
Citation: Papadopoulos, Alecos.

2023. A New Matrix Statistic for the

Hausman Endogeneity Test under

Heteroskedasticity. Econometrics 11:

23. https://doi.org/10.3390/

econometrics11040023

Academic Editor: Ryo Okui

Received: 10 August 2023

Revised: 28 September 2023

Accepted: 2 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

econometrics

Article

A New Matrix Statistic for the Hausman Endogeneity Test
under Heteroskedasticity
Alecos Papadopoulos

Department of Economics, Athens University of Economics and Business, TK 10434 Athens, Greece;
papadopalex@aueb.gr

Abstract: We derive a new matrix statistic for the Hausman test for endogeneity in cross-sectional
Instrumental Variables estimation, that incorporates heteroskedasticity in a natural way and does not
use a generalized inverse. A Monte Carlo study examines the performance of the statistic for different
heteroskedasticity-robust variance estimators and different skedastic situations. We find that the test
statistic performs well as regards empirical size in almost all cases; however, as regards empirical
power, how one corrects for heteroskedasticity matters. We also compare its performance with that of
the Wald statistic from the augmented regression setup that is often used for the endogeneity test,
and we find that the choice between them may depend on the desired significance level of the test.
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1. Introduction

The Hausman family of specification tests was introduced by Hausman (1978) and it
has seen unabated use in econometrics ever since. Amini et al. (2012) detail its wide reach
and different implementations for panel data, while in a cross-sectional setting, the test has
often been used to test for regressor endogeneity.

In the cross-sectional setting, the test statistic is formally based on a “vector of contrasts”,
the difference of two estimators, where under the null hypothesis, both are consistent and
the one is also efficient, while under the alternative, only one is consistent. This form of the
test uses a variance expression that is often singular, requiring a generalized inverse. To
bypass the singularity of the variance matrix an “augmented regression” approach has been
developed, linking the test with its precursors (Durbin 1954; Wu 1973, 1974).1

The efficiency of one of the estimators under the null hypothesis has a very convenient
consequence: the variance of the difference of the two estimators equals the difference
of their variances; thus, we do not have to compute covariances. However, when het-
eroskedasticity is present (and it is expected to exist regularly in cross sectional studies),
this helpful simplification is no longer valid. Adkins et al. (2012) have examined in great
detail this endogeneity test in situations of heteroskedasticity, and they take the augmented
regression route to formulate the various test variants that they implement.

In this study, we push a known result in the literature to its conclusion, and we arrive
at a new matrix Hausman statistic for an endogeneity test. This new statistic is a useful
additional tool to have, for the following reasons: it handles heteroskedasticity in a natural
way; it could be a more familiar tool to use for researchers that are accustomed to using
matrix algebra and forms; compared to the original form of the Hausman statistic, it does
not use generalized inverses. In fact, if the matrix involved is not invertible, it reflects
the existence of perfect collinearity between some instruments and some endogenous
regressors, which invalidates the instruments. Finally, in Monte Carlo simulations that we
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will present, it performed better than the “augmented regression” test in terms of power,
when executing the test at the 10% significance level.

2. The Matrix Hausman Statistic for Testing Endogeneity

We follow the notation of Adkins et al. (2012). We consider the linear regression
model y = Xβ + u. The vectors y and u are n × 1, and u is assumed to be zero-mean.
The regressor matrix is partitioned X = [X1 X2]. X1 is an n× K1 submatrix of regressors
thought to be endogenous (so not orthogonal to the error term) while X2 is an n × K2
submatrix of exogenous regressors (or “internal instruments”). The unknown of interest
is the vector β. We have available Λ1 ≥ K1 “external instruments” collected in matrix Z1
and the full instruments matrix is Z = [Z1 X2]. We write the orthogonal projection matrix
Pz = Z(Z′Z)−1Z′ and the residual-maker (or annihilator) matrix Mx = In − Px, with In
being the n× n Identity matrix. The subscript in P and M determines which collection of
variables we use in each case. These matrices are symmetric and idempotent. We write
û = Mxy for the residuals from the Ordinary Least Squares regression (OLS). We write
PzX ≡ X̂ = [X̂1 X2] for the linear projection of X on the columns of Z (the “fitted values”).
Note that PzX2 = X2 because X2 belongs in the column space of Pz.

