.985 0.946 0.986 0.945 *** 1.007 1.003 1.037 0.953 **
APES 0.972 0.905 * 0.973 0.922 *** 0.981 0.918 0.915 0.911 *

h 3 12
MPA 0.976 0.979 0.986 0.955 ** 0.970 0.972 0.995 0.968
MGA 0.962 0.961 0.957 0.937 *** 0.906 *** 0.905 ** 0.886 ** 0.895 ***
CPA 0.987 0.978 0.997 0.963 ** 1.027 1.007 1.023 1.005
CGA 0.972 0.957 * 0.965 0.950 *** 0.852 * 0.957 0.848 0.912 *
APA 1.121 * 0.997 1.031 1.419 *** 1.173 1.010 1.023 1.305 ***
AGA 0.970 0.922 ** 0.955 0.921 ** 0.837 ** 0.775 ** 0.751 ** 0.841 **
MS 0.990 1.006 0.983 0.942 *** 0.988 1.001 0.985 0.962

CVhS 0.999 1.004 1.017 0.957 *** 0.914 1.020 0.926 0.966
APES 0.974 0.941 0.969 0.902 *** 0.814 ** 0.777 ** 0.737 * 0.851 **

Note: * denotes 10%, ** denotes 5%, and *** denotes 1% significance level for a two-sided Diebold and Mariano
(1995) test. The benchmark is an unrestricted OLS estimation method with 12 lags (see Section 8 for details). The
best method in each case is highlighted in bold.

It is useful to briefly discuss the recent, related literature to place our empirical
findings in perspective. Cheng and Hansen (2015) conducted a comparison of several
shrinkage-type forecasting approaches using 143 quarterly US macroeconomic time series
(transformed to stationarity) from 1960 to 2008. Their methods included factor-augmented
forecast combination based on Mallows/cross-validation/equal weights, Bayesian model
averaging, empirical Bayes, pretesting and bagging. They found that while the methods
were comparable at the one-quarter horizon, cross-validation weighting clearly emerged
as the preferred approach at the four-quarter horizon. Tu and Yi (2017) found that, when
forecasting US inflation one-quarter ahead, Mallows-based combination forecasts that
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combine forecasts from unrestricted and restricted (imposing no error correction) vector
autoregressions under the assumption of cointegration dominated both unrestricted and
restricted forecasts. Using the same data set as ours, Kejriwal and Yu (2021) compared
partial and general combination forecasts using Mallows weights with forecasts based on
pretesting and Mallows selection. Consistent with our results, they found that a general
combination strategy that averages over both the unit root restriction and different lag
orders delivered the best forecasts overall.

Table 4. Relative MSFE of core nominal macroeconomic time series.

Method CPI Con.
Deflator

CPI e.
Food PPI CPI Con.

Deflator
CPI e.
Food PPI

h 1 6
MPA 0.966 * 0.963 ** 0.965 * 0.952 ** 0.985 0.975 0.970 0.957
MGA 0.957 ** 0.957 ** 0.961 ** 0.944 ** 0.964 0.954 0.964 0.950 *
CPA 0.962 0.955 ** 0.957 * 0.938 ** 0.973 0.984 0.961 0.953
CGA 0.955 * 0.952 ** 0.957 * 0.937 ** 0.952 0.952 0.943 * 0.942 *
APA 0.958 0.953 ** 0.960 0.930 ** 0.971 0.966 0.959 0.944 *
AGA 0.948 * 0.949 ** 0.949 * 0.941 ** 0.949 0.947 0.945 0.955
MS 1.001 0.994 0.999 0.999 1.038 1.009 1.011 0.983

CVhS 0.980 0.979 0.967 0.946 * 0.977 0.992 0.984 0.969
APES 0.989 0.982 0.968 0.939 * 0.967 0.985 0.964 0.968

h 3 12
MPA 0.969 0.966 0.963 0.946 ** 0.972 0.984 0.955 * 0.954 *
MGA 0.957 0.956 0.959 0.938 ** 0.948 * 0.961 0.945 0.949 *
CPA 0.957 0.959 0.952 0.933 * 0.955 0.967 0.939 ** 0.954
CGA 0.942 0.946 0.945 0.926 ** 0.947 * 0.949 0.928 ** 0.952 *
APA 0.956 0.951 0.962 0.927 ** 0.937 ** 0.935 0.920 ** 0.958
AGA 0.938 0.936 0.945 0.936 ** 0.944 0.939 0.938 0.972
MS 1.029 1.017 0.989 0.991 1.006 1.035 0.998 0.992

CVhS 0.983 0.987 0.981 0.938 * 0.960 0.977 0.946 * 0.956
APES 0.970 0.957 0.974 0.942 * 0.958 0.957 0.968 0.972

Note: Here, * denotes 10% and ** denotes 5% significance level for a two-sided Diebold and Mariano (1995) test.
The benchmark is an unrestricted OLS estimation method with 12 lags (see Section 8 for details). The best method
in each case is highlighted in bold.

In summary, our empirical results were found to be consistent with the simulation
results in that (1) addressing both persistence uncertainty and lag-order uncertainty are
crucial for generating accurate forecasts; (2) a weighting scheme that directly targets forecast
risk instead of in-sample mean squared error yields an efficacious forecast combination
approach at all horizons.

9. Conclusions

This paper has developed new multistep forecast combination methods for a time se-
ries driven by stochastic and/or deterministic trends. In contrast to existing methods based
on Mallows/cross-validation weighting, our proposed combination forecasts were based
on constructing weights obtained from an accumulated prediction errors criterion that
directly targets the asymptotic forecast risk instead of the in-sample AMSE. Our analysis
found strong evidence in favor of a version of the proposed approach that simultaneously
addresses stochastic trend and lag order uncertainty. A practical implication of our results
is that the degree of persistence in a time series can play an important role in the choice of
combination weights. Our preferred approach can potentially serve as a useful univariate
benchmark when evaluating the effectiveness of methods designed to exploit information
in large data sets.

