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Abstract: In this paper, an optimal PID controller is introduced for an antagonistic variable stiffness
actuator (AVSA) based on Hammerstein models. A set of Hammerstein models is developed for the
AVSA using the voltage difference method. For each stiffness level, linear and nonlinear Hammerstein
models are identified using the least squares method. Experimental results confirm that the outputs of
the Hammerstein models fit the measured data better than linear models, as Hammerstein models can
incorporate nonlinear effects such as friction. A genetic algorithm is utilized to find optimal PID gains
for different stiffness levels and reference position amplitudes. The final gains are obtained by linearly
interpolating the optimal gains obtained. To demonstrate the effectiveness of the proposed design,
several scenarios with different reference positions and stiffness profiles are provided. Specifically,
square, sinusoidal, and sawtooth waves are used for reference positions and stiffness values. The
robustness of the proposed approach is further analyzed by applying a disturbance force on the
actuator link. The results are compared with the linear method, showing that the proposed design
can handle soft transitions in stiffness variation and ensure perfect tracking.

Keywords: compliant actuator; antagonistic variable stiffness actuator; identification; Hammerstein
models; genetic algorithm

1. Introduction

In the realm of robotics, the limitations of traditional rigid robots have long been
recognized as significant barriers to achieving fluid, adaptable motion akin to biological
organisms. Rigid robots, while capable of precise movement and manipulation, often
struggle in dynamic and unstructured environments due to their fixed stiffness and lack of
compliance. This inherent rigidity results in inefficiencies, limited versatility, and safety
concerns, particularly in applications requiring interaction with delicate objects or humans.
Two complementary strategies are available: impedance control [1] and variable physical
properties [2]. Variable stiffness actuators (VSAs) offer a transformative solution to these
shortcomings using variable physical properties. By integrating compliant elements that
can modulate stiffness levels dynamically, VSAs emulate the adaptability and versatility of
biological systems. This flexibility enables robots equipped with VSAs to seamlessly adjust
their stiffness according to task requirements, enhancing performance, energy efficiency,
and safety. Moreover, the inherent compliance of VSAs facilitates smoother interactions
with the environment, enabling robots to navigate complex terrains and collaborate with
humans more effectively. These features are specifically important in some applications
such as exoskeletons and rehabilitation [3,4]. Thus, the adoption of variable stiffness ac-
tuators represents a promising avenue for overcoming the limitations of rigid robots and
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advancing the capabilities of robotic systems across a myriad of domains [5].
In the pursuit of developing advanced robotic systems, researchers have explored var-

ious variable stiffness actuator technologies, each presenting unique advantages and chal-
lenges. Series elastic actuators (SEAs) and parallel elastic actuators (PEAs) have emerged as
prominent solutions, albeit with inherent disadvantages. SEAs, characterized by compliant
elements such as springs integrated in series with actuators, offer notable advantages in
precise force control and shock absorption [6,7]. However, their reliance on mechanical
springs introduces inertia and limits their bandwidth, constraining their suitability for
applications demanding rapid and dynamic movements especially with low stiffness. Sim-
ilarly, PEAs, which incorporate compliant elements in parallel with actuators, excel in
tasks requiring agility and responsiveness due to their enhanced bandwidth [8,9]. Because
an elastic element with fixed stiffness is used in SEA and PEA, the link stiffness is fixed,
limiting their usage in human-friendly robotic systems. These limitations underscore the
need for alternative approaches. Serial variable stiffness actuators (SVSAs) [10–12] and
antagonistic variable stiffness actuators (AVSAs) [13,14] provide alternative solutions to
tackle these limitations. Antagonistic variable stiffness actuators offer a compelling solu-
tion by leveraging pairs of actuators with opposing stiffness characteristics. This design
enables seamless stiffness modulation and dynamic adaptation to varying task require-
ments. Furthermore, AVSAs inherently enhance energy efficiency and stability, facilitating
safer interaction with the environment and human operators. Thus, in contrast with the
limitations posed by SEAs and PEAs, AVSAs present a promising avenue for advancing the
capabilities of robotic systems, particularly in domains necessitating flexibility, adaptability,
and energy efficiency [15].