The OLS estimator for β is β̂OLS = (X′X)−1X′y while the benchmark Instrumental
Variables (IV) estimator when instruments are more in number than endogenous regressors
is β̂ IV = (X̂′X̂)−1X̂′y (two-stage least-squares). The basic expression of the Hausman
statistic under homoskedasticity of the error term (with the OLS estimate of the error
variance σ̂2

u) is

(σ̂2
u)
−1 ·

(
β̂ IV − β̂OLS

)′(
(X̂′X̂)−1 − (X′X)−1

)−1(
β̂ IV − β̂OLS

)
(1)

This is the statistic where we may encounter trouble in inverting the middle matrix,
which, moreover, may not even be positive definite in finite samples. It may render the test
inapplicable, or necessitate the use of a generalized inverse instead.

To bypass this issue, while simultaneously accounting for heteroskedasticity, we start
by noting that the core of the statistic for the Hausman test is the difference

β̂ IV − β̂OLS = (X̂′X̂)−1X̂′y − (X′X)−1X′y

= (X′PzX)−1X′Pzy − (X′X)−1X′y

= (X′PzX)−1
[

X′Pzy − X′PzX(X′X)−1X′y
]

= (X′PzX)−1X′Pz

[
In − X(X′X)−1X′

]
y

= (X′PzX)−1X′Pz Mxy

= (X̂′X̂)−1X̂′û. (2)

We have used the fact that Pz, Mx are symmetric and idempotent and that Mxy =
Mxu = û. Result (2) is known in the literature. For example, Greene (2012, p. 276) arrives
at it, but he does not go further. Also Adkins et al. (2012) actually start with it (their
Equation (1)), but then they use the augmented regression approach to proceed. Also, later
in their paper, when they re-purpose the “weak vs. strong instruments” test of Hahn et al.
(2011), they “directly estimate the asymptotic covariance matrix of the contrast”, but the
expression they give is inconveniently long, since this variance can be nicely compacted,
as we will show. To our knowledge, the result in Equation (2) has not been pursued to
the very end for the construction of a Hausman statistic and test, and this is what we will
do here.

The null hypothesis of the Hausman test is that the two estimators converge to the
same probability limit (plim):

H0 : plim(β̂ IV − β̂OLS) = 0.
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To examine this hypothesis we consider the limiting distribution of the scaled dif-
ference and its variance, which, under the null hypothesis and given Equation (2), is

Avar
[√

n(β̂ IV − β̂OLS)
]
≡ V = plim

[
(n−1X̂′X̂)−1S(n−1X̂′X̂)−1

]
. (3)

The middle matrix is S = plim(n−1X̂′ûû′X̂). We can then formulate a theoretical
statistic for the endogeneity test,

q = n · (β̂ IV − β̂OLS)
′V−(β̂ IV − β̂OLS)

d−→
H0

χ2
K1

. (4)

Here, V− denotes a generalized inverse of V.2 Combining Equation (2) and (3) with
(4), we arrive at the following statistic feasible to compute, for some consistent estimator Ŝ,

q̂ = n−1 · û′X̂(X̂′X̂)−1
[
(X̂′X̂)−1Ŝ(X̂′X̂)−1

]−
(X̂′X̂)−1X̂′û. (5)

We show in Appendix A that a generalized inverse of the middle matrix is (X̂′X̂)Ŝ+(X̂′X̂),
where Ŝ+ denotes the Moore–Penrose generalized inverse. Inserting this in the expression for
q̂, we can simplify,

q̂ = n−1 · û′ X̂ Ŝ+ X̂′û. (6)

Next, because X̂ includes the submatrix X2, which is by construction orthogonal to
the OLS residuals û, we obtain that

S =

[
QK1×K1 0K1×K2

0K2×K1 0K2×K2

]
, Q = plim(n−1X̂′1ûû′X̂1). (7)

We show in Appendix B that

S+ =

[
Q−1

K1×K1
0K1×K2

0K2×K1 0K2×K2

]
. (8)

We have managed to eliminate the generalized inverse and to use a proper inverse.3

What remains now is to find a consistent estimator for the Q matrix. Decomposing the OLS
residuals, we have

X̂′1ûû′X̂1 = X̂′1 Mx uu′ Mx X̂1.

