
Citation: Le Gallo, Julie, and

Marc-Alexandre Sénégas. 2023.

On the Proper Computation of the

Hausman Test Statistic in Standard

Linear Panel Data Models: Some

Clarifications and New Results.

Econometrics 11: 25. https://

doi.org/10.3390/econometrics

11040025

Academic Editor: Xibin Zhang

Received: 7 June 2023

Revised: 31 October 2023

Accepted: 6 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

econometrics

Article

On the Proper Computation of the Hausman Test Statistic in
Standard Linear Panel Data Models: Some Clarifications and
New Results
Julie Le Gallo 1,*,† and Marc-Alexandre Sénégas 2,†

1 Center of Economics and Sociology Applied to Rural Areas, UMR1041, l’Institut Agro Dijon, INRAE,
University Bourgogne Franche-Comté, 21000 Dijon, France

2 Bordeaux School of Economics, UMR CNRS6060, University of Bordeaux, 33000 Bordeaux, France;
marc-alexandre.senegas@u-bordeaux.fr

* Correspondence: julie.le-gallo@institut-agro.fr
† These authors contributed equally to this work.

Abstract: We provide new analytical results for the implementation of the Hausman specification test
statistic in a standard panel data model, comparing the version based on the estimators computed
from the untransformed random effects model specification under Feasible Generalized Least Squares
and the one computed from the quasi-demeaned model estimated by Ordinary Least Squares. We
show that the quasi-demeaned model cannot provide a reliable magnitude when implementing the
Hausman test in a finite sample setting, although it is the most common approach used to produce the
test statistic in econometric software. The difference between the Hausman statistics computed under
the two methods can be substantial and even lead to opposite conclusions for the test of orthogonality
between the regressors and the individual-specific effects. Furthermore, this difference remains
important even with large cross-sectional dimensions as it mainly depends on the within-between
structure of the regressors and on the presence of a significant correlation between the individual
effects and the covariates in the data. We propose to supplement the test outcomes that are provided
in the main econometric software packages with some metrics to address the issue at hand.

Keywords: random effects panel data model; Hausman specification test; quasi-demeaned model

JEL Classification: C12; C23

1. Introduction

As is well known, the implementation of the Hausman specification test (Hausman
1978) might be affected, in practice and in a finite sample setting, by a non-positive defi-
niteness or (in-) definiteness problem for the variance-covariance matrix corresponding to
the difference between the efficient estimator and the consistent estimator1. This, in turn,
can potentially lead to a negative value of the test statistic, which makes it unreliable for
interpreting the test outcome. This problem is usually mentioned in the context of models
using instrumental variables (IV) (Baum et al. 2003, pp. 19–22; Staiger and Stock 1997,
pp. 567–68) where the Hausman test is performed to assess the endogeneity of the regres-
sors, given a set of instruments. In this case, one solution to ensure a symmetric positive
definite (hereafter, SPD) covariance matrix is to use a common and identical estimator for
the variance of the (idiosyncratic) error term when confronting the Ordinary Least Squares
(OLS) and the IV estimators (Hayashi 2000, pp. 220–33; Baum et al. 2003, pp. 19–22).

Yet, although the issue has been pointed out as a warning by Hausman himself when
he addressed the case of a static balanced, panel data model in his seminal presentation of
the test (Hausman 1978, footnote 25, p. 1267), it has not been, to the best of our knowledge,
further formally examined in this specific framework2. This is surprising, as one of the
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most widespread applications of the Hausman test is for assessing the relevance of the
random (RE) versus fixed effects (FE) specification in a panel data model. From our point of
view, this application, however, deserves attention in its own right, and this article aims at
filling this gap. Specifically, our contributions are twofold.

We first provide new and detailed analytical results for the implementation of the
Hausman test in the case of a static and balanced panel data model with individual
effects. In particular, we show that the test statistic is unreliable in a finite sample if
the variance of the RE estimator is computed on the basis of the estimation of the quasi-
demeaned model (we denote it in what follows QDM)3 rather than the conventional
and direct implementation of the Feasible Generalized Least Squares (FGLS) on the RE
panel data model. This result directly follows from the way in which standard errors
are computed under the QDM approach and which can lead to a positive definiteness
problem for the covariance matrix in the Hausman test statistic formula. To establish the
unreliability, we perform a systematic analysis of the difference between the Hausman
statistics computed under the two approaches as well as of the behavior of the statistic that
uses the estimates based on the QDM regression framework. In particular, we show that
the latter mainly depends on the within-between structure of the regressors and on the
presence of a significant correlation between the individual effects and the covariates in
the data4.

Second, based on a review of the main existing econometric software programs that
deal with panel data models, we show that the vast majority of the related packages in
those programs implement, by default, the Hausman test using the unreliable statistic.
This leads us to assess different ways to supplement the test outcomes provided by those
programs and/or to circumvent the reliability problem potentially raised by the use of the
statistic involved.

The outline of the paper is as follows. First, in Section 2, we show how the two
versions of the Hausman test statistics can produce diverging results for some well-known
textbook examples in the context of panel data models. Then, in Section 3, we formalize the
implications of the two approaches for the Hausman statistic and derive new analytical
results regarding the comparison of the two versions of the statistic that follows from each
of the two approaches. We also revisit textbook examples and provide some simulation
results in the one-regressor case. Finally, in Section 4, we detail how the Hausman test
is implemented in a variety of econometric software programs dealing with panel data
models and discuss, on the basis of this review, some possible ways to implement this test
in a reliable and robust manner with this software. The last section concludes.

2. Motivation

In this section, we illustrate the extent to which significant differences in the values
of the Hausman test statistic may arise depending on the approach adopted to estimate
the panel data model parameters and, more particularly, those pertaining to the variance
components under the random effects (RE) specification.

2.1. Notation

All the case studies considered below are for a standard, linear, static, and balanced
panel data model with individual effects (also called the one-way error component-panel
data-model). Accordingly, we consider the following relationship:

yit = α + X ′it · β + uit (1)

where i = 1, ..., N denotes the cross-section dimension; t = 1, ..., T the time-series dimen-
sion; yit the it-th observation of the dependent variable; Xit a column vector of the it-th
observation on K explanatory variables; α an unknown scalar and β a (K× 1) vector of
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unknown parameters, both to be estimated5. The error term uit is assumed to take the
following composite form:

uit = α∗i + εit (2)

where α∗i denotes the (unobservable) individual-specific (or individual) effect-also called
the individual component of uit and εit denotes the idiosyncratic component of uit. Further-
more, we assume that α∗i and εit are independent of each other and that α∗i ∼ I ID(0, σ2

α)
and εit ∼ I ID(0, σ2

ε ). It is also assumed that E[Xis · εit] = 0 for all s = 1, ..., T.
As is well known, two alternative specifications are usually considered regarding the

correlation between the individual effect, α∗i and the regressors contained in Xit. On the
one hand, the random-effects (RE) model assumes that this correlation is zero, ensuring
that Xit is strictly exogenous for uit in (1). On the other hand, the ‘fixed effects’ model
allows for a non-zero correlation between the individual effect and the regressors. The
Within transformation is then used to obtain an unbiased estimate for β.

The Hausman specification test (Hausman 1978) is widely used for testing the no-
correlation assumption underlying the RE specification. In our setting, the test is based
on the asymptotic properties of the RE and Within (or fixed-effects) estimators of β. Both
estimators are consistent under the null hypothesis (of no correlation) while, under the
alternative, only the Within estimator is consistent as the RE estimator is (asymptotically)
biased. Accordingly, the test statistic is built on a distance measure between the Within and
RE estimators. In its implementable version, the statistic writes as:

HM j
O ≡ (β̂W − β̂RE)

′ ·
{

vâr
[

β̂W

]
− vârj

[
β̂RE

]}−1
· (β̂W − β̂RE)

where β̂W and vâr[β̂W ] denote the Within (or fixed effects) estimator of β and a consistent
estimator of its asymptotic covariance matrix, respectively; β̂RE and vârj[β̂RE] denote the RE
estimator of β and a consistent estimator of its asymptotic covariance matrix, respectively.
The index j = 1, 2 indicates that two approaches can be considered to obtain a consistent
estimator of the asymptotic covariance matrix, leading to two versions of the test statistic
(see Section 3.3).

2.2. Motivating Examples

We reproduce some outcomes of panel model estimations for well-known case study
applications taken from main textbooks in the field. In the following tables, Std Err._1 and
Std. Err._2 denote the two sets of standard errors for the parameters implied by the use of
two different estimators for the covariance matrix of the RE estimator (detailed below). The
values of the two related versions of Hausman test statistics are denoted HM1

O and HM2
O.

Other variables and parameters are shown in the tables, the definitions and interpretations
of which are left for discussion in Section 3 where we further comment on those results.

2.2.1. Motivating Example 1: Gasoline

Baltagi (2005) provides an interesting example of an important difference between
the two versions of the Hausman test statistic in a study on the determinants of gasoline
demand over the period 1960–1978 across 18 OECD countries6. The following specification
is adopted:

log[Gas/Car] = α + β1 · log[Y/N] + β2 · log[PMG/PGDP] + β3 · log[Car/N] + u

where Gas/Car is motor gasoline consumption per auto, Y/N is real income per capita,
PMG/PGDP is real motor gasoline price and Car/N denotes the stock of cars per capita.

Table 1 clearly shows that the two values of the Hausman statistic deviate strongly
from each other, even if the null hypothesis is rejected in both cases. It is also interesting to
observe that the two sets of standard errors remain close to each other7.
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Table 1. Estimation results for motivating example 1, Gasoline.

Specification Intercept log[Y /N] log[PMG/PGDP] log[Car/N]

Within/fixed effects Coef. − 0.6622 −0.3217 −0.6405
Std Err. − 0.0734 0.0441 0.0297

Between Coef. 2.5416 0.9676 −0.9635 −0.7953
Std Err. 0.5268 0.1557 0.1329 0.0825

Random effects
Coef. 1.997 0.5550 −0.4204 −0.6068

Std Err._1 0.1782 0.0572 0.0387 0.0247
Std Err._2 0.1843 0.0591 0.0400 0.0255

HM1
O 26.49505

HM2
O 302.8037

σ̂w 2
ε 0.0085

σ̂∗ 2
ε 0.0091
ψ̂2 0.0116
h 1.069

h∗min 1.0409
h∗max 2.0837

Within variance 0.0507 0.0162 0.3089
Between variance 0.3508 0.4424 1.1725

With. var. share (in %) θW 12.6255 3.5325 20.8518
Betw. var. share (in %) θB 87.3745 96.4675 79.1482

2.2.2. Motivating Example 2: Airline

Greene (2000) relies on the following specification concerning the cost function in the
airline industry8:

log[cost] = α + β1 · log[Q] + β2 · log[ f uelprice] + β3 · load f actor + u

where cost is the total cost, in $1000; Q is output, measured in “revenue passenger miles”
(index number); f uelprice is fuel price and load f actor is a rate of capacity utilization: it is
the average rate at which seats on the airline’s planes are filled. The dataset consists of six
firms observed yearly for 15 years (1970 to 1984).