Different AVSA technologies have been introduced, encompassing various actuation
types, including the following: FAVSAs: fluidic AVSAs utilize hydraulic or pneumatic
systems to achieve variable stiffness through the modulation of fluid pressure [16,17].
EMAVSAs: EMAVSAs employ electric motors or electromechanical components to adjust
stiffness levels through mechanical means [18,19]. SMA AVSAs utilize shape memory
alloys, which change shape in response to temperature variations, to achieve variable
stiffness [20–22]. Cable-driven antagonistic variable stiffness actuators: cable-driven AVSAs
utilize cables and pulleys to achieve variable stiffness by adjusting tension levels [23]. Mag-
netic antagonistic variable stiffness actuators: magnetic AVSAs utilize magnetic fields to
modulate stiffness through the alignment of magnetic particles or materials [24].

In terms of control system design, several approaches have been investigated on
AVSAs. In [25], two PID controllers were used for simultaneous position and stiffness
adjustments. Meanwhile, a new method was introduced in [26] to transform an SEA to VSA
using structured H∞ control. Moreover, the feedback linearization method has been used
for position and stiffness control of tendon-driven VSAs [27,28]. Robust adaptive control
of AVSAs was investigated in [13] in the presence of parameter uncertainties and external
disturbances. For a bioinspired robot actuator, a cascaded control of AVSA was introduced
in [29]. For an inflatable soft robot, the performances of the MPC and SMC approaches were
compared in [16]. A linear extended state observer with estimation error compensation
was applied to AVSA for the robust tracking control of position and stiffness [30]. The
decoupled nonlinear adaptive control of position and stiffness for a pneumatic soft robot
with a McKibben muscle was proposed in [31]. In [32], a nonlinear model predictive control
approach was applied to a variable stiffness actuator.

Most existing results used an established theoretical model of the whole system (or
some subsystems) to control the position and stiffness (model-based design). In other
words, they derive a model for the position and the stiffness based on the motors’ positions,
and a static relationship between the motors’ positions on one side and the position and
stiffness of the link on the other side is obtained. These static relations can be inversely
used to obtain desired motor positions. The model-based design performance is directly
influenced by the parameter estimation accuracy. The model parameters include inertia,
damping, and stiffness coefficients of the motors and the link. If the motor dynamic is
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considered in the model, then the motor parameters must also be estimated. Alternatively,
the dynamic of the system can be identified as a black box (data-driven method) and
used for controller design. Data-driven control of VSAs using the identification method
applied to the subsystems of VSA is reported in very few works in the literature [29,33].
The model-based design has several advantages, including the following:

• Modeled subsystems can be used for a local controller design (cascaded design [29]).
• Unmeasurable variables (e.g., stiffness) can be theoretically modeled; hence, the

model-based control design is possible for them.

Meanwhile, the model-based design has some disadvantages:

• The control performance depends on the parameter estimation accuracy; that is,
the parameters should be measured or estimated accurately enough to have less
model uncertainty.

• Many undesired effects are not considered in the theoretical model, such as the dead
zone, backlash, and friction.

• Some of the plant subsystems may have unknown behaviors or are hard to model
theoretically.

Because stiffness is not a measurable variable, several methods are used to obtain
it, such as estimation [34] and theoretical modeling [16,24,35]. The theoretical modeling
of stiffness has the same aforementioned disadvantages. Meanwhile, estimating stiffness
requires a theoretical model of the system [34]; hence, the same disadvantages also apply to
this case. To resolve the disadvantages of a model-based design, the identification approach
as a data-driven method can be used alternatively. In this case, there is no need for model
parameter measurement. In addition, all unknown effects, such as backlash, friction, and
dead zone, are included in the identified model. The main benefit of the identification
approach is that all unknown dynamics and subsystems of the VSA can be covered in the
resulting model. Enough sensors (like encoders) in the right place enable the identification
method to obtain a model even for the subsystems.

1.1. Related Works

Existing works related to the identification approach only extracted a model for the
subsystems of the entire VSA; that is, they utilized a combination of theoretical modeling
and identification methods. For example, in [29], an identified model was obtained from
input voltage to motor positions by applying PRBS signals in a closed-loop configuration.
However, the nonlinear relationship among motor positions and the link position and
stiffness were obtained theoretically based on the physical VSA configuration (the so-called
static decoupling method). The main issue with this (and fully theoretical modeling) ap-
proach is that any asymmetry between two motor behaviors or two nonlinear springs (or
any other nonlinear elastic elements) and any different initial pretension result in some
errors in position and stiffness tracking. This is because only the motor positions are con-
trolled in the closed-loop configuration using position encoders, and from motor positions
to the link position or stiffness, no sensor is involved and prone to tracking error.