This matrix expression, where we sandwich the outer product of the error vector, may
look familiar to those acquainted with the heteroskedasticity-robust estimation literature
and one could expect that we could now use the squared residuals in place of uu′ to
estimate Q. However, there is an issue: the matrix Mx is n× n, growing in both dimensions
as the sample size increases. So it is not clear that the related proof strategy of White (1980)
is applicable here. Nevertheless, by drilling down even more, we arrive, in Appendix C, at
an expression that contains matrix products with finite dimensions. Thus, we can indeed
apply this substitution, which provides a consistent estimator for Q as

Q̂ = n−1X̂′1 Mx Ω̂0 MxX̂1, Ω̂0 = diag{û2
i }. (9)

This indeed looks like a “White” estimator of a heteroskedastic covariance matrix. The
expression is valid under the formal assumptions stated in White (1980), which we do not
repeat here for brevity.

Equation (9) allows us also to conclude that the matrix Q must be invertible; otherwise,
at least one component of the instruments matrix is not valid.

This can be shown in the following way: Let x1j, j = 1, ..., K1 be a column of X1, the
submatrix with the endogenous regressors. If Pzx1j = x̂1j = x1j, we will have Mxx̂1j = 0 so
X̂′1 Mx will have a column of zeros and Q will be singular. However, Pzx1j = x1j implies
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that x1j belongs to the column space of the instruments matrix Z, meaning that it is an
exact linear combination of the columns of Z. However, if this were the case, it necessarily
implies that at least one of the instruments would be correlated with the error term, and so
Z too would suffer from endogeneity. Namely, if x1j = ∑Λ1+K2

` a`z` while E(x′1ju) 6= 0, we

will have E
(

u′ ∑Λ1+K2
` a`z`

)
6= 0.

Therefore, using a proper inverse here also serves the function of alerting us that such
exact linear dependence exists between instruments and endogenous regressors, if the
matrix Q proves to be non-invertible. In such a case, executing the endogeneity test using
a generalized inverse would be wrong; one first has to somehow correct the instruments
matrix to restore the validity of the instruments.4

Lastly, using these results in the expression for q̂, and again the fact that û′ X̂ =[
û′ X̂1 : 0

]
, we arrive at the final expression for the heteroskedasticity-robust matrix Haus-

man statistic (where we have also canceled out the n−1 factors),

q̂het = û′ X̂1

[
X̂′1 Mx Ω̂0 MxX̂1

]−1
X̂′1 û d−→

H0
χ2

K1
, Ω̂0 = diag{û2

i }. (10)

Computing this statistic first requires running OLS estimation on the original model
to obtain the residuals û and their squares for Ω̂0, and then using the matrices Pz and X1
(since X̂1 = Pz X1), and also the matrix Mx. The matrices Pz and Mx are of dimension n× n;
thus, for very large samples, they may be taxing for the software (although they will be
used just once in an actual applied study; it is simulation studies that may be considerably
slowed down when using them). If one wishes to avoid them, to obtain X̂1, we can run OLS
regressions for the columns of X1 on Z, and also, to compute MxX̂1 we can run regressions
of X̂1 on X and obtain the resulting residual series.

The statistic can be used also under the assumption of homoskedasticity, in which case
it becomes

q̂hom = (σ̂2
u)
−1û′ X̂1

[
X̂′1 MxX̂1

]−1
X̂′1 û d−→

H0
χ2

K1
. (11)

To increase power, one should use the error variance estimator from the OLS regression.
Equations (10) and (11) are the main theoretical contribution of this study. We have

exploited the expression for the vector of contrasts in terms of projected regressors and OLS
residuals, and we have arrived at a matrix Hausman statistic that incorporates possible
heteroskedasticity in a natural way, it has a compact form, it does not use generalized
inverses, and it guards against invalid instruments.

In the next section we present results from a simulation study to examine the per-
formance of this matrix Hausman statistic, looking also into the variants that have been
proposed for Ω̂ in an attempt to improve finite-sample performance. A recent overview
and Monte Carlo study for these “HCx” estimators for heteroskedastic variance matrices
can be found in MacKinnon (2013).

3. Monte Carlo Study
3.1. Description

We constructed a data generation process (DGP) with a constant term, one exogenous
variable, two “suspected” endogenous variables and three external valid instruments. We
considered a case where the DGP includes an unobservable covariate uncorrelated with the
regressors (so here, OLS is consistent even if this variable is not included in the regressor
matrix), and one where it is correlated (so there is endogeneity and OLS is inconsistent).
The first case serves to examine the empirical size of the test, while the second provides
information about the power of the test. The technical details of the Monte Carlo study are
presented in Appendix D.