In this case (Table 2), HM1
O > HM2

O while the two values are much closer and clearly
lower than in the previous case. They both lead to the rejection of the null. Also, the two
sets of standard errors are quite close.

The airline case provides further interesting outcomes when the specification is esti-
mated with two covariates. We single out the regression with log[ f uelprice] and load f actor
as the two covariates. The corresponding estimation results are provided in Table 3.

This new set of results is interesting for the negative sign of the computed HM2
O and

furthermore in that HM1
O >

∣∣HM2
O

∣∣. Using the absolute value of the HM2
O statistic to

perform the Hausman test (as some software packages do), the null hypothesis would not
be rejected contrary to the outcome implied by HM1

O. Note at this point that these results
are obtained for a sample distribution of the covariate’s observations featuring a structure
of the variance largely skewed in its within dimension.
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Table 2. Estimation results for motivating example 2, Airline.

Specification Intercept log[Q] log[ f uelprice] load f actor

Within Coef. − 0.9193 0.4175 −1.0704
Std Err. − 0.0299 0.0152 0.2017

Between Coef. 85.8087 0.7825 −5.5239 −1.7510
Std Err. 56.4830 0.1088 4.4788 2.7432

Random effects
Coef. 9.6279 0.9067 0.4228 −1.0645

Std Err._1 0.2098 0.0256 0.0140 0.1998
Std Err._2 0.2102 0.0256 0.0140 0.2000

HM1
O 3.249

HM2
O 2.1247

σ̂w 2
ε 0.0036

σ̂∗ 2
ε 0.0036
ψ̂2 0.0152
h 1.0029

h∗min 1.000
h∗max 1.3690

Within variance 0.1751 0.6521 0.0021
Between variance 1.1340 0.0005 0.0007

With. var. share (in %) θW 13.3777 99.9282 76.0391
Betw. var. share (in %) θB 86.6223 0.0718 23.9609

Table 3. Estimation results for motivating example 2, Airline, two covariates.

Specification Intercept log[ f uelprice] loadfactor

Within Coef. − 0.7445 0.8684
Std Err. − 0.0384 0.6780

Between Coef. 419.760 −32.304 10.964
Std Err. 136.203 10.541 8.880

Random effects
Coef. 3.3673 0.7393 0.9931

Std Err._1 0.4179 0.0384 0.6758
Std Err._2 0.4471 0.0411 0.7230

HM1
O 14.5905

HM2
O −0.2470

σ̂w 2
ε 0.0452

σ̂∗ 2
ε 0.0518
ψ̂2 0.0106
h 1.1447

h∗min 1.0000
h∗max 1.0066

Within variance (1) 0.6522 0.0021
Between variance (2) 0.00047 0.0007

With. var. share (in %) θW 99.9282 76.0391
Betw. var. share (in %) θB 0.0718 23.9609

2.2.3. Motivating Example 3: Wage determination

In another application, Greene (2012) relies on Cornwell and Rupert (2008)’s study
about the determinants of the returns to schooling. The dataset is a balanced panel of 595
observations on heads of households that runs over the period (1976–1982). Among the
specifications examined by Greene, we consider the following one:

log[wage] = α + β1 · EXP + β2 · (EXP)2 + β3 ·WKS + β4 ·OCC + β5 · IND

β6 · SOUTH + β7 · SMSA + β8 ·MS + β9 ·UNION + u
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where EXP denotes the number of years of full-time work experience; WKS, the number of
weeks worked; OCC = 1 if the status of the occupation is blue-collar occupation, 0 if not;
IND = 1 if the individual works in a manufacturing industry, 0 if not; SOUTH = 1 if the
individual resides in the south, 0 if not; SMSA = 1 if the individual resides in a city, 0 if
not; MS = 1 if the individual is married, 0 if not; UNION = 1 if the individual wage is set
by a union contract, 0 if not; lastly log[wage] denotes the log of the (yearly) wage9.

The estimation results are presented in Table 4. Here, even with a large sample
(4765 observations), we observe significant differences between the two Hausman statistics
(which are very large) as well as the two sets of the standard errors for the random effects
model (the ratio of the latter that is provided by

√
h (see later) is close to 1.3).

Table 4. Estimation results for Motivating example 3, Wage.

Specification Intercept Exp (Exp)2 WKS OCC IND SOUTH SMSA MS UN ION

Within Coef. − 0.1132 −0.0004 0.0008 −0.0215 0.0192 −0.0019 −0.0425 −0.0297 0.0328
Std Err. − 0.0025 0.00005 0.0006 0.0138 0.0154 0.0343 0.0194 0.0190 0.014923

Between Coef. 5.7222 0.0275 −0.0005 0.0089 −0.3536 0.0460 −0.1082 0.1815 0.3837 0.0891
Std Err. 0.1918 0.0053 0.0001 0.0040 0.0309 0.0282 0.0284 0.0283 0.0352 0.0324

Random effects
Coef. 5.4668 0.0838 −0.0008 0.0012 −0.1270 −0.0194 −0.0822 −0.0030 −0.0092 0.0374

Std Err._1 0.0417 0.0022 0.0001 0.006 0.0123 0.0134 0.0214 0.0157 0.0165 0.0133
Std Err._2 0.0554 0.0029 0.0001 0.0008 0.0164 0.0178 0.0284 0.0208 0.0219 0.01763

σ̂w 2
ε 0.0231 HM1

O 3177.583
σ̂∗ 2

ε 0.0407 HM2
O 7569.713

h 1.7626 ψ̂2 0.0368
h∗min 1.0221
h∗max 2.6757

h̃ 2.0566

Within variance (1) 4 0.0087 15.5347 0.0300 0.0233 0.0048 0.0149 0.0155 0.0254
Between variance (2) 116.2324 0.0001 10.7666 0.2199 0.2157 0.2012 0.2114 0.1356 0.2061

With. var. share (in %) θW 3.3269 3.3118 59.0643 11.9970 9.7561 2.3308 6.60679 10.2570 10.9640
Betw. var. share (in %) θB 96.6731 96.6881 40.9357 88.0029 90.2439 97.6691 93.3932 89.7430 89.03604

3. The Two Versions of the Hausman Test Statistic

The two versions of the Hausman statistic refer to two possible approaches for esti-
mating the covariance matrix of the estimator of the parameters of the model given in its
RE specification (1) and (2). We first start with a formal and explicit presentation of these
approaches since their implications for the computation of the Hausman test statistic have
remained largely unnoticed.

3.1. The Original Hausman Test Specification in a Balanced Panel Data Model

We rewrite model (1) and (2), stacking the observations over the time and cross-
sectional dimensions:

y = ιNT · α + X · β + u (3)

where y is the (NT× 1) vector for the observations of the dependent variable; ιNT a vector
of ones of dimension NT and X is the (NT × K) matrix including the observations of the
K explanatory variables; u ≡ (u11 · · · u1T · · · uN1 · · · uNT)

′ is the (NT × 1) vector for the
composite error terms. The covariance matrix of u is denoted by Ω. Given the properties of
α∗i and εit, it takes the following form:

Ω = σ2
ε ·Ω∗

with Ω∗ = [W + (1/ψ2) · B], ψ2 ≡ σ2
ε /σ2

αε, σ2
αε ≡ σ2

ε + T · σ2
α , B ≡ IN ⊗ (JT/T) (the Between

operator), W ≡ INT − B (the Within operator), where ⊗ is the Kronecker product, IN
(resp. IT) the (N × N) (resp. (T × T)) identity matrix and JT = ιT · ι′T a matrix of ones of
dimension T.

It is useful to define Ω∗C such that Ω∗C = Ω∗ · (INT − BNT) =
[
W + (1/ψ2) · BC

]
with BC denoting the centered Between operator defined as BC ≡ B − BNT and with
BNT ≡ ιNT ·

(
ι′NT · ιNT

)−1 · ι′NT . We also use Ω∗−
1
2 defined as Ω∗−

1
2 ·Ω∗− 1

2 = Ω∗−1. As B
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and W are symmetric and idempotent, Ω∗−1 = [W + ψ2 · B] and, in turn: Ω∗−
1
2 = [W + ψ ·

B]. The same applies to Ω∗−
1
2

C and Ω∗−1
C with BC replacing B in the previous formulas.

Assume first, that the variance components (and thus Ω, Ω∗ and Ω∗C) are known. Then,
it is well established that:

(1) The RE estimator of β (β̂RE) corresponds to the Generalized Least Squares (GLS)
estimator of β in (3), noted β̂GLS, and is given by (4) with its covariance matrix by (5):

β̂RE = β̂GLS =
(

X′ ·Ω∗−1
C · X

)−1
·
(

X′ ·Ω∗−1
C · y

)
(4)

var
[

β̂RE

]
= var

[
β̂GLS

]
= σ2

ε ·
(

X′ ·Ω∗−1
C · X

)−1
(5)

(2) The Within (or fixed effects) estimator of β, β̂W , is given by (6) and its covariance
matrix by (7):

β̂W =
(
X ′W · XW

)−1 ·
(
X ′W · yW

)
(6)

var
[

β̂W

]
= σ2

ε ·
(
X ′W · XW

)−1 (7)

with yW ≡W · y and XW ≡W · X.
The GLS estimator β̂GLS can alternatively be obtained, using the quasi-demeaned

model (also called the partial Within transformation model) built from (3) with the premul-
tiplying factor10 Ω∗−

1
2 :

y∗∗ = ω∗∗ · α + X∗∗ · β + u∗∗ (8)

with ω∗∗ ≡ ψ · ιNT ; X∗∗ ≡ Ω∗
− 1

2 · X ; y∗∗ ≡ Ω∗
− 1

2 · y ; u∗∗ ≡ Ω∗
− 1

2 · u. It is easy to check
that the OLS estimator of β in (8)-denoted as β̂OLS-corresponds to β̂GLS

11. Also:

var
[

β̂OLS

]
= var

[
β̂GLS

]
= σ2

ε ·
(
X′∗ · X∗

)−1 (9)

where X∗ ≡ Ω∗
− 1

2
C · X which corresponds to (5) as X′∗ · X∗ = X′ ·Ω∗−1

C · X.
Based on the former estimators, the Hausman specification test statistic initially pro-

posed by Hausman (1978) is:

HMO∗ ≡ q̂′ ·
{

var
[

β̂W

]
− var

[
β̂RE

]}−1
· q̂ (10)

with q̂ ≡ β̂W − β̂RE and var(ẑ) denoting the (finite sample) exact covariance matrix of ẑ.
Under the null hypothesis of no-correlation, HMO∗ is asymptotically distributed as a χ2(K).