We conclude with a discussion of four possible directions for future research. First,
the APE-based combination forecasts can potentially be used in conjunction with FGLS
estimation of the deterministic component, given that the latter has been shown to yield
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improved forecasts over OLS estimation (Kejriwal and Yu 2021). Second, it may be useful
to explore the possibility of allowing for a nonlinear deterministic component through,
say, the inclusion of polynomial trends or a few low-frequency trigonometric components
(Gallant 1981). To the extent that the specific nonlinear modeling structure captures the
observed nonlinearities, such an approach may contribute to a further improvement in fore-
casting performance. Third, it would be useful to develop prediction intervals around our
combination forecasts in order to quantify the associated sampling uncertainty. Fourth, and
perhaps most challenging, while our numerical and empirical analyses clearly document
the desirability of the proposed approach based on APE weighting relative to Mallows/CV
weighting, an analytical comparison may shed further light on the relative merits of the
different methods. To our knowledge, such results are primarily available in the con-
text of the standard stationary framework with Mallows/cross-validation weighting (e.g.,
Hansen 2007; Zhang et al. 2013; Liao and Tsay 2020). Extending these results to the present
nonstationary framework would be a potentially fruitful endeavor.
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Appendix A. Proofs

Let W(.) denote a standard Brownian motion on [0, 1] and define the Ornstein-
Uhlenbeck process: dWc(r) = cWc(r) + dW(r). For p ∈ {0, 1}, let Xc(r) = (rp, Wc(r))′ and
define the detrended processes

W∗c (r, p) =

{
Wc(r)

Wc(r)−
∫ 1

0 Wc(s)ds
if
if

p = 0
p = 1

X∗c (r, p) =

{
Xc(r)

Xc(r)−
∫ 1

0 Xc(s)ds
if
if

p = 0
p = 1

and the functionals

T0c = −cW∗c (1, p) + I(p = 1)W(1)

T1c = X∗c (1, p)′
(∫ 1

0
X∗c (r, p)X∗c (r, p)′

)−1 ∫ 1

0
X∗c (r, p)dW(r) + I(p = 1)W(1).

Let β = (β0, β1)
′
, zt = (1, t)

′
. Without loss of generality, we assume that β0 = β1 =

0 in the true data generating process. For a matrix A, ‖A‖2 = sup‖v‖=1 v′A′Av with
‖v‖ denoting the Euclidean norm for vector v. Unless otherwise defined, for any variable x,
we use x∗ to denote its demeaned version. For a random quantity δ, we write δ = δ0 + op(δ0)
as δ = δ0 + s.o., where s.o. represents a term of smaller order in probability. For brevity, all

https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://research.stlouisfed.org/econ/mccracken/fred-databases/
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proofs are provided only for the case p = 1. The proofs for p = 0 are simpler and follow
analogous arguments.

We start by noting that if ut is generated by (1), it has the AR(k + 1) representation
ut = ∑k+1

i=1 aiut−i + et, where a1 = α + α1, ai = αi − αi−1 (i = 2, . . . , k), ak+1 = −αk. The
companion VAR(1) form of the model is expressed as

Yt = B(k)′Yt−1 + νt

where

Yt
(k+3)×1

= (1, t + 1, yt, . . . , yt−k)
′, νt
(k+3)×1

= (0, 0, et, 0, . . . , 0)′

B(k)
(k+3)×(k+3)

=

(
B1 B2

0(k+1)×2 F(k)

)
, B1
(2×2)

=

(
1 1
0 1

)
, B2

2×(k+1)
=

(
0 0 . . . 0
0 0 . . . 0

)
F(k)

(k+1)×(k+1)
=

(
a(k)

Ik
0′k

)
, F0(k) = Ik+1, a(k) = (a1, . . . , ak+1)

′

With “hat” and “tilde” denoting the unrestricted and restricted OLS estimates, re-
spectively, the unrestricted and restricted forecasts can then be expressed as (see, e.g., Ing
2003):

µ̂T+h = yT(k + 1)′ B̂h−1(k)γ̂(k) (A1)

µ̃T+h = yT(k + 1)′ B̃h−1(k)γ̃(k) (A2)

where yT(k + 1) = (1, T + 1, yT , . . . , yT−k)
′, γ̂(k) = (β̂∗0, β̂∗1, â1, . . . , âk+1)

′ and

B̂(k)
(k+3)×(k+3)

=

(
B1 B̂2

0(k+1)×2 F̂(k)

)
,

B1
(2×2)

=

(
1 1
0 1

)
, B̂2

2×(k+1)
=

(
β̂∗0 0 . . . 0
β̂∗1 0 . . . 0

)
F̂(k)

(k+1)×(k+1)
=

(
â(k)

Ik
0′k

)
, F̂0 = Ik+1, â(k) = (â1, . . . , âk+1)

′

B̃(k)
(k+3)×(k+3)

=

(
B1 B̃2

0(k+1)×2 F̃(k)

)
, B̃2

2×(k+1)
=

(
β̃∗0 0 . . . 0
0 0 . . . 0

)
(A3)

The matrix F̃(k) is constructed in the same way as F̂(k) with â(k) replaced by ã(k), where
ã(k) = (ã1, . . . , ãk+1)

′ = (1 + α̃1, α̃2 − α̃1, . . . , α̃k − α̃k−1,−α̃k)
′ with γ̃(k) = (β̃∗0, 0, ã1, . . . ,

ãk+1)
′. Next, we state a set of lemmas that will be useful in developing the proofs of the

main results. Lemmas A.1–A.4, A.7–A.9 below parallel Lemmas A.1–A.4, B.1–B.3 in Ing
et al. (2009) who assumed an exact unit root (c = 0). Since the sample moments have the
same order whether c = 0 or c < 0, the proofs of the following lemmas also follow directly
those in Ing et al. (2009) and are hence omitted.

Lemma A1. Suppose {yt} satisfies (1) and Assumptions 1 and 2. Then for any q > 0,

E||R̂−1
T (k)||q = O(1)

where

R̂T(k) = T−1DT(k)
T−1

∑
j=k+1

yj(k + 1)yj(k + 1)′DT(k)′
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with

DT(k)
(k+3)×(k+3)

= diag(1, T−1, D̄T(k)),

D̄T(k)
(k+1)×(k+1)

=



1√
T
−α1√

T
. . . . . .

−αk√
T

1 −1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 1 −1


Lemma A2. Suppose {yt} satisfies (1) and Assumptions 1 and 2 and for some q1 ≥ 2,

sup
−∞≤t≤∞

E|et|2q1 < ∞. Then for any 0 < q < q1,

E||R̂−1
T (k)− R̂∗−1

T (k)||q = O(T−q/2)

where

R̂∗T(k)
(k+3)×(k+3)

= diag(R̂∗c (k)
3×3

, Γ̂T(k))
k×k

R̂∗c (k) =


T−1(T − 1− k) T−1

T−1
∑

j=k+1
X′t

T−1
T−1
∑

j=k+1
Xt T−2

T−1
∑

j=k+1
XtX′t


Xt = [T−1(t + 1), T−1/2Nt]

′, Nj = A(L)yj

Γ̂T(k) = T−1
T−1

∑
j=k+1

sj(k)sj(k)′, sj(k) = (∆yj, . . . , ∆yj−k+1)
′

Lemma A3. Suppose {yt} satisfies (1) and Assumptions (1) and (2) with sup
−∞≤t≤∞

E|et|q < ∞ for

some q ≥ 2. Then,

E||T−1/2DT(k)
T−1

∑
j=k+1

yj(k + 1)ej+1||q = O(1)

Lemma A4. Suppose {yt} satisfies (1) and Assumptions 1 and 2 with sup
−∞≤t≤∞

E|et|r < ∞ for

some r > 4. Then,
lim

T−→∞
E(FT,k) = 0

where

FT,k = sT(k)′Mh(k)Γ̂−1
T (k)

{ T−1

∑
j=k+1

sj(k)ej+1

}
X′T
( T−1

∑
j=k+1

XjXj
′)−1

{
T−1

∑
j=k+1

Xjej+1

}

Lemma A5. Let X
T×(p+1)

= [X1
T×1

, X2
T×p

], X1 = (1, · · · , 1)′, and assume X′X is invertible. Define

M1 = I
T×T
− X1(X′1X1)

−1X′1, X∗2 = M1X2. For any T × 1 vector e and any p × 1 vector x2,

we have x′(X′X)−1X′e = x1(X′1X1)
−1X′1e + x∗′2 (X∗′2 X∗2 )

−1X∗′2 e, where x = (x1, x′2)
′, x1 = 1,

x∗2 = x2 − (X′1X1)
−1X′2X1.