We created four scenarios as regards heteroskedasticity of the error term: homoskedas-
ticity, heteroskedasticity with the error variance randomly changing per observation inde-
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pendently of the regressors, “group-wise” heteroskedasticity, where the error variance takes
only three distinct values with equal probability, again independent of the regressors, and
finally, a “random-coefficients” model, which leads to the error variance being a function
of the regressors, without this affecting mean-independence. We considered sample sizes
n = 50, 75, 100, 200, and in each case, we executed 10,000 repetitions. In all cases, we
initiated the random number generator by the same seed. This has two consequences: first,
for a given sample size all scenarios have identical series for the observable variables, and
they differ only with respect to the endogeneity/heteroskedasticity aspect. Second, for each
scenario, as we increase the sample size the previous generated values are fully part of the
larger sample. In this way, we mimic the accumulation of data rather than the availability
of independent larger data sets.

As regards the statistic, we used both its homoskedastic variant (i.e., assuming, cor-
rectly or not, that the true error is homoskedastic), as well as the four best-known alterna-
tives for estimation of heteroskedastic variance matrices, HCx, x = 0, 1, 2, 3, as these are
defined in MacKinnon (2013): writing hii for the diagonal element of the projection matrix
Px, we have

HC0 : Ω̂0 = diag{û2
i },

HC1 : Ω̂1 =
n

n− k
diag{û2

i },

HC2 : Ω̂2 = diag{û2
i /(1− hii)},

HC3 : Ω̂3 = diag{û2
i /(1− hii)

2}.

Note that k is the number of regressors each time. For our matrix statistic, the number
of regressors is k = K1 + K2, where K1 = K2 = 2.

3.2. Comparative Performance of the Variants of the Matrix Hausman Statistic

Here, we assess how the statistic performs in terms of empirical size and power, as
we change the heteroskedasticity correction. We do not compare it with other forms of the
Hausman test, because we want first to determine whether it has an acceptable performance
(empirical size close to nominal, power rising fast with the sample size). If it performs
acceptably, then a case arises to compare it to other forms of the Hausman test. We present
the results in Table 1, which relates to testing at the 5% significance level.

We have the following main observations: first, the behavior of the Hausman matrix
statistic as regards empirical size is rather stable, across different true skedastic scenarios as
well as across different HCx ways to incorporate the possible heteroskedasticity. In fact, it
performs acceptably in relation to the size of the test, even if we ignore the possible presence of
heteroskedasticity and use (11) instead of (10). Second, for the various HCx variants to account
for heteroskedasticity, the empirical size monotonically falls as we increase the strength of
the finite-sample correction that we apply. Results for testing at the 10% significance level
(available upon request) show a similar behavior in relation to empirical size.

As regards empirical power, the choice of the heteroskedastic variant for Ω̂ matters
even more, for small sample sizes. Power also deteriorates monotonically and visibly, while
the highest power is achieved when we use the homoskedastic variant (where the test is
slightly conservative).5 Overall, for testing at the 5% significance level, it appears that the
prudent thing to do when applying this statistic, is to use its HC0 heteroskedastic formula.
When testing at the 10% significance level, power increases visibly. For example, under
conditional heteroskedasticity, the power at 10% for sample sizes n = 50, 75 tends to be
higher by a factor of 1.2 to almost 1.9, i.e., almost double the power at the 5% significance
level, all else being equal. For the 10% significance level therefore, it appears best to use the
homoskedastic variant of the matrix statistic, Equation (11).
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Table 1. Monte Carlo simulation study. Empirical Size and Power of the matrix Hausman statistic.
Nominal size: 5%.