3.2. Two Estimation Procedures

In practice, Ω, Ω∗ and Ω∗C are unknown and replaced by consistent estimators (noted
Ω̂, Ω̂∗ and Ω̂∗C, respectively12). In this case, the Hausman test statistic is written as:

HMO ≡ β̂′∆WRE ·
{

vâr
[

β̂W

]
− vârj

[
β̂RE

]}−1
· β̂∆WRE

where:
(1) β̂∆WRE ≡ β̂W − β̂RE with, now, β̂RE = β̂FGLS indicating that the RE estimator

corresponds to the Feasible Generalized Least Squares (FGLS) estimator for β (β̂FGLS),
accounting for the use of Ω̂∗C instead of Ω∗C.

(2) vâr(ẑ) is a consistent estimator of the asymptotic covariance matrix of ẑ built upon
the finite-sample estimator of the (exact) variance of ẑ and with j = 1, 2 indicating that, for
the RE estimator, two approaches are available to compute this matrix.

Under suitable conditions assumed to hold in what follows13, β̂FGLS and β̂GLS are
asymptotically equivalent and HMO is, as HMO∗, asymptotically distributed as a χ2(K).
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We now discuss the choice of variance component estimators that are required to
compute HMO.

First, a consistent estimator for var[β̂W ] is: vâr[β̂W ] = σ̂w 2
ε · (X ′W · XW)−1, where

σ̂w 2
ε ≡ (û ′W · ûW)/(N(T − 1)− K) denotes the consistent estimator for σ2

ε built from the
OLS estimation associated with the Within (transformed) regression model, ûW denoting
the (NT × 1) vector of the related residuals.

Second, to obtain vâr[β̂FGLS], two approaches are possible.

3.2.1. Approach 1: The (Direct) FGLS Approach

Relying on the asymptotic equivalence between β̂FGLS and β̂GLS, the computation of a
consistent, asymptotic covariance matrix estimator for var[β̂RE] can be considered directly
from the expression (5) where Ω̂∗C is substituted for Ω∗C and σ̂2

ε for σ2
ε , which yields:

vâr1

[
β̂RE

]
≡ vâr1

[
β̂FGLS

]
= σ̂2

ε ·
(

X′ · Ω̂∗C
−1 · X

)−1
(11)

with Ω̂∗C
−1

= [W + ψ̂2 · BC] and ψ̂2 ≡ (σ̂ 2
ε /σ̂2

αε). σ̂2
ε in (11) should logically be chosen as the

same estimator as the one entering into14 ψ̂2 for computing Ω̂∗C also appearing in (11). One
usually relies on the estimator based on the ‘fixed effects model’ for this purpose, so that
we set σ̂2

ε = σ̂w 2
ε (Swamy-Arora approach). We use that correspondence in what follows.

3.2.2. Approach 2: The Quasi-Demeaning Approach

A consistent (asymptotic) covariance matrix estimator for β̂RE can alternatively be
obtained from the quasi-demeaned regression model (8) considered in its feasible version

with Ω̂∗
− 1

2 substituting for Ω∗
− 1

2 where Ω̂∗
− 1

2 = W + ψ̂ · B and ψ̂ =
√

ψ̂2. We note this
feasible version of the QDM model as the FQDM regression model. In this case, and relying
again on the asymptotic equivalence between β̂GLS and β̂FGLS, the resulting “plug-in”
estimator can then be computed from the formula giving the covariance matrix for the OLS
estimator of β in (8), i.e., (9), where X̃∗ substitutes for X∗ and σ̂∗2ε for σ2

ε :

vâr2

[
β̂RE

]
≡ vâr2

[
β̂FGLS

]
= σ̂∗ 2

ε ·
(

X̃ ′∗ · X̃∗
)−1

(12)

In line with the quasi-demeaning approach, the computation of σ̂∗2ε is, here, usually
considered as a byproduct of the OLS estimation process at work for the FQDM regression
model. Accordingly, σ̂∗ 2

ε is computed as σ̂∗ 2
ε ≡ (̂̃u ′∗∗ · ̂̃u∗∗)/(NT − (K + 1)) where ̂̃u∗∗

denotes the NT vector of the OLS residuals in the FQDM regression model.
From (11) and (12), we observe that vâr1[β̂RE] 6= vâr2[β̂RE] as σ̂w 2

ε 6= σ̂∗ 2
ε . Thus, the

two approaches differ in providing two distinct estimators for the variance of the (RE)
estimator insofar as they rely on two different estimators of the variance component, σ2

ε .
This leads to what we call, in the following, a disturbance variance disconnect problem.15

3.3. Comparing the Two Versions

From the previous results, it follows that two possible expressions are available for an
implementable version of the Hausman test statistic, depending on which estimator of the
asymptotic covariance matrix for β̂RE is chosen.

3.3.1. Two Statistics

Using vâr1[β̂RE], we have:

HM1
O ≡ β̂′∆WRE ·

{
σ̂w 2

ε ·
(
X ′W · XW

)−1 − σ̂w 2
ε ·

(
X̃ ′∗ · X̃∗

)−1
}−1
· β̂∆WRE (13)
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or, using vâr2[β̂RE], we have:

HM2
O ≡ (β̂∆WRE)

′ ·
{

σ̂w 2
ε ·

(
X ′W · XW

)−1 − σ̂∗ 2
ε ·

(
X̃ ′∗ · X̃∗

)−1
}−1
· β̂∆WRE (14)

Hausman (1978) originally proposed using HM1
O, which he considered as the legiti-

mate computational version of HMO∗ (Hausman 1978, footnote 25, p. 1267):16

“Note that the elements of q̂ and its standard errors are simply calculated given
the estimates β̂FE and of β̂FGLS and their standarderrors, making sure to adjust
to use the fixed effects estimate of σ2

ε ”.

On the other hand, as we will see in Section 4, most software programs compute the
Hausman test statistic based on the second measure, HM2

O. Consequently, it is important to
analyze how HM2

O behaves in relation to HM1
O in finite sample settings. For that purpose,

define the ratio h as h ≡ σ̂∗ 2
ε /σ̂w 2

ε . HM2
O can then be rewritten as:

HM2
O = β̂′∆WRE ·

(
σ̂w 2

ε

)−1
·
{(

X ′W · XW
)−1 − h ·

(
X̃ ′∗ · X̃∗

)−1
}−1
· β̂∆WRE (15)

Comparing with (13), we note that HM2
O diverges from HM1

O as h 6= 1.

3.3.2. Main Results

To go further into the comparison of the two versions of the Hausman test statistic, we
rewrite their expressions as:

HM1
O = β̂′∆WRE ·

(
σ̂w 2

ε · Γ
)−1
· β̂∆WRE (16)

HM2
O = β̂′∆WRE ·

(
σ̂w 2

ε · Γ̃
)−1
· β̂∆WRE (17)

where we define Γ = (X′W · XW)−1 − (X̃′∗ · X̃∗)−1 and Γ̃ = (X′W · XW)−1 − h · (X̃′∗ · X̃∗)−1.
From (16) and (17), the comparison between HM1

O and HM2
O is based on the one

between Γ̃ and Γ. Note that (X̃′∗ · X̃∗) = (X ′W · XW) + ψ̂2 · (X ′BC
· XBC ) with XBC ≡ BC · X

and can be rewritten as (X̃ ′∗ · X̃∗) = H∗ · (X′W · XW) where H∗ ≡ IK + ψ̂2 · (X ′BC
· XBC ) ·

(X ′W · XW)−1. It follows that Γ writes as Γ = (X ′W · XW)−1 · (H∗ − IK) · H∗−1 and Γ̃ as
Γ̃ = (X ′W · XW)−1 · (H∗ − h · IK) · H∗−1.

Finally, define h∗min ≡ min(σ(H∗)) and h∗max ≡ max(σ(H∗)) with σ(H∗) denoting the
spectrum of H∗ and with: 1 < h∗min < h∗max.

We establish the following results (see Appendix A for details and related proofs):

1. Γ is a symmetric positive definite (SPD) matrix. It follows that HM1
O is a positive-

definite quadratic form.

2. Γ̃ can be either a symmetric positive or a negative definite matrix or even an indefinite
matrix depending on specific conditions holding for h. As a consequence, HM2

O can
be of either sign (and even of indeterminate sign a priori) depending on the values
taken by h. Specifically, we have:

(a) Γ̃ is a symmetric positive definite (SPD) matrix iff h < h∗min. In this case, HM2
O

is a positive-definite quadratic form

(b) Γ̃ is a symmetric negative definite (SND) matrix iff h > h∗max. In this case,
HM2

O is a negative-definite quadratic form

(c) Γ̃ is indefinite iff h∗min ≤ h ≤ h∗max. In this case, HM2
O can be of either sign,

which is indeterminate a priori.
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Based on those results, comparing HM2
O relative to HM1

O depends on whether Γ̃ is
SPD or SND. We then have:

1. If Γ̃ is SPD, the relevant comparison relies upon the magnitude (HM2
O − HM1

O). We
have HM2

O ≷ HM1
O whenever h ≷ 1

2. If Γ̃ is SND, it necessarily follows that HM2
O < 0 < HM1

O.

In establishing those results, we directly echo the discussions, mentioned in the
introduction, about the positive definiteness of the variance-covariance matrix estimator
in the expression of the Hausman test statistic. As we observe, whether this matrix is
SPD or not (which translates into whether Γ or Γ̃ is SPD or not) depends on the choice of
the estimator for σ2

ε , which, itself, hinges on the approach that is adopted to estimate the
variance components associated with the RE model. In other terms, Γ is, by construction,
an SPD matrix, and this has to be related to the use of the same estimator for σ2

ε , i.e., σ̂w 2
ε ,

in the computation of the covariance matrix estimator. On the other hand, this is not
necessarily the case for Γ̃ and this has to do with the fact that two different estimators have
been considered for σ2

ε , σ̂w 2
ε and σ̂∗ 2

ε (h 6= 1).
Table 5 provides an overview of all possible cases. A wide spectrum of outcomes can

be obtained for the value of HM2
O depending on the value of h. Unreliable results for the

test may arise notably when HM2
O is negative.