Lemma A6. Under Assumptions 1 and 2,
√

Tβ̃∗0
σ

d−→Wc(1).
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Lemma A7. Under Assumptions 1 and 2 and sup
−∞≤t≤∞

E|et|q < ∞ for some q > 2,

(i) For some κ1 > 0, ||Γ̂(k)− Γ(k)|| = o(T−κ1) a.s.;
(ii) For some κ2 > 0, ||R̂T − R̂∗T || = o(T−κ2) a.s.;
(iii) ||R̂−1

T || = O(log log T) a.s..

Lemma A8. Under Assumptions 1 and 2 and sup
−∞≤t≤∞

E|et|q < ∞ for some q > 2, ∑T−h
i=mh

Fi,k =

o(T) a.s., where

Fi,k = si(k)′Mh(k)Γ̂−1
i (k)

{ i−1

∑
j=k+1

sj(k)ej+1

}
X′i
( i−1

∑
j=k+1

XjXj
′)−1

{
i−1

∑
j=k+1

Xjej+1

}

Lemma A9. Let {xT} be a sequence of real numbers.

(i) If xT ≥ 0, T−1
T
∑

j=1
xj = O(1), and for some ξ > 1, lim inf

T−→∞
νT/Tξ > 0, then,

T
∑

j=1
xj/νj = O(1);

(ii) If T−1
T
∑

j=1
xj = o(1), then,

T
∑

j=1
xj/j = o(log T).

Proof of Lemma A5. Note, by block matrix inversion,

(X′X)−1 =

(
X′1X1 X′1X2
X′2X1 X′2X2

)−1

=

(
(X′1X1)

−1 + (X′1X1)
−1X′1X2(X′2M1X2)

−1X′2X1(X′1X1)
−1 −(X′1X1)

−1X′1X2(X′2M1X2)
−1

−(X′2M1X2)
−1X′2X1(X′1X1)

−1 (X′2M1X2)
−1

)
then

(X′X)−1X′e =
(
(X′1X1)

−1X′1[I − X2(X′2M1X2)
−1X′2M1]e

(X′2M1X2)
−1X′2M1e

)
Recall x = (x1, x′2)

′ = (x1, x∗′2 )′ + (0, X′1X2(X′1X1)
−1)′, we have,

x′(X′X)−1X′e

= [(x1, x∗′2 )](X′X)−1X′e︸ ︷︷ ︸
Term 1

+ [(0, X′1X2(X′1X1)
−1)](X′X)−1X′e︸ ︷︷ ︸

Term 2

= x1(X′1X1)
−1X′1[I − X2(X′2M1X2)

−1X′2M1]e + x∗′2 (X′2M1X2)
−1X′2M1e︸ ︷︷ ︸

Term 1

+ X′1X2(X′1X1)
−1(X′2M1X2)

−1X′2M1e︸ ︷︷ ︸
Term 2

=x1(X′1X1)
−1X′1e + x∗′2 (X′2M1X2)

−1X′2M1e

−x1(X′1X1)
−1X′1X2(X′2M1X2)

−1X′2M1e + X′1X2(X′1X1)
−1(X′2M1X2)

−1X′2M1e︸ ︷︷ ︸
=0, since x1 = 1, (X′1X1)

−1 = 1/T, which is a constant

=x1(X′1X1)
−1X′1e + x∗′2 (X∗′2 X∗2 )

−1X∗′2 e

Proof of Lemma A6. The true DGP can be expressed as

∆yt = β∗0 +
k

∑
j=1

αj∆yt−j + e∗t
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where β∗0 = 0 and e∗t = ac
T ut−1 + et. Let Żt = (Ż1, Ż′2,t), Ż1 = 1, Ż2,t = (∆yt−1, · · · , ∆yt−k)

′,
ι1 = (1, 0, · · · , 0)′, ι[2:k+1] = (0, 1, · · · , 1)′. Now

√
Tβ̃∗0
σ

=

√
T

σ
ι′1(

T

∑
t=k+1

ŻtŻ′t)
−1

T

∑
t=k+1

Ż′t(
ac
T

ut−1 + et) (A4)

=

√
T

σ
(

T

∑
t=k+1

Ż2
1)
−1

T

∑
t=k+1

Ż1(
ac
T

ut−1 + et) + op(1)

=
ca

σT3/2

T

∑
t=k+1

ut−1 +
1

σ
√

T

T

∑
t=k+1

et + op(1)
d−→ c

∫ 1

0
Wc + W(1) = Wc(1)

Proof of Theorem 1. (a) Defining γ(k) = (β∗0, β∗1, a1, . . . , ak+1)
′, L̂h(k) = ∑h−1

j=0 bj B̂h−1−j(k)

and Lh = ∑h−1
j=0 bjBh−1−j(k), we can write

T
σ2 E(µ̂T+h − µT+h)

2

=
T
σ2 E

[
yT(k + 1)′ L̂h(k)(γ̂(k)− γ(k))

]2
=

T
σ2

[
E
[
yT(k + 1)′Lh(k)(γ̂(k)− γ(k))

]2
+ E

[
yT(k + 1)′

{
L̂h(k)− Lh(k)

}
(γ̂(k)− γ(k))

]2
+ o(1)

]

=
1
σ2 E

[
yT(k + 1)′Lh(k)D′T(k)(R̂∗−1

T (k))
DT(k)√

T

T−1

∑
j=k+1

yj(k + 1)ej+1

]2

+
1
σ2 E

[
yT(k + 1)′Lh(k)D′T(k)(R̂−1

T (k)− R̂∗−1
T (k))

DT(k)√
T

T−1

∑
j=k+1

yj(k + 1)ej+1

]2

+
T
σ2 E

[
yT(k + 1)′

{
L̂h(k)− Lh(k)

}
(γ̂(k)− γ(k))

]2
+ o(1)

=(I) + (I I) + (I I I) (A5)

The (I I) and (I I I) terms in (A5) are each o(1) by Lemmas A1–A3 and Holder’s inequality
[see, e.g., the proof of Theorem 2.2 in Ing et al. 2009].