Skedastic Scenario Homoskedasticity Random Group-Wise Conditional

n Robust Estimation Size Power Size Power Size Power Size Power

50 Homoskedastic 4.69 49.05 4.77 48.43 4.86 47.23 5.50 38.57
HC0 5.54 41.09 5.55 40.67 5.45 40.11 5.81 32.04
HC1 4.30 35.06 4.23 34.64 3.96 34.22 4.03 26.53
HC2 4.03 33.00 4.00 32.22 3.67 32.11 3.59 24.30
HC3 2.77 24.93 2.70 24.46 2.23 24.10 2.18 17.36

75 Homoskedastic 4.50 71.74 4.61 71.37 4.78 70.51 5.53 57.97
HC0 5.21 64.98 5.30 64.36 5.35 63.60 5.61 51.21
HC1 4.37 61.44 4.43 60.94 4.39 60.08 4.53 47.26
HC2 4.15 59.41 4.09 58.97 4.16 58.06 4.13 45.04
HC3 3.18 53.43 3.12 52.77 3.15 51.41 2.91 38.67

100 Homoskedastic 4.62 86.16 4.70 85.31 4.80 84.96 5.76 73.35
HC0 5.02 81.33 5.23 80.72 5.17 80.25 5.05 66.79
HC1 4.51 79.55 4.34 78.59 4.53 78.39 4.47 64.38
HC2 4.34 78.23 4.16 77.38 4.24 77.04 4.15 62.46
HC3 3.43 74.23 3.36 73.25 3.58 72.65 3.32 57.35

200 Homoskedastic 4.90 99.50 4.85 99.45 4.47 99.31 6.08 96.79
HC0 5.19 99.13 5.00 99.02 4.86 98.95 5.26 94.74
HC1 4.86 99.06 4.81 98.98 4.50 98.87 4.97 94.34
HC2 4.70 98.94 4.75 98.85 4.36 98.73 4.79 93.77
HC3 4.27 98.53 4.29 98.43 3.95 98.32 4.28 92.67

The finding that ignoring heteroskedasticity while it exists may lead to better-performing
tests should not be surprising for small samples. To account for heteroskedasticity, we use
additional estimated quantities, the OLS residuals individually and this should be expected
to negatively affect statistical power in the context of a small sample.

3.3. Comparison with the Wald Statistic from the Augmented Regression Approach

Using the exact same simulated data sets, we have also computed the Wald statistic
coming from the augmented regression setup to test for endogeneity. Here, we first
regress the suspected endogenous regressors X1 on the full instrument matrix Z, we obtain
the residuals MzX1 and we include these residuals in an augmented regressor matrix
XA = [X1 : X2 : MzX1].6 We run an OLS regression of the dependent variable on XA, and
we compute a Wald test for the coefficients of the regressors in the submatrix MzX1.7

In the interest of space, we do not report the full results here. The Wald statistic clearly
has a size problem for these small samples: it tends to over-reject the correct null hypothesis,
sometimes even having empirical size nearly double the nominal one (for both 5% and 10%
nominal significance levels). The over-rejection becomes less than one percentile across
skedastic scenarios, only with the HC3 heteroskedasticity correction.8 In Table 2, we report
the performance for this statistic for testing at the 5% significance level, and we repeat the
performance metrics for our matrix statistic with the HC0 formula from Table 1.

The Wald statistic appears to have an advantage as regards power, even though some
of this advantage will be lost due to the correction for the slightly oversized test. However,
the picture changes if we want to test at the 10% significance level. Here, it is our matrix
statistic (which moreover assumes homoskedasticity) that has the advantage in terms of
power, as is shown in Table 3.

Overall, no statistic dominates the other, and for sample sizes larger than n = 200 the
two are essentially equivalent in terms of size and power. For smaller samples, the desired
significance level of the test can be our guide in order to choose between them.
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Table 2. Comparison in empirical size and power of the matrix Hausman statistic vs. the Wald
statistic from the augmented regression setup. Nominal size: 5%.

Skedastic Scenario Homoskedasticity Random Group-Wise Conditional

n Statistic Size Power Size Power Size Power Size Power

50 q̂het-HC0 5.54 41.09 5.55 40.67 5.45 40.11 5.81 32.04
Wald-HC3 5.76 45.17 5.74 44.84 5.76 44.21 5.64 34.93

75 q̂het-HC0 5.21 64.98 5.30 64.36 5.35 63.60 5.61 51.21
Wald-HC3 5.57 68.42 5.45 67.76 5.53 67.53 5.43 52.96

100 q̂het-HC0 5.02 81.33 5.23 80.72 5.17 80.25 5.05 66.79
Wald-HC3 5.40 83.62 5.29 82.63 5.39 82.56 5.31 67.84

200 q̂het-HC0 5.19 99.13 5.00 99.02 4.86 98.95 5.26 94.74
Wald-HC3 5.36 99.38 5.18 99.31 4.87 99.16 5.39 94.80

Table 3. Comparison in empirical size and power of the matrix Hausman statistic vs. the Wald
statistic from the augmented regression setup. Nominal size: 10%.