Table 5. Review of all cases.

h < h∗min
(Γ̃ is SPD and HM2

O > 0)

0 < h < 1 < h∗min Γ̃� Γ HM1
O> HM2

O > 0
1 < h < h∗min Γ �Γ̃ HM2

O> HM1
O > 0

h∗min< h < h∗max
(Γ̃ and sign of HM2

O a priori indefinite)

1 < h∗min< h < h∗max Γ̃ indefinite HM1
O ≶ HM2

O

h∗max < h
(Γ̃ is SND and HM2

O < 0)

1 < h∗max< h Γ̃ negative definite HM1
O > 0 > HM2

O

3.3.3. Back to the Case Studies

Based on h and the proposed metrics for H∗, we can now analyze the mechanisms
driving the various outcomes observed for the case studies selected in Section 2.2.

From Tables 1–4, in 3 cases out of 4, h∗min < h < h∗max. It follows that in those cases,
Γ̃ is an indefinite matrix. As a consequence, the sign of HM2

O is a priori indeterminate as
well the relative magnitudes of HM1

O and HM2
O. The observed outcome depends on the

specific value taken by β̂∆WRE for the sample considered.
Conversely, in the two covariates’ regression case drawn from Greene, where HM2

O is
computed as a negative scalar, we logically have h > h∗max and even h > 2 · h∗max − 1 which
is consistent with HM1

O >
∣∣HM2

O

∣∣, what we, by the way, also observe.

3.4. What about h?

As we have shown, the value of h is key for determining the outcome of the Hausman
test if it is measured through HM2

O. In this section, we analyze the main determinants for
this ratio and provide an illustration through simulations in the single regressor case.

3.4.1. Determinants

The value of h essentially derives from the comparison between σ̂w 2
ε and σ̂∗ 2

ε and
therefore, in turn, from the two residual sums of squares that are associated with, respec-
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tively, the Within model (û ′W · ûW) and the feasible, quasi demeaning model (̂̃u ′∗∗ · ̂̃u∗∗). We
show (see Appendix B) that the following relationship holds between the two expressions:

̂̃u ′∗∗ · ̂̃u∗∗ = û ′W · ûW + ψ̂2 · û ′B · ûB + ∆∗ (18)

where ûB denotes the NT vector of the OLS regression residuals for the Between (trans-
formed) regression model yB = ιNT · α + XB · β + uB with yB ≡ B · y ; XB ≡ B · X ,
uB ≡ B · u and where ∆∗ is defined as:

∆∗ ≡
(

β̂W − β̂RE

)′
· Γ−1 ·

(
β̂W − β̂RE

)
where Γ−1 is defined as in (16) and can be written as: Γ−1 = (ψ̂2)

−1 · (X′W · XW) · (X′BC
·

XBC )
−1 · (X̃′∗ · X̃∗). From the definition of σ̂2

αε and σ̂w 2
ε , we obtain û ′B · ûB = (N − (K + 1)) ·

σ̂2
αε and û ′W · ûW = (N(T − 1)− K) · σ̂w 2

ε , so that (18) can be rewritten as:

σ̂∗ 2
ε =

[
1− K

NT − (K + 1)

]
· σ̂w 2

ε +
∆∗

NT − (K + 1)
(19)

from which it follows that:

h = 1 + η ·
(

∆∗

K · σ̂w 2
ε
− 1
)

(20)

with η ≡ K/(NT− (K + 1)). Furthermore, considering the definition of HM1
O given in (16),

we have: ∆∗ = σ̂w 2
ε · HM1

O and therefore:

h = 1 +
HM1

O − K
NT − (K + 1)

(21)

so that h ≷ 1 whenever HM1
O ≷ K.

Taking advantage of the relationship between h and HM1
O, we identify two categories

of determinants for HM1
O and h from (16) and (21):

• The first category is related to the structure of the data at hand, i.e., the Between and
Within components of the (empirical) covariance matrix of the explanatory variables.
They are captured by the matrices (X′W · XW) and(X′BC

· XBC ), which influence the
structure of H∗ (and therefore the magnitude of its eigenvalues).

• The second category is linked to the correlation between the individual effects αi and
the regressors contained in Xit, which determines the extent of the (asymptotic as well
as finite sample) bias for β̂RE (with respect to β). This affects the gap between β̂W (that
is unbiased) and β̂RE and therefore the value of β̂∆WRE.

These same factors in turn influence the determination of HM2
O, the value of which is

mostly linked to the comparison between h and the eigenvalues of H∗.
With respect to the behavior of HM2

O compared to HM1
O, two mechanisms are at work.

Assume that HM1
O is large because of a significant distance between the RE and Within

estimator. On the one hand, we could expect that HM2
O will also be large and therefore that

both statistics will correctly lead to reject the null hypothesis. This is because when HM1
O is

large, the further h will be from 1 from the upside, and in turn, the more likely it will be for
the condition 1 < h to prevail, which leads to HM2

O > HM1
O as long as h remains below

hmin. On the other hand, the larger HM1
O, the more likely it will actually be that h > hmin

and this could be all the more the case as the structure of the covariance matrix would be
such that hmin (or even hmax) is relatively small. In this case, the sign of HM2

O becomes
indeterminate which does not allow for a clear conclusion about the relative magnitude of
the two test statistics and creates a possible divergence for the interpretation of the test.
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3.4.2. Illustrations in the Single Regressor Case

To illustrate the role of the previous factors as well as to clarify their interpretation, we
perform Monte-Carlo simulations on the behavior of the main magnitudes involved in the
comparison between (HM1

O) and (HM2
O) in a single-regressor model (K = 1).

Preliminary Results

In such a setting, X ={x} and the various expressions for the main estimators and
statistics simplify accordingly. We measure the total sample variance in the observations for
x with s2

x where s2
x = (N · T)−1 · x2

T and x2
T ≡ x′·IC·x, with IC ≡ INT − BNT . We then define

x2
W ≡ x′·W·x and x2

BC
≡ x′·BC·x. By construction, we have x2

T = x2
BC

+ x2
W . Hence, x2

W and
x2

BC
can be used as a measure of, respectively, the Within and the Between components

(up to a NT- factor) of the total (empirical) variance in the NT observations contained in x.
Finally, define θW = x2

W/x2
T the share of the Within variance in the total variance. Then,

substituting, we obtain:

hmin = hmax ≡ h∗ = 1 +
ψ̂2 · x2

BC

x2
W

= 1 +
ψ̂2 · (1− θW)

θW

HM1
O = ν · x2

W ·
h∗

h∗ − 1

h = 1 + η ·
(

ν · x2
W ·

h∗

h∗ − 1
− 1
)

HM2
O = ν · x2

W ·
h∗

h∗ − h

with ν = (σ̂2
ε )
−1 · (β̂∆WRE)

2 and η = 1/(NT − 2).

Design of Simulations

We perform Monte-Carlo simulations on the behavior of the previous four quan-
tities, h∗, h, HM1

O and HM2
O. The details of the simulation design are presented in

Appendix C. We generate several series of ya
it based on a model ya

it = α + β · xa
it + ua

it,
where we fix α = β = 1 and we let the other parameters of the simulation vary: N =
(20, 40, 80), T = (20, 40, 80), s2

x = (0.01, 1, 100), θW = (0.1, 0.5, 0.9), σ2
u = (0.01, 1, 100),

ρxu = (−0.99,−0.9,−0.5, 0, 0.5, 0.9, 0.99) and ρu = (0.1, 0.5, 0.9) with the same notations
as before, ρxu is the correlation between x and u (on the cross-sectional dimension) and
ρu is the intra-class coefficient of the error term (share of the within variance in the total
variance in u)17. Then, for each combination of the parameters, we perform 199 replications
and compute the median of HM1

O and HM2
O. To explore the main dimensions of variability

of HM1
O and HM2

O, we perform an ANCOVA analysis (Table A2 in Appendix C) where
we regress, respectively, each of the means and medians on the levels of the different
parameters and the interactions that we found significant.

Results of the Simulations

The results are similar whether we consider the mean or the medians over the repli-
cations of the levels of HM1

O and HM2
O for each combination of parameters. The value

of HM1
O and HM2

O significantly depend on T, θW , high absolute values of ρxu and ρu.
Conversely, the scale parameters x2

T and σ2
u do not have a significant impact on HM1

O
and HM2

O.
The visual representation of the behavior of (the median) HM1

O and HM2
O for N = 80,

T = 80, s2
x = σ2

u = 1 and ρu = 0.5 is in Figure 1. This illustrates the strong dependence of
the values of the Hausman statistics on θW on the one hand and on the correlation between
x and u on the other hand. In particular, for high absolute values of ρxu and high values of
θW , HMO2 even yields negative values.
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This latter result is, for example, consistent with the regression outcomes obtained
with log[ f uelprice] as a single covariate in the framework of motivating Example 2 [Airline].
In this case (see Table A3), HM2

O is computed as a negative scalar with HM1
O >

∣∣HM2
O

∣∣.
Note also the extremely large value of θW for the covariate which partly drives the values
taken by h∗ and h.

Figure 1. Distribution of the median of HM1
O and HM2

O, N = 80, T = 80, s2
x = σ2

u = 1 and ρu = 0.5.

Finally, looking more closely at the distribution of negative values for HM2
O (Figure A1

in Appendix C), we clearly see that they are an increasing function of ρu, θW and ρxu
(correlation between x and u) in absolute value. While the empirical size of both tests
remains around 5% with little variations for the various values of the parameters, the power
of HM2

O consequently drops to 0 for the highest values of ρu, θW and ρxu (Figure A2 in
Appendix C).

4. The Implementation of the Hausman Test in Standard Econometric Software
Packages for Panel Data: A Brief Review and Discussion

In this section, we review how six well-known econometric software packages deal
with the implementation of the Hausman test in a standard panel data model and provide
some discussion.

4.1. Review

• STATA programming commands for the estimation of the random-effects panel data
models (xtreg with the re option) rely on the specification of the quasi-demeaned
model in (8). As a consequence, the random effects parameter estimates as well as
its “conventional” covariance matrix estimate are provided as standard outputs of
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the OLS regression performed on that model. In particular, the vce(conventional) -
default - command yields the (asymptotic) covariance matrix estimate based on the
standard variance estimator for OLS regression. This corresponds to vâr2[β̂FGLS] with,
accordingly, σ̂∗ 2

ε used for the residual variance estimate. The default version of the
command for implementing the standard Hausman test (the hausman command)
corresponds accordingly to HM2

O.