The term (I) can be written as:

1
σ2 E

[
yT(k + 1)′Lh(k)D′T(k)R̂∗−1

T (k)
DT(k)√

T

T−1

∑
j=k

yj(k + 1)ej+1
]2

=
1
σ2 E

[
yT(k + 1)′D′T(k)L̄h(k)R̂∗−1

T (k)
DT(k)√

T

T−1

∑
j=k

yj(k + 1)ej+1
]2 (A6)

where L̄h(k) = ∑h−1
j=0 bjdiag(Gh−1−j

T , F̄(k)h−1−j)with GT =

(
1 T−1

0 1

)
, F̄(k) = diag(1, SM(k))

and SM(k) =
(

α(k− 1) Ik−1
αk 0′k−1

)
, S0

M(k) = Ik.

Note that yT(k + 1)′DT
′ =

(
1, T−1(T + 1), T−1/2NT , sT(k)

)
. Further, since GT is upper

triangular, (A6) converges to
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1
σ2

( h−1

∑
j=0

bj
)2 lim

T−→∞
E
{

T−1/2
T−1

∑
j=k+1

ej+1 + X∗T
′( T−1

∑
j=k+1

X∗j X∗j
′)−1

T−1

∑
j=k+1

X∗j ej+1

}2

+ lim
T−→∞

1
σ2 E

{
s′T(k)Mh(k)Γ̂−1

T (k)T−1/2
T−1

∑
j=k+1

sj(k)ej+1

}2
+

2
σ2 (

h−1

∑
j=0

bj) lim
T−→∞

E(FT,k)

=B.1 + B.2 + B.3 (A7)

where B.1 utilizes Lemma A.5. Since B.2 = gh(k) by Theorem 1 of Ing (2003) and B.3 = 0
by Lemma A4, (A7) simplifies to:

B.1 + B.2 =
( h−1

∑
j=0

bj
)2 lim

T−→∞
E
{

W(1) + X∗c (1)
′( ∫ 1

0
X∗c X∗c

′)−1
∫ 1

0
X∗c dW

}2
+ gh(k)

=
( h−1

∑
j=0

bj
)2E
[
T2

1c
]
+ gh(k) (A8)

The required result then follows from (A5), (A7) and (A8).
(b) Defining L̃h(k) = ∑h−1

j=0 bj B̃h−1−j(k), with similar arguments as in (a), we can write:

T
σ2 E(µ̃T+h − µT+h)

2 =
T
σ2 E

[
yT(k + 1)′ L̃h(k)(γ̃(k)− γ(k))

]2

=
T
σ2 E

[
yT(k + 1)′Lh(k)(γ̃(k)− γ(k))

]2
+ o(1) (A9)

Note that

Lh(k) =
h−1

∑
j=0

bjBh−1−j(k) =
h−1

∑
j=0

bj

(
B1 0
0 F(k)

)h−1−j

=
h−1

∑
j=0

bj

(
Bh−1−j

1 0
0 Fh−1−j(k)

)

Since B1 is upper triangular with B1(1, 1) = 1,

(A9) =
T
σ2 E

[
yT(k + 1)′

 ∑h−1
j=0 bj

[
β̃∗0
0

]
∑h−1

j=0 bjFh−1−j(k)[ã(k)− a(k)]

]2
+ o(1)

=
T
σ2 E

[( h−1

∑
j=0

bj
)

β̃∗0 + (yT , . . . , yT−k)
h−1

∑
j=0

bjFh−1−j(k)[ã(k)− a(k)]
]2

+ o(1) (A10)

Now, consider the term

√
T

σ
(yT , . . . , yT−k)

h−1

∑
j=0

bjFh−1−j(k)[ã(k)− a(k)] =
√

T
σ

(yT , . . . , yT−k)L(F)
h (k)[ã(k)− a(k)]

=

√
T

σ
(yT , . . . , yT−k)L(F)

h (k)
[

â(k)− a(k) + HkD′T(k)R̂−1
T (k)DT(k)R′k(RkD′T(k)R̂−1

T (k)DT(k)R′k)
−1(r− Rkγ̂(k))

]
(A11)

where

L(F)
h (k) =

h−1

∑
j=0

bjF(k)h−1−j, Hk
(k+1)×(k+3)

=
[
0(k+1)×2 I(k+1)

]
, Rk

2×(k+3)
=

[
0 1 0 . . . 0
0 0 1 . . . 1

]
, r

2×1
= (0, 1)′

Next, define L̄(F)
h (k) = diag(∑h−1

j=0 bj, Mh(k)), θ̂(k)
(k+1)×1

= (T(1− α̂)/a, 0, · · · , 0)′, we have
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(A11) =
1
σ
(yT , . . . , yT−k)

[√
TL(F)

h (k){â(k)− a(k)}+ L(F)
h (k)D̄′T(k)θ̂(k)

]
=

1
σ
(yT , . . . , yT−k)

[√
TL(F)

h (k){â(k)− a(k)}+ D̄′T(k)L̄(F)
h (k)θ̂(k)

]
=

1
σ
(yT , . . . , yT−k)

√
TL(F)

h (k)(â(k)− a(k)) +
1
σ
(NT/

√
T, sT(k))diag(

h−1

∑
j=0

bj, Mh(k))θ̂(k)

=
1
σ
(yT , . . . , yT−k)

√
TL(F)

h (k)(â(k)− a(k)) +
NT

σ
√

T

h−1

∑
j=0

bj
[
− c− T(α̂− α)/a

]
=

NT

σ
√

T

h−1

∑
j=0

bj
{

T(α̂− α)/a
}
+

1
σ

sT(k)′Mh(k)Γ̂−1
T (k)T−1/2

T−1

∑
j=k

sj(k)ej+1

+
NT

σ
√

T

h−1

∑
j=0

bj
[
− c− T(α̂− α)/a

]
=− c

NT

σ
√

T

h−1

∑
j=0

bj +
1
σ

sT(k)′Mh(k)Γ̂−1
T (k)T−1/2

T−1

∑
j=k

sj(k)ej+1 (A12)

Then, combining (A10) with (A12) and using Lemma A6, we finally get

lim
T−→∞

T
σ2 E(µ̃T+h − µT+h)

2 = E
[ h−1

∑
j=0

bj(Wc(1)− cWc(1))
]2

+
1
σ2 lim

T−→∞
E
{

s′∗T (k)Mh(k)Γ̂−1
T (k)T−1/2

T−1

∑
j=k

sj(k)ej+1

}2

=
( h−1

∑
j=0

bj
)2E
[
T2

0c
]
+ gh(k)

which uses the fact that Wc(1)− cWc(1) = W(1)− cW∗c (1), thereby proving the result.