A neural network is used in [33] on a feed-forward path to control a Qbmove marker
pro, which is a variable stiffness actuator. The neural network in [33] only emulates the
static equilibrium of the system, and the design is not fully data driven. More specifically,
the neural network tries to produce two motors’ positions based on the given output
position and stiffness. This means that the NN is only emulating system behavior from
motors’ positions (not the voltages that are real inputs of the system) to the output position
and stiffness. In other words, the motors are supposed to be ideal, and their dynamics are
not included inside the NN. However, in our proposed method, we have supposed the
whole system from input voltage to the output position and stiffness as a black box and
identified it by some linear models.

To address the above-mentioned issues, we suggest the use of the identification method
from input voltages of the motors to the link position (instead of motor positions). In this
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way, the position control accuracy will be equal to the link position encoder accuracy,
whose precision is certainly more than that of the open-loop decoupling approach. Unfor-
tunately, stiffness is not a measurable quantity, and the identification method is thus not
implementable. Instead of theoretical modeling for stiffness, a novel stiffness production
approach is thus suggested. Experimental observations showed that when the difference
between two input voltages of the motors is kept constant, the stiffness of the link is
approximately equal at any position. However, the stiffness value in the CW and CCW
directions is insignificantly distinctive because of the asymmetry in the motor dynamics
and other hardware components. By applying different predefined voltage differences and
measuring the output stiffness using a load cell sensor, a look-up table can be obtained
between the voltage difference and the link stiffness, which can be approximated by a
polynomial function. Using the fitted polynomial, the desired stiffness can be obtained by
applying the obtained voltage difference of the motors.

1.2. Contributions

In this paper, our primary objective is to enhance the performance of the closed-loop
system by employing alternative methods for system modeling. For the first time, we
apply a data-driven approach to an AVSA without necessitating any theoretical modeling
prerequisites. Previous attempts have relied on a combination of theoretical methods
and identification approaches [29,33]. In addition, this is the first work using the voltage
difference method for stiffness production. Furthermore, we have established a nonlinear
elastic structure using a simple linear spring. Different mechanisms have been exploited
to produce nonlinear elasticity, such as nonlinear spring [29], inflatable joints [16], twisted
string actuators [27], mechanical-rotary variable impedance actuator [18], and twisted-coil
polymer [36]. The proposed elastic mechanism is a simple structure including a usual
linear spring. By changing the stiffness of this linear spring and the dimensions of the
elastic elements, the nonlinear force–deflection curve and, hence, the stiffness of the elastic
structure can be adjusted. In addition, the suggested voltage difference method can adjust
the stiffness quite fast. The stiffness change speed is directly related to the motors’ dynam-
ics, and the time constant of the motors determines the stiffness adjustment speed. Unlike
existing methods for stiffness adjustment based on an accurate change of motors’ positions,
in the voltage difference method, the voltage difference drives the load in the intended
stiffness value regardless of the position, pretension of the springs, and initial condition of
the system.

Moreover, the proposed design only requires the measurements of link position
(output-feedback). In many existing works, positions and velocities of motors and a link
are required for a control system (state-feedback). Such output-feedback control system
requires less measurement sensors in the hardware and simplifies the control system. In
the case of model-based designs, two approaches are possible: measuring all states by
sensors and estimating unmeasured states by some observers. If all states are intended to
be measured, a large number of sensors will be required, which will result in an expensive
hardware with many sensors. On the other hand, if unmeasured states are intended to
be estimated by observers, the control system will be more complicated. The proposed
output-feedback controller reduces the overall control system complexity and, at the same
time, requires a low number of sensors (only one encoder for a link position).

The methods for acquiring models and designing PID controllers are well established
and widely recognized. The innovation of the suggested design lies in its distinctive utiliza-
tion of these strategies. Through the utilization of the voltage difference method to induce
stiffness and framing the control of the MIMO AVSA system as a SISO system with different
stiffness levels, the complexity of system dynamics can be reduced. This facilitates a more
efficient application of existing identification and control system design methodologies.