• The R PLM package developed by Croissant and Millo (2008) allows estimating a
wide range of panel data models with R software. Regarding the random-effects
specification, the estimation process can be implemented via the plm function, whose
model argument takes the random option. Croissant and Millo (2008) point out that
it could have been possible to program the computation of the covariance matrix
estimator for β̂FGLS directly from the formula (11), “once the variance components have
been estimated and hence the covariance matrix of errors”. However, to limit the computa-
tional costs associated with the inversion of the (NT × NT) matrix (Ω̂) or (Ω̂∗C) and
the related memory limits to store it, plm resorts to the specification and estimation of
the quasi-demeaning estimator (8). Then, the coefficients’ covariance matrix estimator
is readily calculated by applying the standard OLS formulas which, in the R language,
go through the vcov() command.

The phtest command computes the Hausman test in plm. Its main arguments are
the two-panel model objects that underlie the comparison (ex. model = within and
model = random). The corresponding estimates of the asymptotic covariances ma-
trices provided under both models are thus used to compute the Hausman statistic
corresponding to HM2

O.

• EViews estimates the random effects models using feasible GLS. The first step refers
to the estimation of the covariance matrix for the composite error formed by the effects
and the idiosyncratic disturbance. The EViews 9 User’s Guide II notes “Once the
component variances have been estimated, we form an estimator of the composite residual
covariance, and then GLS transform the dependent and regressor data”. As for the computa-
tion of the FGLS estimate, Eviews uses the quasi-demeaned model specification and
proceeds on this basis. However, the calculation of the related coefficients’ covariance
matrix is based on the direct application of the formula (11) and thus corresponds to
vâr1[β̂FGLS]. The procedure for the Hausman test then corresponds to HM1

O.

• MATLAB provides estimation methods for the standard fixed (Within), between,
and random effects models with the the panel data toolbox. Panel data models are
estimated using the panel (·) function with the options argument set to re for the
random effects model specification. The random effects FGLS estimates are based
on the quasi-demeaned model and the asymptotic variance-covariance matrix for
statistical inference is accordingly provided by vâr2[β̂FGLS] (see Equation (18) in
Alvarez et al. (2017)). Then, hausmantest computes the Hausman test where the input
of the hausmantest function requires the output structures of the two estimations to
be compared. Accordingly, the statistics that are computed correspond to HM2

O.

• GAUSS: The GAUSS Times Serie∞s MT 3.0 TSMT provides a fixed effects and ran-
dom effects models (TSCS) package that can be implemented through the tsmt library
and the one-in-all tscsFit procedure. Another possibility is to use the pdlib GAUSS
library and the randomEffects procedure in it. Both procedures implement the quasi-
demeaning transformation on the original dataset and apply the standard OLS estima-
tor on the transformed data so as to form the FGLS estimate. The covariance matrix
estimate comes as a direct by-product of the OLS outcome so that vâr2[β̂FGLS] is used.
The Hausman test provided in the tscsFit procedure is implemented accordingly and
corresponds to HM2

O.

• SAS (SAS ETS 13.2) provides estimation methods for the standard fixed (Within),
between, and random effects models in the balanced and unbalanced cases with
the PANEL procedure toolbox. Standard panel data models are estimated using the
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PROC PANEL command with the MODEL statement specifying the regression model and
the assumptions for the error structure. Specifically, FIXONE and RANONE must be
used to specify the fixed-effect and the random-effect models, respectively (in the
cross-sectional one-way case). In the latter case, various methods (but not the Swamy-
Arora approach) are proposed to estimate, in the first stage, the variance components
(through the VCOMP = option). It is explicitly indicated that the random effects FGLS
estimates are then based, in the balanced case, on these variance components estimates
through the quasi-demeaning approach, where ‘the random effects β is then the result
of simple OLS on the transformed data’ (see SAS ETS 13.2 User Manual (2014), p. 1417).
The estimator for the asymptotic variance-covariance matrix is thus provided by
vâr2[β̂FGLS]. The Hausman statistic is automatically generated and reported as a
conventional F statistic, with the statistic computed as HM2

O.

4.2. Discussion

As the previous review indicates, in all but one of the packages discussed above, the
Hausman test is, by default, implemented through the computation of HM2

O with the
quasi-demeaning estimator. The rationale for such a choice is computational. Indeed,
the quasi-demeaning approach allows avoiding the inversion of the (NT × NT) matrix
Ω̂ or Ω∗C, which can be computationally costly (in terms of time and rounding errors).
Conversely, the quasi-demeaned model only requires partially demeaning the variables
with θ ≡ 1− ψ̂ as the partial demeaning factor. Yet, as a counterpart of this standard OLS
regression, σ̂∗ 2

ε is naturally chosen to compute the residual variance estimate and, in turn,
yields to HM2

O, which might, as we have seen, be an unreliable statistic for the Hausman
test. In what follows, we explore some ways to circumvent the problems posed by the use
of this statistic.

(1) First, it is possible to compute HM1
O and still rely on the quasi-demeaning approach

to estimate the parameters of the RE model (which, as mentioned before, is the default case
in the vast majority of available econometric software). This can been easily seen from the
relationship (21) that we established between h and HM1

O. Once h has been determined,
which only requires the OLS residual sums of squares from the estimation of the Within
and the quasi-demeaning estimator, we can derive HM1

O. Hence, the following procedure
can be suggested, if required, to supplement the existing programs.

1. Use the quasi-demeaning estimator to compute the RE estimator for β and σ̂∗ 2
ε .

2. Use σ̂∗ 2
ε and σ̂w 2

ε (within regression) to compute h.

3. Rearranging (21), obtain HM 1
O from h as: HM 1

O = (NT − (K + 1)) · (h− 1) + K.

4. Implement the Hausman test on the basis of HM 1
O .

(2) Second, depending on the software packages considered, some programming
options can be used to fix the potential ‘variance disconnect’ problem associated with the
use of the statistic HM2

O.
For example, in STATA, it is possible to use the sigmamore and/or sigmaless option

commands when implementing the Hausman test. As indicated in STATA instructions:
“sigmamore and sigmaless specify that the two covariance matrices used in the test be based on
a common estimate of disturbance variance. sigmamore specifies that the covariance matrices
be based on the estimated disturbance variance from the efficient estimator. sigmaless specifies
that the covariance matrices be based on the estimated disturbance variance from the consistent
estimator”. Following the lines of Hausman’s seminal approach would lead to the choice of
sigmaless option, whereby the variance estimator, is based on the Within model, would be
used18. This would ensure the test to be performed upon the HM1

0 statistics. The choice
of sigmamore19 would imply to consider a third test statistics, HM 3

0 , where the common
disturbance variance estimator would be based on the quasi-demeaned model, so that
we would have: HM 3

O = β̂′∆WRE ·
(
σ̂∗ 2

ε · Γ
)−1 · β̂∆WRE. Comparing HM 3

O and HM 1
O , we
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observe that HM 1
0 > HM 3

0 whenever h < 1. Thus, the more likely it would be to favor
(even unduly) the rejection of the null hypothesis on the basis of HM3

0 when h > 1.
Some packages also offer the possibility to rely on an alternative expression for the

Hausman statistic that does not involve the use of the RE estimator, so that it is immune to
the variance disconnect problem. This expression was initially proposed by Hausman and
Taylor (1981) and is based on the difference between the Between and Within estimators
q̂∗∗ ≡ β̂W − β̂B. Hausman and Taylor (1981, pp. 1382–83), establish that the resulting
version of the Hausman statistic is numerically exactly identical to the one that is built upon
q̂ and used above, that is: q̂ ′ · [var(q̂)]−1 · q̂ = q̂∗∗ ′ · [var(q̂∗∗)]−1 · q̂∗∗. Such a solution can
be notably implemented in the R PLM package using the phtest command and specifying
as arguments model = within and model = between.

(3) Finally, two other approaches that depart from the separate estimation of the FE
and RE model parameters - which underlies the standard implementation of the Hausman
test - can be emphasized. They have the advantage of solving the disturbance variance
estimator disconnect problem, while allowing, more generally, for a robust implementation
of the Hausman test20.

(3.1) The first of these approaches relies on implementing an auxiliary regression, that
was initially proposed by Hausman himself together with the presentation of the standard
specification test (see also Mundlak 1978). This regression takes the following form:

ỹ∗∗ = Z̃∗∗ · δ + XW · γ + η

with Z̃∗∗ ≡
[

ω̃∗∗
... X̃∗∗

]
where ω̃∗∗ ≡ ψ̂ · ιNT and X̃∗∗ ≡ Ω̂∗

− 1
2 · X ; ỹ∗∗ ≡ Ω̂∗

− 1
2 · y and η

a vector of standard random disturbances.
It can be shown that the formula of the standard Wald test statistic for testing whether

γ = 0 in the previous regression framework is equivalent to the one of the standard
Hausman test statistic as expressed in terms of the difference between the Between and
Within estimators (see Hausman and Taylor 1981 and above)21. Resorting to this auxiliary
regression framework has two advantages. First, it involves only one estimator for the
covariance matrix in the Wald test statistic formula, that one for γ, which is immune to
the positive definiteness problem that can be encountered with the standard Hausman test
statistic. Second, and as underlined by Baltagi and Liu (2007), it can be made robust to
heteroskedasticity of unknown form (see, also, Arellano 1993).22 Once the variables have
been transformed to be included as regressors in the auxiliary regression framework, the
latter can be implemented in a rather standard way in any of the software econometric
packages we have reviewed supra.

(3.2) The second approach goes through implementing White (1982)’s reformulated
Hausman specification test that is based on the Maximum Likelihood (ML) estimation of
the FE and RE model parameters. The related test statistic takes the form:

HW = n ·
(

β̃W
MLE − β̃RE

MLE

)′
· S̃ ·

(
β̃W

MLE − β̃RE
MLE

)
with n ≡ (N · T) and β̃W

MLE (resp. β̃RE
MLE) denoting the ML estimator related to the Within

(resp RE) regression framework; S̃ would serve as the covariance matrix estimator and
involves the information matrices for both estimators of β, as well as outer products of
scores within and between the two models under concern. White (1982) shows that S̃
remains positive definite even under misspecification (including heteroskedasticity).