Proof of Theorem 2. Henceforth, estimated parameters and quantities with subscript i
denotes the estimates using observations from 1 to i. We prove (a) first. It follows from
Chow (1965) and Ing (2004) that

APE1 −
T−h

∑
i=mh

η2
i,h =

T−h

∑
i=mh

[
y′i(k + 1)L̂i,h(k)(γ̂i(k)− γ(k))

]2
(1 + o(1)) + O(1) a.s.

Using similar algebra as in Theorem 1, we have:
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T−h

∑
i=mh

[
y′i(k + 1)L̂i,h(k)(γ̂i(k)− γ(k))

]2

=
T−h

∑
i=mh

[[
yi(k + 1)′Lh(k)(γ̂i(k)− γ(k))

]2
+
[
yi(k + 1)′

{
L̂i,h(k)− Lh(k)

}
(γ̂i(k)− γ(k))

]2]
+ s.o.

=
T−h

∑
i=mh

1
i

[
yi(k + 1)′Lh(k)D′i(k)(R̂∗−1

i (k))
Di(k)√

i

i−1

∑
j=k+1

yj(k + 1)ej+1

]2

+
T−h

∑
i=mh

1
i

[
yi(k + 1)′Lh(k)D′i(k)(R̂−1

i (k)− R̂∗−1
i (k))

Di(k)√
i

i−1

∑
j=k+1

yj(k + 1)ej+1

]2

+
T−h

∑
i=mh

[
yi(k + 1)′

{
L̂i,h(k)− Lh(k)

}
(γ̂i(k)− γ(k))

]2
+ s.o.

= (IV) + (V) + (VI) (A13)

The (V) and (VI) terms in (A13) are each O(1) following similar arguments in Ing et al.
(2009) which build on Lemmas A7–A9.
Analogous to (A6) and (A7) in the proof of Theorem 1, (IV) can be rewritten as:

(IV) =
( h−1

∑
j=0

bj
)2

T−h

∑
i=mh

{
Zi
′( i−1

∑
j=k+1

ZjZj
′)−1

i−1

∑
j=k+1

Zjej+1

}2

+
T−h

∑
i=mh

{
s′i(k)Mh(k)Γ̂−1

i (k)
1
i

i−1

∑
j=k+1

sj(k)ej+1

}2
+ 2(

h−1

∑
j=0

bj)
T−h

∑
i=mh

1
i

Fi,k

= C.1 + C.2 + C.3

where Zj = (1, t + 1, Nj)
′. In analogy with Theorem 3.1 of Ing (2004),

C.2 = gh(k)σ2 log T + op(log T) (A14)

By Lemmas A8 and A9, C.3 = op(log T). Now we focus on C.1. By Theorem 4 of Wei (1987),
we have

C.1 =
( h−1

∑
j=0

bj
)2

σ2 log det(
T−1

∑
j=k+1

ZjZ′j) + op(log T)

Defining the 3× 3 matrix ΥT = diag(T, T3, T2/|c|) and using Lemma A of Phillips (2014)
in conjunction with the fact that |c|T−2 = O(T−1), we can calculate

log det(
T−1

∑
j=k+1

ZjZ′j) = log det(Υ1/2
T Υ−1/2

T

T−1

∑
j=k+1

ZjZ′jΥ
−1/2
T Υ1/2

T )

= log det(ΥT) + Op(1) = log(T5) + Op(1)

= 5 log(T) + Op(1) (A15)

which leads to C.1 = 5σ2(∑h−1
j=0 bj

)2 log(T) + op(log T). Thus,

lim
T→∞

1
σ2 log T

(APE1 −
T−h

∑
i=mh

η2
i,h) = 5

( h−1

∑
j=0

bj
)2

+ gh(k) (A16)
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where the right hand side of (A16) is the limit of f1(c, p, k, h) = f1(c, p, h) + gh(k) as c→-∞.
We next prove (b). Following similar steps as in the proof of (a) and the proof of Theorem 1
for the restricted case, we can derive

APE0 −
T−h

∑
i=mh

η2
i,h =

( h−1

∑
j=0

bj
)2

T−h

∑
i=mh

(β̃∗0,i − c
Ni
i
)2

+
T−h

∑
i=mh

{
s′i(k)Mh(k)Γ̂−1

i (k)
1
i

i−1

∑
j=k+1

sj(k)ej+1

}2
+ op(log T) = D.1 + D.2

In view of (A4), taking the limit c→ 0, we have

T−h

∑
i=mh

(β̃∗0,i − c
Ni
i
)2 =

T−h

∑
i=mh

[ι′1(
i

∑
t=k+1

ŻtŻ′t)
−1

i

∑
t=k+1

Ż′tet]
2

=
T−h

∑
i=mh

[(
i

∑
t=k+1

Ż2
1)
−1

i

∑
t=k+1

Ż1et]
2 + s.o.

= log det(
T−1

∑
j=k+1

Ż2
1) + op(log T) = σ2 log T + op(log T)

Further, using the same argument as in (A14), we have D.2 = gh(k)σ2 log T + op(log T).
Thus,

lim
c→0

lim
T→∞

1
σ2 log T

(APE0 −
T−h

∑
i=mh

η2
i,h) =

( h−1

∑
j=0

bj
)2

+ gh(k) (A17)

where the right hand side of (A17) is the limit of f0(c, p, k, h) = f0(c, p, h) + gh(k) as
c→ 0 since limc→0 E(T2

0c) = E[W(1)2] = 1.

For the proofs of Theorems 3 and 4, we focus on the misspecified case where l < k. For
the case l ≥ k, the proofs follow directly from the arguments in Theorems 1 and 2 above
and those in Ing et al. (2009).

Proof of Theorem 3. First, note that under Assumption 3, Lemmas A1–A4 continue to hold
with k replaced by l (l < k), and et replaced by εt = et + ωt, where ωt = ∑k

j=l+1 αj∆yt−j.

Define L∗h(l) = ∑h−1
j=0 bj[B∗(l)]

h−1−j, where B∗(l) is defined similarly to B(l) except that

F(l) is replaced by F∗(l) =

(
a∗(l)

Il
0′l

)
, F∗0(l) = Il+1, a∗(l) = (a1, . . . , al , a∗l+1)

′ and

a∗l+1 = −αl . Also, let γ∗(l) = (β∗0, β∗1, a1, . . . , al , a∗l+1)
′ and α∗(l, k) = (0′l , αl+1, . . . , αk)

′.
Finally, note that under Assumption 3, bj → 1 for all j.