Skedastic Scenario Homoskedasticity Random Group-Wise Conditional

n Statistic Size Power Size Power Size Power Size Power

50 q̂hom 9.72 62.89 9.63 62.31 10.14 60.37 10.60 51.81
Wald-HC3 10.16 57.35 10.15 56.43 10.44 55.14 9.91 45.69

75 q̂hom 9.79 82.04 9.79 81.41 9.95 80.93 11.05 70.08
Wald-HC3 10.11 77.89 10.09 77.51 10.18 77.27 9.95 64.43

100 q̂hom 9.77 92.14 9.74 91.68 10.26 91.34 11.23 82.55
Wald-HC3 10.07 90.45 10.02 89.91 10.26 89.51 10.10 78.26

200 q̂hom 9.96 99.80 9.81 99.74 9.96 99.75 11.60 98.45
Wald-HC3 9.90 99.77 9.93 99.66 10.33 99.62 10.23 97.33

Funding: This research received no external funding.

Data Availability Statement: No data were used for this study.

Conflicts of Interest: The author declare no conflicts of interest.

Appendix A

We argue that a generalized inverse of (X̂′X̂)−1Ŝ(X̂′X̂)−1 is (X̂′X̂)Ŝ+(X̂′X̂).
A generalized inverse A− of matrix A satisfies A A− A = A. Setting for compactness

(X̂′X̂)−1 ≡ C−1 and A = C−1ŜC−1, our candidate generalized inverse is A− = CŜ+C.
We have

A A− A = [C−1 Ŝ C−1] [C Ŝ+ C][C−1 Ŝ C−1]

= C−1 Ŝ Ŝ+ Ŝ C−1

= C−1 Ŝ C−1 = A,

which is what we wanted to show. Ŝ Ŝ+ Ŝ = Ŝ holds because the Moore–Penrose inverse
satisfies this condition, among others.

Appendix B

We argue that

S =

[
QK1×K1 0K1×K2

0K2×K1 0K2×K2

]
=⇒ S+ =

[
Q−1

K1×K1
0K1×K2

0K2×K1 0K2×K2

]
.
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In order for a matrix A+ to be indeed the unique Moore–Penrose pseudo-inverse of
matrix A, it must satisfy four conditions:

1. AA+A = A
2. A+AA+ = A+

3. (AA+)′ = AA+

4. (A+A)′ = A+A.

Note that Q is symmetric. For condition 1, we have[
Q 0
0 0

]
·
[

Q−1 0
0 0

]
·
[

Q 0
0 0

]
=

[
IK1 0
0 0

]
·
[

Q 0
0 0

]
=

[
Q 0
0 0

]
.

For condition 2, we have[
Q−1 0

0 0

]
·
[

Q 0
0 0

]
·
[

Q−1 0
0 0

]
=

[
IK1 0
0 0

]
·
[

Q−1 0
0 0

]
=

[
Q−1 0

0 0

]
.

For condition 3, we have([
Q 0
0 0

]
·
[

Q−1 0
0 0

])′
=

[
IK1 0
0 0

]
=

[
Q 0
0 0

]
·
[

Q−1 0
0 0

]
,

and for condition 4, we have analogously([
Q−1 0

0 0

]
·
[

Q 0
0 0

])′
=

[
IK1 0
0 0

]
=

[
Q−1 0

0 0

]
·
[

Q 0
0 0

]
.

Appendix C

We want to find a consistent estimator for

Q = plim(n−1X̂′1ûû′X̂1).

We have

X̂′1û = X′1 Pz û = X′1 Z(Z′Z)−1Z′ û = X′1 Z(Z′Z)−1
[

Z′1
X′2

]
û.

However, X′2 û = 0; thus, carrying out the multiplications and including the sample
size as a scaling factor, we arrive at

Q = plim
{(

n−1X′1Z
)
(n−1Z′Z)−1

[
n−1Z′1ûû′Z1 0

0 0

]
(n−1Z′Z)−1

(
n−1Z′X1

)}
.