The last two procedures we have presented could even be suggested to be used in the
first place when assessing the relevance of the RE-model specification as they allow for
globally robust implementation of the Hausman test in the context of panel data models
(if only, insofar as they do not require to be directly based on the use of the RE (FGLS)
disturbance variance estimator).
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5. Conclusions

In this paper, we provide new analytical results of the behavior of the Hausman
statistic for the test of orthogonality between the individual effects and the error term in a
static and balanced panel data model. We compare the Hausman statistic computed with
direct FGLS implementation and the Hausman statistic computed on the quasi-demeaned
model. We show that this difference depends upon several parameters; in particular, the
between-within structure of the regressors. We show by means of a Monte Carlo simulation
in the single regressor case and of a set of well-known textbook examples that the difference
can be substantial and that in some cases, the Hausman statistic computed on the basis
of the quasi-demeaned model can yield strong negative values. Therefore, despite its
computational advantage, the quasi-demeaned model should not be used prima facie as the
basis of the computation of the Hausman statistic. We suggest, if needed, to supplement the
existing software instructions so as to be able to compute in any case the relevant statistic.
Extensions can include deriving these analytical results for unbalanced panel data models,
two-way component models and dynamic panel models.
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Appendix A. Hausman Test Statistics

Appendix A.1. Matrix Conditions

We first prove the following lemma (denoted below as Lemma A1):

Lemma A1. Let R and M be two (square) matrices of size K. We assume that R and (R ·M) are
symmetric positive definite (SPD). Then, M can be diagonalized and there exists a non singular
matrix P such that:

P′ · R · P = I (A1)

and
P′ · R ·M · P = diag[λi(M)] (A2)

with λi(M) denoting the i-th eigenvalue of matrix M and diag[λi(M)] the diagonal matrix whose
elements are the eigenvalues of matrix M (i = 1, ...K).

Proof. According to the spectral theorem (see Axler 2014), there exists a non-singular
matrix OR such that

O−1
R · R ·OR = diag[λi(R)], O

′
R = O−1

R , 0 < λi(R), ∀i

with λi(R) denoting the i-th eigenvalue of matrix R and diag[λi(R)] the diagonal matrix
whose elements are the eigenvalues of matrix R (i = 1, ...K).
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It follows that:

diag

[
1√

λi(R)

]
·O ′

R · R ·OR · diag

[
1√

λi(R)

]
= I

so that:

Q
′ · R ·Q = I, with Q ≡ OR · diag

[
1√

λi(R)

]
(A3)

We then consider the symmetric (positive definite) matrix C, defined as:

C ≡ R ·M

Consider in turn the matrix Q
′ · C ·Q that is symmetric. The spectral theorem ensures

that there is an non-singular matrix OC that satisfies:

O−1
C ·Q

′ · C ·Q ·OC = diag[λi(Q ′ · C ·Q)] with O−1
C = O ′C (A4)

Define the following matrix:
P ≡ Q ·OC (A5)

(A4) ensures that
P ′ · C · P = diag[λi(Q ′ · C ·Q)]. (A6)

We have:
P ′ · R · P = O ′C ·Q ′ · R ·Q ·OC = O ′C ·OC = I

which leads to (A1).
Taking into account this result and refering on (A6), we see that:

diag[λi(Q ′ · C ·Q)] = P ′ · R ·M · P
= P ′ · R · (P · P−1) ·M · P
= (P ′ · R · P) · P−1 ·M · P = P−1 ·M · P

This shows that M can be diagonalized and that

diag[λi(M)] = diag[λi(Q ′ · C ·Q)] = P ′ · R ·M · P (A7)

which is (A2).

Appendix A.2. Applications

We obtain the following properties and results:

• We first note that Γ ≡ (X′W · XW)−1 − (X̃′∗ · X̃∗)−1 and Γ̃ ≡ (X′W · XW)−1 − h · (X̃′∗ ·
X̃∗)−1 are two symmetric (real valued) matrices. This comes from the definition of
(X̃ ′∗ · X̃∗) which is computed as the sum of two symmetric matrices, (X̃′∗ · X̃∗) =
(X ′W · XW) + ψ̂2 · (X ′BC

· XBC ).

• We have23 (X̃ ′∗ · X̃∗) � (X ′W ·XW) and, in turn24, (X ′W ·XW)−1 � (X̃ ′∗ · X̃∗)−1. It follows
that Γ is a symmetric positive definite (SPD) matrix.

As defined in the main text, H∗ ≡ IK + ψ̂2 · (X ′BC
·XBC ) · (X ′W ·XW)−1 while

(
X̃ ′∗ · X̃∗

)
=

H∗ · (X′W · XW). Then:

• Note R = (X′W · XW)−1 · H∗−1 and M = H∗. By construction R and (R ·M) are two
real positive symmetric definite matrices (this is because R ·M = (X′W · XW)−1 and
that R can be written as R = [(X ′W · XW) + ψ̂2 · (X ′BC

· XBC )]
−1which is the inverse of

the sum of two symmetric positive definite matrices).
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We then deduce from Lemma1 that H∗ can be diagonalised and that there exists a non
singular matrix P such that :

diag[λi(H∗)] = P ′ ·
(
X′W · XW

)−1 · H∗−1 · H∗ · P

= P ′ ·
(
X′W · XW

)−1 · P

As [P ′ ·
(
X′W · XW

)−1 · P] is SPD (given that
(
X′W · XW

)−1 is itself SPD), this ensures
that the spectrum of H∗ is only composed of strictly positive elements.

• Let R = (X′W · XW)−1 and M = H∗−1. By construction, R and (R ·M) are again
two real symmetric positive matrices. We deduce from Lemma1 that H∗−1 can be
diagonalised and that there exists a non singular matrix P such that:{

P ′ ·
(
X′W · XW

)−1 · P = I
P ′ ·

(
X′W · XW

)−1 · H∗−1 · P = diag[λi(H∗−1)] = diag[λ−1
i (H∗)]

• Noticing that Γ =
(
X ′W · XW

)−1 · (H∗ − IK) · H∗−1 =
(
X ′W · XW

)−1 −
(
X ′W · XW

)−1 ·
H∗−1, then, on the basis of the results above, we can write (P ′ · Γ · P) as:

P ′ · Γ · P = diag
[

1− 1
λi(H∗)

]
Then, let x denote a non-null vector, and setting y ≡ P−1 · x, we obtain the spectral
decomposition of Γ as:

x ′ · Γ · x = y ′ ·
(

P ′ · Γ · P
)
· y = ∑

i

(
1− 1

λi(H∗)

)
· y2

i

Since we know that Γ is SPD, we obtain from the latter decomposition that ∀i, 1−
1/(λi(H∗)) > 0. which implies that h∗min > 1.

• Further, noticing that Γ̃ = (X ′W · XW)−1 · (H∗ − h · IK) · H∗−1 = (X ′W · XW)−1 − h ·
(X ′W · XW)−1 · H∗−1 and proceeding as for above, we can write (P ′ · Γ̃ · P) as:

P ′ · Γ̃ · P = diag
[

1− h
λi(H∗)

]
Let x denote a non-null vector, and setting y ≡ P−1 · x, we obtain the spectral decom-
position of Γ̃ as:

x ′ · Γ̃ · x = y ′ ·
(

P ′ · Γ̃ · P
)
· y = ∑

i

(
1− h

λi(H∗)

)
· y2

i

From this spectral decomposition, we conclude that

– Γ̃ will be SPD if and only if ∀i, 1− h
λi(H∗) > 0, that is, if and only if h < h∗min is

fulfilled.

– Γ̃ will be SND if and only if ∀i, 1− h
λi(H∗) < 0, that is, if and only if h > h∗max is

fulfilled.

We now use the previous results to compare HM1
O and HM2

O. For that purpose,
we must distinguish according to whether HM2

O is (for sure) a positive or (for sure) a
non-positive quadratic form. This does in turn depend on whether Γ̃ is SPD or SND.
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• If Γ̃ is SPD, the relevant comparison can be built on the magnitude HM1
O − HM2

O. The
former can be written as:

HM1
O − HM2

O = β̂′∆WRE ·
(

σ̂w 2
ε

)−1
·
[
Γ−1 − Γ̃−1

]
· β̂∆WRE

=
(

σ̂w 2
ε

)−1
· β̂′∆WRE · Ξ · β̂∆WRE

with Ξ ≡ Γ−1 − Γ̃−1.

Thus, HM1
O ≷ HM2

O whenever Ξ is SPD or SND. Given the definition of Ξ, and since
Γ̃ is SPD, this, in turn, depends on whether Γ̃− Γ is SPD or SND.

Then, observe that Γ̃− Γ = (1− h) · (X ′W · XW)−1 · H∗−1.

As (X ′W · XW)−1 · H∗−1 is SPD, it follows that whether Γ̃− Γ is SPD or SND depends
on whether h ≶ 1.

• If Γ̃ is SND, the relevant comparison is between HMO1 and |HMO2|, and can be built
on HMO1 − |HMO2| . The former magnitude can be written as:

HM1
O − |HMO2| = β̂′∆WRE ·

(
σ̂w 2

ε

)−1
·
[
Γ−1 − Γ̃∗−1

]
· β̂∆WRE

=
(

σ̂w 2
ε

)−1
· β̂′∆WRE · Ξ∗ · β̂∆WRE

where Γ̃∗ = −Γ̃ and Ξ∗ ≡ Γ−1 − Γ̃∗−1.

Thus, HM1
O ≷ |HMO2| whenever Ξ∗ is SPD or SND. Given the definition of Ξ∗, and

as Γ̃∗ is SPD (since Γ̃ is SND), this, in turn, depends on whether Γ− Γ̃∗ is SND or SPD.

Then, observe that Γ− Γ̃∗ = Γ + Γ̃ = 2 · (X ′W · XW)−1 − (1 + h) · (X ′W · XW)−1 · H∗−1.

Proceeding as for Γ̃ above, we can write (P ′ ·
(

Γ + Γ̃
)
· P) as:

P ′ ·
(

Γ + Γ̃
)
· P = diag

[
2− 1 + h

λi(H∗)

]
Note by x a non-null vector, and setting y ≡ P−1 · x, we obtain the spectral decompo-
sition of (Γ + Γ̃) as:

x ′ · (Γ + Γ̃) · x = y ′ · (P ′ · (Γ + Γ̃) · P) · y = ∑
i
(2− 1 + h

λi(H∗)
) · y2

i

From this spectral decomposition, we conclude that:

– (Γ + Γ̃) will be SPD if and only if ∀i, 2 − 1+h
λi(H∗) > 0, that is, if and only if

h < 2 · h∗min − 1.

– Conversely, (Γ + Γ̃) will be SND if and only if ∀i, 2− 1+h
λi(H∗) < 0, that is, if and

only if h > 2 · h∗max − 1.