(a) We can write

T
σ2 E(µ̂T+h(l)− µT+h)

2 = T
σ2 E
[
yT(l + 1)′ L̂h(l)(γ̂(l)− γ∗(l)) + sT(k)′Mh(k)α∗(l, k)

]2
= E[ f̂ 2

T,h(l, k)] + E[r2
T,h(l, k)] + o(1)

= (I) + (I I) + o(1) (A18)

where

f̂T,h(l, k) = (
√

T/σ)yT(l + 1)′ L̂h(l)(γ̂(l)− γ∗(l))

rT,h(l, k) = (
√

T/σ)sT(k)′Mh(k)α∗(l, k)

We now derive the limit of the terms (I) and (I I) in (A18). First, consider the term
(I) in (A18). Noting that the effective errors are now {εt} instead of {et}, we can write,
similar to (A5),
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E[ f̂ 2
T,h(l, k)] =

1
σ2 E

[
yT(l + 1)′L∗h(l)D′T(l)(R̂∗−1

T (l))
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ε j+1

]2

+
1
σ2 E

[
yT(l + 1)′L∗h(l)D′T(l)(R̂−1

T (l)− R̂∗−1
T (l))

DT(l)√
T

T−1

∑
j=l+1

yj(l + 1)ε j+1

]2

+
T
σ2 E

[
yT(l + 1)′

{
L̂h(l)− L∗h(l)

}
(γ̂(l)− γ∗(l))

]2
+ o(1)

= (T1) + (T2) + (T3) + o(1) (A19)

The terms (T2) and (T3) are each o(1) by the fact that Lemmas A1–A3 hold when {et} is
replaced by {εt}. Now consider the following term appearing in term (T1):

DT(l)√
T

T−1

∑
j=l+1

yj(l + 1)ε j+1

=
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ej+1 +
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ωj+1

=
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ej+1 +
1
T

k

∑
i=l+1

δi

T

∑
j=l+1

DT(l)yj(l + 1)∆yj−i+1

=
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ej+1 +
1√
T

k

∑
i=l+1

δi
1√
T

T

∑
j=l+1

DT(l)yj(l + 1)ej−i+1 + op(1)

=
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ej+1 +
1√
T

(
k

∑
i=l+1

δi

)
Op(1) + op(1)

=
DT(l)√

T

T−1

∑
j=l+1

yj(l + 1)ej+1 + op(1) (A20)

where the third equality follows from Assumption 3. Then, substituting (A20) in (A19) and
following the same arguments used in deriving (A8), we get

lim
T→∞

E[ f̂ 2
T,h(l, k)] = lim

T→∞
(T1) = h2E(T2

1c) + gh(l) (A21)

Now, consider the term (I I) in (A18). Defining ξh(δ, l, k) = Mh(k)(0′l , δl+1, . . . , δk)
′, we can

write

E[r2
T,h(l, k)] =

1
σ2

[√
Tα∗(l, k)′Mh(k)′E{sT(k)sT(k)′}Mh(k)

√
Tα∗(l, k)

]
=

1
σ2

[√
Tα∗(l, k)′Mh(k)′σ2 Ik Mh(k)

√
Tα∗(l, k)

]
+ o(1)

→ ξh(δ, l, k)′ξh(δ, l, k) (A22)

where the second equality in (A22) follows from the facts that under Assumption 3,√
Tα∗(l, k) = (0′l , δl+1, . . . , δk)

′ and E{sT(k)sT(k)′} → σ2 Ik. Finally, substituting (A21)
and (A22) in (A18), the result follows.

(b) We can write

T
σ2 E(µ̃T+h(l)− µT+h)

2 =
T
σ2 E

[
yT(l + 1)′ L̃h(l)(γ̃(l)− γ∗(l)) + sT(k)′Mh(k)α∗(l, k)

]2
= E[ f̃ 2

T,h(l, k)] + E[r2
T,h(l, k)] + o(1)

= (I) + (I I) + o(1) (A23)



Econometrics 2023, 11, 28 36 of 43

where f̃T,h(l, k) = (
√

T/σ)yT(l + 1)′ L̃h(l)(γ̃(l)− γ∗(l)) and rT,h(l, k) is as defined in (A18).
The limit of term (I I) is derived in (A22). To obtain the limit of (I), we follow the same
steps as in the proof of Theorem 1(b) with k replaced by l and use (A20) to get

E[ f̃ 2
T,h(l, k)]→ h2E(T2

0c) + gh(l) (A24)

The result then follows by substituting (A24) and (A22) in (A23).

Proof of Theorem 4. (a) For each i ∈ {mh, T − h}, we can write

yi+h − µ̂i+h(l) = ηi,h − y′i(l + 1)L̂i,h(l)(γ̂∗i (l)− γ∗(l))︸ ︷︷ ︸
f̂i,h(l,k)

+ s′i(k)Mh(k)α∗(l, k)︸ ︷︷ ︸
ri,h(l,k)

We then have

APE1(l) =
T−h

∑
i=mh

[
ηi,h − f̂i,h(l, k) + ri,h(l, k)

]2

=
T−h

∑
i=mh

η2
i,h +

T−h

∑
i=mh

f̂ 2
i,h(l, k)[1 + op(1)] +

T−h

∑
i=mh

r2
i,h(l, k) + 2

T−h

∑
i=mh

ηi,hri,h(l, k)

− 2
T−h

∑
i=mh

f̂i,h(l, k)ri,h(l, k) + Op(1) (A25)

Note that
T−h
∑

i=mh

ηi,hri,h(l, k) =

[
T−1/2

T−h
∑

i=mh

ηi,hs′i(k)

][
Mh(k)T1/2α∗(l, k)

]
= Op(1).O(1) =

Op(1). We will now consider
T−h
∑

i=mh

f̂ 2
i,h(l, k),

T−h
∑

i=mh

r2
i,h(l, k), and

T−h
∑

i=mh

f̂i,h(l, k)ri,h(l, k) in turn.

T−h

∑
i=mh

f̂ 2
i,h(l, k) =

T−h

∑
i=mh

1
i

[
y′i(l + 1)Lh(l)D′i(l)R̂∗−1

i (l)
Di(l)√

i

i−1

∑
j=l

yj(l + 1)ε j+1

]2

+ Op(1)

=
T−h

∑
i=mh

1
i

[
y′i(l + 1)Lh(l)D′i(l)R̂∗−1

i (l)
Di(l)√

i

i−1

∑
j=l

yj(l + 1)ej+1

]2

+ Op(1)

= 5σ2h2 log T + gh(l)σ2 log T + op(log T). (A26)

where the first equality in (A26) follows in analogy with (A13), the second follows in
analogy with (A20), and the third follows from the same arguments used to derive (A14)
and (A15) as well as the fact that bj → 1.