Identification-based methods applied to variable stiffness actuators typically aim to
identify a linear model for the underlying system [29]. However, linear models may fail to
capture nonlinear characteristics of the system, such as nonlinear spring behavior, friction,
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and dead zones. Given the prevalence of friction effects in most geared motors, a nonlinear
model such as the Hammerstein model is expected to provide a better fit to the measure-
ments, as friction can be approximated by a polynomial static function, a key feature of the
Hammerstein model [37]. This paper utilizes nonlinear Hammerstein models to describe
the position dynamics of the AVSA setup. Two controllers are introduced for the AVSA sys-
tem. In the first method, five different PID controllers are presented for each stiffness level.
A corresponding PID controller is selected based on the stiffness level (voltage difference).
Switching among different controllers avoids a soft transition of stiffness and position. To
resolve this issue, a set of optimal PID gains with linear interpolation is proposed for a
single PID controller, eliminating the need for switching and enabling smooth stiffness and
position control.

The main contributions of this paper can be summarized as follows:

• The stiffness of the output link is created by applying a voltage difference between the
input voltages of the motors.

• Nonlinear Hammerstein models are employed to model the position dynamics, effec-
tively capturing nonlinearities inherent in the AVSA setup, including gearbox friction.

• PID gains are optimized using a genetic algorithm for predetermined stiffness and
position values.

• Utilizing a single PID controller with interpolated optimal gains enables seamless
control over both position and stiffness, facilitating smooth transitions in stiffness
and position.

The rest of the paper is organized as follows: Section 2 provides a comprehensive
overview of the hardware setup, detailing the nonlinear elastic elements incorporated.
Within Section 3, the initial focus lies in presenting the stiffness model, followed by the
identification of position dynamics using nonlinear Hammerstein models. Moreover, this
section entails a comparative analysis between the fitness of nonlinear Hammerstein models
and their linear counterparts. Section 4 delves into the design and optimization of PID con-
trol, including the utilization of genetic algorithms to fine-tune the gains. Sections 3 and 4
include the research methodology of the paper by analyzing and comparing different meth-
ods of identification and control design methods. Experimental findings and a comparative
assessment with an existing method are expounded upon in Section 5. Subsequently,
Section 6 presents significant insights and observations pertaining to the proposed design.
Finally, Section 7 encapsulates the paper with concluding remarks.

2. Hardware Overview

Different actuation components have been utilized in previous AVSA systems, in-
cluding an equivalent quadratic torsion spring [38], twisted strings [27], compliant air
bladders [16], McKibben muscles [39], tendon-driven actuators [13], and a spiral disk
regulating mechanism [40]. The present configuration employs a wired tendon-driven
antagonistic setup. This configuration has been widely used in the literature and is an
adequate implementation for testing the proposed stiffness production approach and the
overall control system. Subsequently, the upcoming section will provide a breakdown of
the manufactured AVSA setup, encompassing both mechanical and electrical elements.

2.1. Setup Specifications

A schematic view of the AVSA configuration is shown in Figure 1a. Two 60 rpm
12 V DC motors with maximum torques of 20 Nm were connected to the load pulley
through two nonlinear springs. Our expected speed at the output link was 30 rpm, which
can be provided by the selected 60 rpm motor. The diameters of the pulleys for motors
1 and 2 and the load were all 8 cm, and the link (load) length was 9.175 cm. A load cell
was mounted below the link pulley to measure the output torque (force). The load cell
maximum measurable load was 200 N. The motors, link, and load cell had their own
encoders (1024 pulse/rev). The encoder measurements were sent to MATLAB Simulink
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via a hardware-in-the-loop (HIL) interface board. After data processing, the produced
commands to the motors were returned through the same HIL channel.

Load cell

Link

Load cell 

motor

Load encoderLoad pulley

Load cell encoder

Nonlinear spring

Nonlinear spring

Motor 1

Motor 2

Encoder 2

HIL interface 

board

Encoder 1

Matlab Simulink 

Real-Time

(a)

(b)
Figure 1. (a) Block diagram of the tendon-driven AVSA. Magenta and green colors represent the
encoder readings and control commands sent to the motors, respectively. (b) Front view of the
hardware configuration: (1) proximity sensor, (2) pulley of motor 1, (3) motor 1, (4) encoder 1,
(5) limit switch, (6) motor 2, (7) pulley of motor 2, (8) encoder 2, (9) nonlinear springs, (10) load
encoder, and (11) pulley of the output link.