Hence, we obtain the following table covering all cases:
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Table A1. Review of all cases.

h < h∗min
(Γ̃ is SPD and HM2

O > 0)

0 < h < 1 < h∗min Γ̃� Γ HM1
O> HM2

O
1 < h < h∗min Γ �Γ̃ HM2

O> HM1
O

h∗min< h < h∗max
(Γ̃ and sign of HM2

O a priori indefinite)

1 < h∗min< h < h∗max Γ̃ indefinite HM1
O ≶ HM2

O

h∗max < h
(Γ̃ is SND and HM2

O < 0)

1 < h∗max< h < 2 · h∗min−1 Γ �
(
−Γ̃
) ∣∣∣HM2

O

∣∣∣> HM1
O

2 · h∗min−1 < h < 2 · h∗max−1
(

Γ + Γ̃
)

indefinite
∣∣∣HM2

O

∣∣∣≶ HM1
O

2 · h∗max−1 < h
(
−Γ̃
)
� Γ HM1

O>
∣∣∣HM2

O

∣∣∣
Appendix B. Relation between Within Residuals and Quasi-Demeaned Residuals

Preliminary Result: We first show that:

̂̃u∗∗ = ûW + ψ̂ · ûB + G·
(

β̂W − β̂B

)
Proof. We start with the definition of ̂̃u∗∗, the NT vector of the OLS residuals in the FQDM
regression model. We have:

̂̃u∗∗ = ỹ∗∗ − ω̃∗∗ · α̂FGLS − X̃∗∗ · β̂FGLS (A8)

with ω̃∗∗ ≡ ψ̂ · ιNT ; X̃∗∗ ≡ Ω̂∗
− 1

2 · X ; ỹ∗∗ ≡ Ω̂∗
− 1

2 · y. Using the definition of Ω̂∗
− 1

2 ≡
W + ψ̂ · B, we can rewrite (A8) as:

̂̃u∗∗ = ûW + ψ̂ · ûB + XW ·
(

β̂W − β̂FGLS

)
(A9)

+ ψ̂ · ιNT · (α̂B − α̂FGLS) + ψ̂ · XB ·
(

β̂B − β̂FGLS

)
where ûB denotes the NT vector of the OLS regression residuals for the Between (trans-
formed) regression model; XB ≡ B ·X and β̂B is the OLS estimator of β in the Between trans-
formed model which can be expressed as β̂B = (X ′BC

· XBC )
−1 · (X ′BC

· y) with XBC ≡ BC · X
and (as a reminder) BC denoting the centered Between operator defined as BC ≡ B− BNT
with BNT ≡ ιNT · (ι ′

NT · ιNT)
−1 · ι ′

NT .
Then, noting that α̂J = (ι ′

NT · ιNT)
−1 · ι ′

NT · (y− X · β̂ J) for J = B, FGLS, which leads to:
ιNT · (α̂B − α̂FGLS) = BNT · X · (β̂FGLS − β̂B) and using the following relationship between
β̂W , β̂B and β̂FGLS:

β̂FGLS = Π · β̂B + [IK −Π] · β̂W (A10)

with Π ≡ ψ̂2 · [X ′ · Ω̂∗C
−1 · X]−1 · (X ′BC

· XBC ) = ψ̂2 · [X̃ ′∗ · X̃∗]−1 · (X ′BC
· XBC )and, as a re-

minder, Ω̂∗C
−1 ≡ (W + ψ̂2 · BC), we can rewrite equation (A9) as:

̂̃u∗∗ = ûW + ψ̂ · ûB + G·
(

β̂W − β̂B

)
(A11)
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with:

G ≡ XW ·Π−ψ̂ · (B− BNT) · X · [IK −Π]

= XW ·Π−ψ̂ · XBC · [IK −Π]

Other results: Define Π∗ and G∗ such that Π = ψ̂ ·Π∗ and G = ψ̂ ·G∗. We have:

G∗ = XW ·Π∗−XBC ·
[
IK − ψ̂ ·Π∗

]
and replacing in (A11):

̂̃u∗∗ = ûW + ψ̂ ·
[
ûB + G∗ ·

(
β̂W − β̂B

)]
(A12)

Using the property according to which BC ·W = W · BC = 0, we deduce, after
manipulations, from (A12), the following relationship between the two residual sums of
squares û ′W · ûW and ̂̃u ′∗∗ · ̂̃u∗∗:

̂̃u ′∗∗ · ̂̃u∗∗ = û ′W · ûW + ψ̂2 · û ′B · ûB + ∆∗

which corresponds to the equation provided in the main text in Section 3.4.1 and where:

∆∗ ≡ ψ̂2 ·
(

β̂W − β̂B

) ′
· Σ∗ ·

(
β̂W − β̂B

)
(A13)

and25:

Σ∗ ≡ G∗ ′ ·G∗

=
(

X ′BC
· XBC

)
·
(

X̃ ′∗ · X̃∗
)−1
·
(
X ′W · XW

)
Finally, noting from (A10) that: β̂W − β̂B = Π−1 · [β̂W − β̂FGLS], we can rewrite (A13)

as:
∆∗ = ψ̂2 ·

(
β̂W − β̂FGLS

) ′
·
(

Π−1
) ′
· Σ∗ ·Π−1 ·

(
β̂W − β̂FGLS

)
(A14)

Define Σ̃∗ ≡ (Π−1) ′ · Σ∗ ·Π−1. Using the definition of Σ∗and Π, this can be written
as:

Σ̃∗ =
(

ψ̂4
)−1
·
(
X ′W · XW

)
·
(

X ′BC
· XBC

)−1
·
(

X̃ ′∗ · X̃∗
)

=
(

ψ̂2
)−1
· Γ−1

with Γ−1 being written as: Γ−1 = (ψ̂2)−1 · (X ′W · XW) · (X ′BC
· XBC )

−1 · (X̃ ′∗ · X̃∗).
Replacing in (A14), we have:

∆∗ =
(

β̂W − β̂FGLS

) ′
· Γ−1 ·

(
β̂W − β̂FGLS

)
which is the expression provided in the main text for ∆∗.

Appendix C. Simulations in the Single Regressor Case (K = 1)

In the simulations for K = 1, we focus on the role played by the structure in X and
in u on the values taken by h and h∗ as well as by the Hausman statistics HM1

O and HM2
O.

Those structural features are captured, respectively, by s2
x and θW on the one hand and by

σ2
u and ρu on the other hand where σ2

u ≡ σ2
α + σ2

ε and ρu ≡ σ2
α

σ2
u

(ρu is called the intra-class
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correlation coefficient in the variance component literature). We let also the degree of
correlation between the regressor and the (composite) error term on the cross-sectional
dimension vary across the experiments (we call it ρxu).

Accordingly, for a given value of
(
s2

x; θW ; σ2
u ; ρu; ρxu

)
as well as for a given size of the

sample (N and T given), we generate (with replications) one series for u = {uit}t=1,...,T
i=1,...,N and

one for x = {xit}t=1,...,T
i=1,...,N and consequently one series for y = {yit}t=1,...,T

i=1,...,N), on the basis of
which the different estimation procedures and the computation of the statistics of interest
can be implemented.

Appendix C.1. Generating uit and xit

Each series for x and u is built such that the (sample) values of their total variances and
Within variance shares in the total variance correspond to the ones that we set beforehand.
To compute those series we adopt Nerlove’s approach (Nerlove 1971) and proceed in
two steps.

1. First, we draw N pairs for the random vector Zb ≡ (Zx
b Zu

b )
′ in the bivariate normal

distribution N(0, ΣZb) with: ΣZb ≡
(

σ2
Zx

b
σ2

Zxu
b

σ2
Zxu

b
σ2

Zu
b

)
, σ2

Zxu
b

= ρxu · σ2
Zx

b
· σ2

Zu
b

; σ2
Zx

b
=

(1− θW) · σ2
X and σ2

Zu
b
= ρu · σ2

u .

2. Second, for each i = 1, ..., N, we draw T pairs for the random vector Zw ≡ (Zx
w Zu

w)
T

in the bivariate normal distribution N(0, ΣZw) with ΣZw ≡
(

σ2
Zx

w
0

0 σ2
Zu

b

)
with σ2

Zx
w
=

θW · σ2
X and σ2

Zu
w
= (1− ρu) · σ2

u .

Then, the following variables are built :

xBi =
√

σ2
Zx

b
·

(
zx

bi
− zx

b

)
√

var
(
zx

b
) ; uBi =

√
σ2

Zu
b
·

(
zu

bi
− zu

b

)
√

var
(
zu

b
)

xWit =
√

σ2
Zx

w
·

(
zx

wit
− zx

wi

)
√

var
(

zx
wi

) ; uWit =
√

σ2
Zu

w
·

(
zu

wit
− zu

wi

)
√

var
(

zu
wi

) i = 1, .., N

with for j = x, u: zj
b = 1

N ·
(

∑i=N
i=1 zj

bi

)
zj

wi = 1
T ·
(

∑t=T
t=1 zj

wit

)
; var

(
zj

b

)
=

1
N ·
(

∑i=N
i=1

(
zj

bi
− zj

b

)2
)

; var
(

zj
wi

)
= 1

T ·
(

∑i=N
i=1

(
zj

wit − zj
wi

)2
)

.

Finally we compute xit as xit = xBi + xWit and uit as uit = uBi + uWit .

This design ensures that s2
x = σ2

X , s2
u = σ2

u , θW =
x2

W
x2

T
and ρu = 1− uT ·W·u

uT ·u with s2
x

(resp. s2
u) denoting the sample variance for x (resp. u).

Appendix C.2. Shaping the Experiment

We generate the different series for {yit}t=1,...,T
i=1,...,N according to the following relationship:

yit = α + β · xit + uit (A15)

In the simulations, we set α = β = 1. We let the other parameters of the simu-
lation vary: N = (20, 40, 80), T = (20, 40, 80), x2

T = (0.01, 1, 100), θW = (0.1, 0.5, 0.9),
σ2

u = (0.01, 1, 100), ρxu = (0.1, 0.5, 0.9) and ρu = (0.1, 0.5, 0.9).
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Appendix C.3. ANCOVA Results

Table A2. ANCOVA on simulation results.