Next, consider the term

T−h

∑
i=mh

r2
i,h(l, k) =

T−h

∑
i=mh

[
α∗′(l, k)M′h(k)si(k)s′i(k)Mh(k)α∗(l, k)

]
= ξh(δ, l, k)′

[
T−1

T−h

∑
i=mh

si(k)s′i(k)

]
ξh(δ, l, k)

= ξh(δ, l, k)′(σ2 Ik)ξh(δ, l, k) + op(1)

→ σ2ξh(δ, l, k)′ξh(δ, l, k) (A27)
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where the third equality in (A27) is a consequence of Assumption 3.
Finally, consider the cross-product term

T−h

∑
i=mh

f̂i,h(l, k)ri,h(l, k) ≤
[

T−h

∑
i=mh

f̂ 2
i,h(l, k)

]1/2[ T−h

∑
i=mh

r2
i,h(l, k)

]1/2

= Op

(√
log T

)
Op(1) = op(log T) (A28)

Substituting (A26)–(A28) in (A25), the result follows.
(b) For each i ∈ {mh, T − h}, we can write

yi+h − µ̃i+h(l) = ηi,h − y′i(l + 1)L̃i,h(l)(γ̃∗i (l)− γ∗(l))︸ ︷︷ ︸
f̃i,h(l,k)

+ s′i(k)Mh(k)α∗(l, k)︸ ︷︷ ︸
ri,h(l,k)

We then have

APE0(l) =
T−h

∑
i=mh

[
ηi,h − f̃i,h(l, k) + ri,h(l, k)

]2
=

T−h

∑
i=mh

η2
i,h +

T−h

∑
i=mh

f̃ 2
i,h(l, k)[1 + op(1)] +

T−h

∑
i=mh

r2
i,h(l, k)− 2

T−h

∑
i=mh

f̃i,h(l, k)ri,h(l, k) + Op(1) (A29)

By similar arguments as in (a), we have

T−h

∑
i=mh

f̃ 2
i,h(l, k) = σ2h2 log T + gh(l)σ2 log T + op(log T)

T−h

∑
i=mh

f̃i,h(l, k)ri,h(l, k) = op(log T) (A30)

Substituting (A27) and (A30) in (A29), the result follows.

Appendix B. Description of Methods

This Appendix provides a detailed description of the forecasting methods compared
in the Monte Carlo analysis presented in Section 7 and the empirical analysis presented in
Section 8.

Unrestricted Autoregressive Model (Benchmark). The benchmark forecast is calcu-
lated from a standard autoregressive model of order K + 1 estimated by OLS:

yt = β∗0 + β∗1t + αyt−1 +
K

∑
j=1

αj∆yt−j + εt,

Mallows Selection. Hansen (2010a) demonstrated the validity of the Mallows criterion for
selecting between the restricted and unrestricted models when h = 1. When the number
of lags k is known, the criteria for the restricted and unrestricted models are, respectively,
given by

M0 = Tσ̃2 + 2σ̂2(p + k)

M1 = Tσ̂2 + 2σ̂2(2 + p + k)

where σ̃2 = T−1 ∑T
t=1(yt − µ̃t)2 and σ2 = T−1 ∑T

t=1(yt − µ̂t)2. The Mallows selection
estimator picks the restricted model if M0 < M1 and the unrestricted model otherwise.
This is equivalent to picking the unrestricted model when FT = T( σ̃2−σ̂2

σ̂2 ) ≥ 4. The Mallows
selection forecast can then be expressed as µ̂t+h,M = µ̂t+h1(FT ≥ 4)+ µ̃t+h1(FT < 4). When
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the number of lags is unknown, the relevant Mallows criteria are obtained as (see Kejriwal
and Yu 2021):

M0(l) = Tσ̃2
l + 2σ̂2

K(p + l)

M1(l) = Tσ̂2
l + 2σ̂2

K(2 + p + l)

for l = 0, 1, . . . , K, where σ̂2
j = T−1

T
∑

t=1
(yt − µ̂t(j))2, j = l, K and σ̃2

l = T−1
T
∑

t=1
(yt −

µ̃t(l))2. Then, defining l̃ = arg minl∈S{M0(l)}, l̂ = arg minl∈S{M1(l)}, where S =
{0, 1, . . . , K}, the Mallows selection forecast is obtained as

µ̆t+h,M =

{
µ̂t+h(l̂),
µ̃t+h(l̃),

i f
i f

minl∈S{M1(l)} ≤ minl∈S{M0(l)}
minl∈S{M1(l)} > minl∈S{M0(l)}

Mallows Averaging. As an alternative to Mallows selection, Hansen (2010a) developed
the Mallows combination forecast that entails taking a weighted average of the unrestricted
and restricted forecasts where the weights are chosen by minimizing a Mallows criterion.
When the number of lags is known, the criterion is

Mw =
T

∑
t=1

(yt − µ̂t(w))2 + 2σ̂2(2w + p + k) (A31)

with µ̂t(w) = wµ̂t + (1−w)µ̃t and σ̂2 = T−1
T
∑

t=1
(yt − µ̂t)2. The Mallows selected weight ŵ

is derived from minimizing (A31) over w ∈ [0, 1]. The solution is

ŵ =

{
1− 2/FT

0
i f FT > 2
otherwise

The Mallows averaging estimator is then defined as

µ̂t+h,M(ŵ) = ŵµ̂t+h + (1− ŵ)µ̃t+h =

{
µ̃t+h

(1− 2
FT
)µ̂t+h +

2
FT

µ̃t+h

i f FT ≤ 2
otherwise

(A32)

When the number of lags is unknown, Hansen (2010a) considered two alternative
Mallows combination forecasts. The first is the so-called partial averaging forecast that aver-
ages only over unrestricted forecasts that vary according to the number of first-differenced
lags included. With a maximum of K lags, this forecast is given by

µ̂t+h,M(Ŵ) =
K

∑
l=0

ŵl µ̂t+h(l) (A33)

where Ŵ = (ŵ0, ŵ1 . . . , ŵK)
′ minimizes the criterion (with µ̂t(W) = ∑K

l=0 wl µ̂t(l)),

MP(W) =
T

∑
t=1

(yt − µ̂t(W))2 + 2σ̂2
K

(
K

∑
l=0

[wl(2 + l + p)]

)

subject to the restrictions wj ≥ 0 (j = 0, 1, . . . K), ∑K
j=0 wj = 1. The second combination

forecast is the so-called general averaging forecast that averages over the forecasts from all
2(K + 1) models that include the (K + 1) restricted models. This forecast is given by

µ̆t+h,M(W̆) =
K

∑
l=0

(w̆1l µ̂t+h(l) + w̆0l µ̃t+h(l)) (A34)
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with W̆ = (w̆00, w̆01, . . . , w̆0K, w̆10, w̆11, w̆12, . . . , w̆1K)
′minimizing the criterion (with µ̆t(W) =

∑K
l=0(w0l µ̃t(l) + w1l µ̂t(l))),

MG(W) =
T

∑
t=1

(yt − µ̆t(W))2 + 2σ̂2
K

(
K

∑
l=0

[w0l l + w1l(2 + l)] + p

)

where the weights are non-negative and sum to one: w1l ≥ 0, w0l ≥ 0, ∑K
l=0(w0l + w1l) = 1.

In what follows, we will refer to (A33) and (A34) as the MPA (Mallows Partial Averaging)
and MGA (Mallows General Averaging) forecasts, respectively.