The standard regularity conditions are assumed to hold, and so the matrices that sand-
wich the middle one are well defined and converge to a finite probability limit. Focusing
on the middle one, we have

ûû′ = Mxuu′Mx = (In − Px)uu′(In − Px) = uu′ − uu′Px − Pxuu′ + Pxuu′Px.

Further, Z′1Px = Z′1 X (X′X)−1X′ and PxZ1 = X (X′X)−1X′Z1; thus, adding scaling
factors again, we have

n−1Z′1ûû′Z1 = n−1Z′1uu′Z1 −
(

n−1Z′1uu′X
)
(X′X)−1X′Z1

−
(

n−1Z′1 X
)
(n−1X′X)−1

(
n−1X′uu′Z1

)
+
(

n−1Z′1 X
)
(n−1X′X)−1

(
n−1X′uu′X

)
(n−1X′X)−1

(
n−1X′Z1

)
.
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Under the regularity conditions and the assumptions in White (1980), the probability
limits of all these matrix products can be consistently estimated if in place of uu′, we use
Ω̂0 = diag{û2

i }. Reverting back, this means that

n−1Z′1 Mx Ω̂0 Mx Z1 →p plim
[
n−1Z′1Mxuu′MxZ1

]
= plim

[
n−1Z′1ûû′Z1

]
.

Thus, we have obtained that a consistent estimator of the matrix Q is (now eliminating
the redundant scaling factors)

Q̂ = X′1Z (Z′Z)−1
[

n−1Z1 Mx Ω̂0 Mx Z1 0
0 0

]
(Z′Z)−1 Z′X1 →p Q.

This can be compacted. Consider the matrix, suitably bracketed,

X̂′1MxΩ̂0MxX̂1 = X′1Pz MxΩ̂0MxPzX1 = X′1Z (Z′Z)−1[Z′ MxΩ̂0Mx Z
]
(Z′Z)−1Z′X1.

The outer terms are identical to the outer terms of Q̂. Its middle term Z′ MxΩ̂0Mx Z
can be decomposed,

Z′ MxΩ̂0Mx Z =

[
Z′1
X′2

]
MxΩ̂0Mx

[
Z1 X2

]
=

[
Z′1MxΩ̂0
X′2MxΩ̂0

] [
MxZ1 MxX2

]
.

However, MxX2 = X′2Mx = 0 so

Z′ MxΩ̂0Mx Z =

[
Z1 Mx Ω̂0 Mx Z1 0

0 0

]
.

This is identical to the middle component of Q̂; thus, we arrive at

Q̂ = n−1X′1Z (Z′Z)−1 [Z′ MxΩ̂0Mx Z
]
(Z′Z)−1 Z′X1

= n−1X′1Pz MxΩ̂0Mx PzX1

= n−1X̂′1MxΩ̂0MxX̂1.

Appendix D

We present here the details of the Monte Carlo (MC) study whose results we report
in the main text. The study was conducted using the software “gretl”. For the random
number generator, we have used the seed 1930021000.

Table A1 contains the random variables that we have used as building blocks.

Table A1. Building blocks of MC simulation.

Symbol Distribtuion Description

U1 F(20, 15) Snedecor’s F-distr. with d.f. 20 (num.) and 15 (denom.)
U3 P(1) Poisson with mean equal to 1
U4 χ2(3) Chi-square with 3 d.f.
U5 N(−1, 2) Normal with mean equal to −1 and st.dev. 2
U6 t(6) Student’s-t with 6 d.f.
U7 U(−2, 2) Continuous Uniform in (−2, 2)
U8 U(0, 2) Continuous Uniform in (0, 2)
U9 Ud(0, 2) Discrete Uniform in {0, 1, 2}

We have generated one “unobservable” that creates endogeneity and one that it does
not, two regressors that become endogenous when the correlated unobservable is used in
the data generation process, one exogenous, and three instruments. Table A2 contains the
generating expressions.
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Table A2. Variables in the MC simulation.

Symbol Expression Status

L1 0.7U6 + U7 Latent correlated
L2 U7 Latent uncorrelated

X11 U1 + U3 + U6 Endogenous given L1
X12 0.5U3 + U5 − 0.5U6 Endogenous given L1
X2 U1 + U5 Exogenous
Z11

√
U3 −U1 Instrument

Z12 |U5| Instrument
Z13 U3 −U5 Instrument

We note that, even though U5 is a Normal random variable, the instrument Z12 = |U5|
is relevant (correlated with the endogenous variables), because U5 has a non-zero mean,
and so its absolute value is a Folded Normal, and remains correlated with U5 (in contrast, if
U5 was a zero-mean Normal and consequently Z12 a Half Normal, their covariance would
be zero).