Dependent Variable:

Mean HM1
0

(1)
Mean HM2

0
(2)

Median HM1
0

(3)
Median HM2

0
(4)

N = 40 (ref = 20) −24.158 134.826 ** −24.132 136.294 **
(37.475) (56.029) (36.677) (55.435)

N = 80 (ref = 20) −72.354 * 405.306 *** −72.281 ** 409.057 ***
(37.475) (56.029) (36.677) (55.435)

T = 40 (ref = 20) 63.206 *** 111.042 *** 60.953 *** 110.473 ***
(16.759) (25.057) (16.402) (24.791)

T = 80 (ref = 20) 126.892 *** 306.754 *** 122.040 *** 303.316 ***
(16.759) (25.057) (16.402) (24.791)

x2
T = 1 (ref = 0.01) 0.039 −1.105 0.322 −0.300

(16.759) (25.057) (16.402) (24.791)
x2

T = 100 (ref = 0.01) 0.277 2.784 0.803 −0.171
(16.759) (25.057) (16.402) (24.791)

θW = 0.5 (ref = 0.1) 90.452 *** −18.134 83.656 *** −16.453
(29.028) (43.400) (28.410) (42.940)

θW = 0.9 (ref = 0.1) 184.362 *** −35.323 167.161 *** −30.374
(29.028) (43.400) (28.410) (42.940)

ρxu = −0.99 (ref = 0) 1083.156 *** 640.633 *** 1057.507 *** 643.296 ***
(25.600) (38.275) (25.055) (37.869)

ρxu = −0.9 (ref = 0) 147.213 *** 214.549 *** 141.792 *** 202.157 ***
(25.600) (38.275) (25.055) (37.869)

ρxu = −0.5 (ref = 0) 13.481 14.882 12.514 5.921
(25.600) (38.275) (25.055) (37.869)

ρxu = 0.5 (ref = 0) 13.436 3.664 12.469 5.878
(25.600) (38.275) (25.055) (37.869)

ρxu = 0.9 (ref = 0) 147.237 *** 215.027 *** 141.974 *** 201.985 ***
(25.600) (38.275) (25.055) (37.869)

ρxu = 0.99 (ref = 0) 1083.935 *** 641.078 *** 1058.341 *** 643.762 ***
(25.600) (38.275) (25.055) (37.869)

σ2
u = 1 (ref = 0.01) −0.265 3.723 0.343 0.056

(16.759) (25.057) (16.402) (24.791)
σ2

u = 100 (ref = 0.01) 0.400 0.780 1.234 −0.119
(16.759) (25.057) (16.402) (24.791)

ρu = 0.5 (ref = 0.1) 90.544 *** −20.710 83.885 *** −15.796
(29.028) (43.400) (28.410) (42.940)

ρu = 0.9 (ref = 0.1) 184.478 *** −31.878 167.171 *** −29.092
(29.028) (43.400) (28.410) (42.940)

N = 40: θW = 0.5 86.977 ** −16.080 87.205 ** −15.864
(41.052) (61.376) (40.177) (60.726)

N = 80: θW = 0.5 261.702 *** −41.165 262.250 *** −48.630
(41.052) (61.376) (40.177) (60.726)

N = 40: θW = 0.9 175.791 *** −27.656 176.433 *** −30.434
(41.052) (61.376) (40.177) (60.726)

N = 80: θW = 0.9 525.795 *** −89.808 526.255 *** −92.123
(41.052) (61.376) (40.177) (60.726)

N = 40: ρu = 0.5 86.826 ** −13.059 86.837 ** −16.015
(41.052) (61.376) (40.177) (60.726)

N = 80: ρu = 0.5 261.064 *** −45.820 261.054 *** −48.512
(41.052) (61.376) (40.177) (60.726)

N = 40: ρu = 0.9 175.736 *** −30.548 176.043 *** −31.087
(41.052) (61.376) (40.177) (60.726)

N = 80: ρu = 0.9 526.388 *** −84.972 526.704 *** −92.531
(41.052) (61.376) (40.177) (60.726)

Constant −446.938 *** −246.347 *** −430.229 *** −246.886 ***
(35.552) (53.154) (34.795) (52.590)

Observations 5103 5103 5103 5103
R2 0.580 0.165 0.579 0.169

Adjusted R2 0.578 0.161 0.577 0.165
Residual Std. Error (df = 5076) 488.758 730.740 478.346 722.994

F Statistic (df = 26; 5076) 269.238 *** 38.691 *** 268.675 *** 39.743 ***

Note: * p <0.1; ** p <0.05; *** p <0.01.
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Figure A1. Distribution of the proportion of negative values of HM2
O, N = 80, T = 80, s2

x = σ2
u = 1.

Figure A2. Power of HM2
O, T = 80, s2

x = σ2
u = 1.
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Appendix D. Regression Outcomes in the Single Regressor Case for the Motivating
Example 2 [Airline]

Table A3. Estimation results for Motivating example 2, Airline, single covariate.

Specification Intercept log[ f uelprice]

Within specification Coef. − 0.7785
Std Err. − 0.0279

Between specification Coef. 476.260 −36.248
Std Err. 136.439 10.684

Random effect specification
Coef. 3.4264 0.7783

Std Err. 1 0.4245 0.0279
Std Err. 2 0.4502 0.0296

HM1
O 12.0100

HM2
O −0.0006

σ̂2
ε 0.0456

σ̂∗ 2
ε 0.0513
ψ̂2 0.0095
h 1.1251
h∗ 1.0000

2 · h∗−1 1.0000

Within variance 0.6521
Between variance 0.0005

Within variance/Total variance (in %) θW 99.9282
Between variance/Total variance (in %) θB 0.0718

Notes
1 Schreiber (2008), based on Holly (1982), examines cases in which this problem can arise even asymptotically, when the alternative

hypothesis is true.
2 In particular, this issue is generally not addressed in the leading textbooks in panel data econometrics. An exception is Wooldridge

(2010), (chp. 10, pp. 289–90), but he merely mentions the possibility of obtaining a non-positive definite covariance matrix if
different estimates of the error term variance are used, suggesting a way out, which we further discuss below.

3 See Nerlove (1971) and Fuller and Battese (1973), for an original exposition of the transformed, quasi-demeaned model and the
related approach.

4 Schreiber (2008) also considers a panel data framework as an illustration for the asymptotic results and highlights cases where
the matrix is not SPD in a context where the error term variance estimates differ. He does not, however, focus on the comparison
of the different estimation approaches in the random effects model and their implications for the computation of the Hausman
test statistic, as we do.

5 We assume in what follows that there is no time-invariant regressor in Xit, so that it is possible to compute the β-estimator with
the Within transformation of Xit (see below).

6 See the initial study by Baltagi and Griffin (1973). The dataset is available at: https://www.wiley.com/legacy/wileychi/baltagi/
datasets.html, accessed on 2 May 2023.

7 Interestingly, in an updated version of his textbook, Baltagi (2021) modified the presentation of the Gasoline case study compared
to the one provided in 2005 and presented here. In this update, there is no more disconnection between the two versions of the
statistic, and only one version is considered, HM1

O. While, in both presentations, the estimations are drawn from the STATA
software package, the second presentation benefits from the use of the sigmaless option command that fixes the computation of
the estimator for the idiosyncratic component of the error term. See infra in Section 4.2.

8 The original study is from Greene (1999). The dataset is available at: http://pages.stern.nyu.edu/~wgreene/Text/tables/
tablelist5.htm, accessed on 2 May 2023.

9 The dataset is available at: http://pages.stern.nyu.edu/~wgreene/Text/Edition7/tablelist8new.htm, accessed on 2 May 2023.

10 A typical it-observation for y∗ is given by y∗it = yit − θ̂ · yi. where θ ≡ 1− ψ̂ and yi. ≡ 1
T

(
t=T
∑

t=1
yit

)
. A similar transformation is

applied for each of the components of X, hence the quasi-demeaning expression for the transformed model that is obtained in
that way.

11 Indeed, β̂OLS = (X ′∗∗ · (INT − BNT) · X∗∗)−1 · (X ′∗∗ · (INT − BNT) · y∗∗), which is equivalent to (4) given the definition of X∗∗, y∗∗
and Ω∗−1

C .

https://www.wiley.com/legacy/wileychi/baltagi/datasets.html
https://www.wiley.com/legacy/wileychi/baltagi/datasets.html
http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm
http://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm
http://pages.stern.nyu.edu/~wgreene/Text/Edition7/tablelist8new.htm
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12 Given the definition of those matrices, this replacement relies on the use of consistent estimators for the variance components, i.e.,
σ2

ε , σ2
α and/or σ2

αε. For a discussion about these variance component estimators, see, among others, Amemiya (1971); Fuller and
Battese (1974); Maddala (1971); Nerlove (1971); Swamy and Arora (1972); Wallace and Hussain (1969).

13 In particular, we assume that Ω̂∗ (resp. Ω̂∗C) is a consistent estimator for Ω∗ (resp. Ω∗C). See Wooldridge (2010) for a discussion
on these conditions.

14 The estimator for σ2
αε is usually computed from the sum of the squares of the OLS regression residuals, (û ′B · ûB), for the Between

(transformed) regression model with σ̂2
αε =

û ′B ·ûB
N−(K+1) . (Swamy-Arora approach), see infra.

15 It can be easily checked that the two approaches give rise to the same (RE) estimator for the parameters, α and β.
16 The emphasis is added by us. The notation used by Hausman for the fixed-effects estimate of β (β̂FE) corresponds to our β̂W .
17 The intra-class coefficient drives the value of ψ2. It can be shown, indeed, that: ψ2 =

1−ρu
1−ρu ·(1−T) .

18 Note that this estimator is also used to compute ψ̂2 and in turn Ω̂∗C, which makes it fully, logically consistent with respect to the
FGLS regression model framework.

19 This is, e.g., recommended by Cameron and Trivedi (2009), p. 360.
20 We thank both referees for having highlighted those approaches and suggested to account for them in this discussion subsection.
21 in this case, indeed, γ̂ = q̂∗∗.
22 Baltagi and Liu show in (Baltagi and Liu 2007) that the Hausman test can be obtained equivalently from other artificial regressions,

involving the use of the set of Between-transformed regressor variables, XB, or even the set of the initial regressor variables, X.
They also discuss the case where the auxiliary regression can accommodate the presence of potentially endogenous regressors.
With respect to the issue of weak instruments in this context, see also (Staiger and Stock 1997).

23 Take two symmetric matrices A and B. We denote by A � B the property according to which A− B is a positive definite matrix
(what we can also write as A− B � 0).

24 If A and B are two symmetric positive definite matrices and are non-singular, then A � B =⇒ B−1 � A−1.
25 As a reminder, note that (X̃ ′∗ · X̃∗) = (X ′W · XW) + ψ̂2 · (X ′BC

· XBC ) .
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