Leave-h-out Cross Validation Selection. Hansen (2010b) provided theoretical justi-
fication for constructing h-step ahead forecasts using leave-h-out cross validation under
the assumption that the data are strictly stationary. For model selection with a known
number of lags, let CV0 and CV1 denote the cross-validation criteria for the restricted and
unrestricted models, respectively. These criteria are computed as

CV0 =
T−h

∑
t=k+1

(yt+h − µ̃
(t)
t+h)

2 (A35)

CV1 =
T−h

∑
t=k+1

(yt+h − µ̂
(t)
t+h)

2 (A36)

where µ̃
(t)
t+h and µ̂

(t)
t+h are the restricted and unrestricted leave-h-out forecasts, respectively.

Specifically, µ̃
(t)
t+h is obtained using parameter estimates from the restricted model after

leaving out the observations {t + 1, . . . , t + h}9:

∆yj = β∗0 +
k

∑
s=1

αk∆yj−s + εj, j 6= t + 1, . . . , t + h

Similarly, µ̂
(t)
t+h is obtained from estimating the unrestricted model after leaving out the

observations {t + 1, . . . , t + h}:

yj = β∗0 + β∗1 j + αyj−1 +
k

∑
s=1

αk∆yj−s + εj, j 6= t + 1, . . . , t + h

Then the cross-validation based forecast is µ̂t+h,CV = µ̂t+h1(CV1 ≤ CV0) + µ̃t+h1(CV1 >
CV0). When the number of lags is unknown, the cross-validation criterion is computed for
each of the 2(K + 1) possible models and the selected forecast, denoted µ̆t+h,CV , is the one
that corresponds to the model with the minimum value of this criterion.

Leave-h-out Cross Validation Averaging. When the number of lags is known, the
cross validation weights (ŵ, 1− ŵ) are obtained by minimizing the criterion

CVw =
T−h

∑
t=k+1

{
w(yt+h − µ̂

(t)
t+h) + (1− w)(yt+h − µ̃

(t)
t+h)

}2

and the resulting forecast is µ̂t+h,CV(ŵ) = ŵµ̂t+h + (1− ŵ)µ̃t+h. When the number of lags
is unknown, the partial combination forecast that only combines the unrestricted forecasts
with different lags is obtained as

µ̂t+h,CV(Ŵ) =
K

∑
l=0

ŵl µ̂t+h(l) (A37)
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where Ŵ = (ŵ0, ŵ1 . . . , ŵK)
′ minimizes the criterion

CVP(W) =
T−h

∑
t=k+1

{
K

∑
l=0

wl(yt+h − µ̂
(t)
t+h(l))

}2

(A38)

subject to the restrictions wj ≥ 0 (j = 0, 1, . . . , K), ∑K
j=0 wj = 1, and µ̂

(t)
t+h(l) is the unre-

stricted leave-h-out forecast assuming l first-differenced lags. As with weight selection
using the Mallows criterion, we also construct a general combination forecast that combines
forecasts from the K + 1 unrestricted models as well as the K + 1 restricted models. This
forecast is given by

µ̆t+h,CV(W̆) =
K

∑
l=0

(w̆1l µ̂t+h(l) + w̆0l µ̃t+h(l)) (A39)

with W̆ = (w̆01, w̆02, . . . , w̆0K, w̆11, w̆12, . . . , w̆1K)
′ minimizing the criterion

CVG(W) =
T−h

∑
t=k+1

{
K

∑
l=0

[
w1l(yt+h − µ̂

(t)
t+h(l)) + w0l(yt+h − µ̃

(t)
t+h(l))

]}2

where w1l ≥ 0, w0l ≥ 0, ∑K
l=0(w0l + w1l) = 1, µ̂

(t)
t+h(l) is as defined in (A38) and µ̃

(t)
t+h(l) is

the restricted leave-h-out forecast assuming l first-differenced lags. In what follows, we
will refer to (A37) and (A39) as the CPA (Cross-Validation Partial Averaging) and CGA
(Cross-Validation General Averaging) forecasts, respectively.

APE Selection. With a known number of lags, this forecast is computed from the
model that corresponds to the lower APE between the restricted and unrestricted models:

µ̂t+h,S = µ̃t+h I(APE0 ≤ APE1) + µ̂t+h I(APE0 > APE1)

APE0 =
T−h

∑
i=mh

{yi+h − µ̃i+h}2, APE1 =
T−h

∑
i=mh

{yi+h − µ̂i+h}2

In the unknown lags case, the forecast is computed from the model that minimizes the
APE criterion among all 2(K + 1) possible models, comprising the K + 1 restricted and
K + 1 unrestricted models.

Appendix C. Additional Simulation Results

This Appendix shows simulation evidence to justify the choice of mh = 20.
Figures A1 and A2 plot the difference between the optimal forecast risk (a grid from 20
to 70 in increments of 5) and the risk of the APE selection and APE averaging forecasts
respectively for mh = 20 expressed as a percentage of the forecast risk for mh = 20.
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Figure A1. Forecast risk with optimal mh and mh = 20, APE selection (p = 1).

Figure A2. Forecast risk with optimal mh and mh = 20, APE averaging (p = 1).
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Notes
1 Analytically, the importance of the trend component over long horizons can be seen by noting that the trend/drift coefficient is

multiplied by the forecast horizon when constructing forecasts so that any specification/estimation error is magnified linearly as
the forecast horizon increases (Sampson 1991).

2 The conclusion for the subsequent analysis will not be affected as long as the initial observations are op(T1/2).
3 The figure was obtained by simulating the AMSE and AFR assuming i.i.d. normal errors with T = 1000. 5000 replications were

used.
4 To illustrate the lack of uniformity, consider the case p = 1 with k = 0. Using the same arguments as in the proof of Theorem 2 of

Yu et al. (2012), it follows that, for any finite c ≤ 0, ∑T−h
i=mh
{yi+h − µ̂i+h}2 = E(T2

10) log T + op(log T), where E(T2
10) = 6. The lack

of uniformity follows since E(T2
1c) 6= E(T2

10) for any c < 0.
5 This figure was obtained using the same method as in Figure 1.
6 We do not report the results for the selection forecasts, since their performance relative to the combination forecasts is qualitatively

similar to the known lag-order case. The results are nevertheless available upon request.
7 This choice was also adopted by Ing and Yang (2014) in their Monte Carlo analysis of forecasting using autoregressive models

with positive-valued errors.
8 The data set is publicly available for download at https://research.stlouisfed.org/econ/mccracken/fred-databases/ (accessed on

1 February 2023).
9 Hansen (2010b) instead left out the 2h− 1 observations {t− h + 1, . . . , t, t + 1, . . . , t + h− 1}. The difference emanates from the

fact that he constructs direct forecasts while our forecasts are constructed iteratively which exploit the autoregressive structure
and hence necessitate leaving out only the h observations {t + 1, . . . , t + h}.
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