The front view of the hardware implementation for AVSA is depicted in Figure 1b.
Motors 1 and 2 and the output link were connected to their corresponding encoders using
timing belts. The output link could freely rotate from −90◦ to +90◦. The mounted proximity
sensors could be used to align the pulleys in certain positions and were useful for the
homing scenario of the setup. Two limit switches were placed at two endpoints of the
working region to avoid any damage to the hardware by turning off the motor power. An
M8 screw was mounted at the ending point of the output link, which continued down to
reach the load cell at the bottom of the hardware.
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The back side of the setup is illustrated in Figure 2. Two AT91SAM3X8E Arduino Due
processors with a clock speed of 84 MHz were utilized in the hardware. One of which was
responsible for the HIL connection between the hardware setup and MATLAB Simulink
in real time. The sample time for data transfer (receiving measurements and transmitting
commands) was 12 ms. The other processor managed the interface board and the safety
units. Several protection fuses were exploited to turn off the motors and board electricity
when the motor currents crossed a predefined threshold (8 A). The load cell and the output
link were mounted in a concentric configuration. The load cell motor rotated the load cell
bar until hitting the M8 screw (which was fixed to the output link) and made a deflection at
the link. The resulting deflection could be measured from the link encoder, and the applied
torque can be measured from the load cell sensor. With this mechanism, the output stiffness
can be calculated.

The existing configuration comprises two motors utilized for actuation and one motor
designated for stiffness estimation. Furthermore, each motor is equipped with its own
position sensor (encoder) for measuring the position, while torque is measured using a
load cell sensor. Consequently, the entirety of the setup can be conceptualized as a network
of sensors and actuators.

Figure 2. Back view of the hardware configuration: (1) load cell sensor, (2) proximity sensor of the
load cell, (3) encoder of the load cell motor, (4) HIL processor, (5) protection fuses for motors and
processors, (6) load cell motor, (7) safety relay unit, (8) DC motor drivers, and (9) main processor.

2.2. Nonlinear Spring Mechanism

It is well known that the torque–deflection curve of the spring in AVSA should have
nonlinear behavior to have variable stiffness in the output link [15]. Here, the nonlinear
behavior was provided by the mechanism shown in Figure 3b. The dimensions for the steel
plates are shown in Figure 3a. The diameter of the linear spring is 10 mm, and the wire
thickness is 1 mm. All plate thicknesses are equal to 1 mm. The proposed structure has
nonlinear behavior, since by increasing the external force at two ends of the mechanism,
the perpendicular component of the force on the first wing of the smaller plate is reduced.
This reduction was reflected on the other wing (which was attached to the spring). Hence,
the effective pulling force on the spring was reduced, which led to a smaller deflection. A
larger force with less deflection represented higher stiffness values. This claim was proved
by measured data in the following.
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52 75 mm.

1
0

0
0

 m
m

.
20 53 mm.
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0°
.

(a)

(b)

Figure 3. Nonlinear spring mechanism composed of two metal plates and a simple linear spring:
(a) steel plate dimensions and (b) prototype of a manufactured nonlinear spring.

Using one of the DC motors and the load cell readings, the nonlinear characteristic of
the nonlinear spring can be obtained. The resulting force–deflection curve is depicted in
Figure 4. A third-order polynomial was fitted to the measured data using MATLAB’s curve
fitter tool and is drawn in Figure 4, which confirmed the nonlinear behavior of the spring
mechanism. The fitted polynomial is as follows:

Fs = 3.906 × 106x3 − 1.578 × 104x2 + 210.2x + 0.4221 (1)

where Fs is the applied force and x is the corresponding deflection of the mechanism.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

Measurements

Third-order polynomial

Figure 4. Force–deflection characteristics of the nonlinear spring mechanism.

This setup has been extensively employed in the literature and serves as a suitable
implementation for evaluating proposed approaches to stiffness production and the overall
control system.