As regards the scenarios of homoskedasticity, random heteroskedasticity, and group-
wise heteroskedasticity, the error term (including the unobservable variable) was gener-
ated as shown in Table A3 (s = 1 implies that the correlated L1 latent variable was used).

Table A3. Error terms in the MC simulation.

Symbol Expression Model

u[1,s] N(0, 2) + 3Ls, s = 1, 2 Homoskedasticity
u[2,s] N(0, 1 + U8) + 3Ls, s = 1, 2 Random Heteroskedasticity
u[3,s] N(0, 1 + U9) + 3Ls, s = 1, 2 Groupwise Heteroskedasticity

For these three setups, the dependent variable was generated as

Y[t,s] = 1− 5X2 + 2X11 + 1.5X12 + u[t,s], t = 1, 2, 3, s = 1, 2.

So, for example, Y[2,2] is the situation where we have random heteroskedasticity and
no endogeneity; thus, it was used to assess the empirical size of the test for this specific
heteroskedastic scenario.

For the conditional heteroskedasticity scheme, we used a random-coefficients model,
with mean values of the random coefficients equal to the specified coefficients above,
together with the homoskedastic error term u[1,s], namely

Y[4,s] = N(1, 0.2)−N(5, 1) · X2 + N(2, 0.4) · X11 + N(1.5, 0.3) · X12 + u[1,s], s = 1, 2.

Decomposed, this leads to

Y[4,s] = 1− 5X2 + 2X11 + 1.5X12 + u[4,s],

u[4,s] = N(0, 0.2)−N(0, 1) · X2 + N(0, 0.4) · X11 + N(0, 0.3) · X12 + u[1,s], s = 1, 2.

Since all conditional heteroskedasticity factors are scaled by independent zero-mean
Normals, no additional source of endogeneity is created.

The general matrix Hausman statistic is

q̂het = û′ X̂1

[
X̂′1 Mx Ω̂ MxX̂1

]−1
X̂′1 û.

The OLS regressions regressed Y[t,s] on a constant and X = (X2 : X11 : X12). û are
the OLS residuals used also in computing Ω̂. Mx = In − Px, where Px is the projection
matrix of X. Its diagonal elements hii were used for the variants of Ω̂. X1 = (X11 : X12)
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and X̂1 = PzX1, where Pz is the projection matrix of a constant and of (X2 : Z1 : Z2 : Z3).
For the homoskedastic variant of the statistic, the estimated OLS error variance σ̂u was
used, instead of Ω̂.

Notes
1 Sometimes it is also called the “artificial regression” or “control function” approach.
2 In the literature, the test is presented with the use of the Moore–Penrose pseudo-inverse V+, most likely because its uniqueness

avoids the necessity to choose among alternatives in an ad hoc manner, as well as the uncertainty of obtaining possibly different
results for different generalized inverses in finite samples. Regardless, the limiting distributional result holds for any generalized
inverse, see Hausman and Taylor (1981).

3 The need for a generalized inverse in the original formulation of the test is treated as “cumbersome” in the literature, see for
example Greene (2012, p. 276) and Wooldridge (2002, p. 119), and it is also put forth as an argument to favor the use of the
augmented regression test.

4 The “augmented regression” test also guards against this possibility, since it uses the residuals from regressing each endogenous
variable on the instruments. If exact linear dependence exists, the related series of residuals will be a series of zeros.

5 This monotonic fall of power, as we “intensify” the degree to which we attempt to correct the heteroskedasticity estimator for
finite sample performance, is in accord with what MacKinnon (2013, pp. 456–57) found.

6 In case there is an issue with the validity of the instruments, as discussed earlier, in the augmented regression method, we would
get at least one series of zero residuals.

7 So, as regards the heteroskedasticity corrector HC1, the number of regressors in the augmented regression setup is k = 2K1 + K2,
while for HC2 and HC3, the diagonal element hii is of a projection matrix that includes these additional variables.

8 MacKinnon (2013, pp. 449–52) also found in his simulations that the HC3 variant performs best as regards empirical size in
small samples.
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