Remark 1. Concerning the hardware, all components of the presented AVSA setup are crucial for
accurate functioning in associated experiments. Notably, some components are specifically required
for particular experiments. For instance, the load cell and the connected motor are utilized solely for
stiffness measurement to establish the stiffness–voltage difference relationship through polynomial
fitting. In regular operational conditions, the load cell and connected motor remain inactive. Another
instance involves the connection of two encoders to the two motors; however, their measurements
are not utilized in typical working conditions and only the link position measurement is fed back.
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3. Identification of AVSA

As discussed earlier, in the proposed approach, the stiffness is produced by applying
different voltages to the DC motors. In addition, the dynamic model of the position is
obtained by applying PRBS signals to the input voltages, and the resulting link positions
together with the input voltage are consequently used to identify a model. It is presumed
that during the time interval when PRBS signals are imposed on the system, the position of
the link remains within the permissible endpoints of [−90◦, 90◦].

3.1. Stiffness Estimation

For stiffness adjustment, voltages were applied to the motors such that motors 1 and
2 rotated in CW and CCW directions, respectively. In this way, both nonlinear springs
were pulled back, and the stiffness increased by increasing the voltage. As the DC motors
were equipped with worm reduction gearboxes, the external force could not rotate the
motor shaft, and only the motor could make a rotation on the gearbox shaft. Because of
this property, when a torque was applied from one motor to the tendon (and hence the
shaft of the other motor’s gearbox), the other motor maintained the last position unless a
voltage was applied to the second motor. V1 and V2 were assumed as the voltages applied
to motors 1 and 2, respectively. If V1 − V2 was set to a known constant, then this voltage
difference generates a deflection in the nonlinear springs and consequently produces a
constant stiffness at the output. If this voltage difference was increased, the stiffness at
the output increased as a result. Therefore, by applying different voltage differences, the
desired stiffness at the output link could be adjusted. Remarkably, two different sets of
voltages with the same difference produced the same stiffness, but the resulting positions
were different. As an example, V1 = 4 V, V2 = 1 V and V1 = 5 V , V2 = 2 V led to the
same stiffness; however, in the second case, the rotation speed was higher, and hence, the
positions were different. In addition, the shaft of the gearboxes does not start rotating below
2.7 V due to the presence of friction in the gearboxes. This threshold for input voltages
introduces a dead zone to the actuation unit. In the following, some techniques will be
employed to tackle these imperfections.

The same experiment can be repeated for the V2 − V1 case. Unfortunately, the two
profiles were not the same because two motors and gearboxes were not exactly the same
and unknown effects like friction and dead zone existed in the hardware (hysteresis ef-
fect). However, two different profiles can be obtained for the output link’s CW and CCW
directions. For estimating link stiffness, eleven equally spaced intervals of input voltage
differences were applied to the DC motors starting from 0.5 V to 5.5 V at 0.5 V steps.
The resulting curves are illustrated in Figure 5. The stiffness was computed using the
following formula:

S =
∂τ

∂θ
≈ ∆τ

∆θ
(2)

where S is the link stiffness, τ is the link torque, and θ is the link deflection. To compute
the stiffness, partial differentiation was approximated by a small variation of the torque
(∆τ) and the position (∆θ). In the experiments, the deflection was kept as small as possible,
mostly around 3◦, to improve the approximation in (2). The chosen encoders had a pulse
count of 1024 per revolution, resulting in a resolution of 360/1024 = 0.3516◦. Consequently, a
deflection of 3◦ can be attained within the encoder resolution. While it is feasible to increase
the deflection value for greater precision in measurements, doing so may compromise the
accuracy of the stiffness derivation outlined in Equation (2). Furthermore, the presence
of a robust hardware framework, as depicted in Figure 1b, precludes the occurrence of
structural deformation. This results from employing metal plates with a thickness of 2 mm
during the fabrication of the frame, which encases the components.

The torque variation was obtained using load cell measurement as follows:

∆τ = r∆FLC (3)
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where r = 9.175 cm is the link length and ∆FLC is the force variation measured by the
load cell.

0 10 20 30 40 50 60
0

2

4

6

8

Clockwise

Counter-Clockwise

Third-order polynomial

Figure 5. Link stiffness to voltage difference curve for the CW and CCW directions together with
their third-order polynomial approximation.

As can be observed from Figure 5, link stiffness with respect to the same voltage
difference has a different behavior with respect to the CW and CCW rotation directions of
the load pulley. To obtain the required voltage differences for a certain desired stiffness, two
third-order polynomials were fitted to the measured data by means of MATLAB’s curve
fitter tool. The stiffness-to-voltage difference formula for the CW and CCW directions was
obtained as follows:

∆VCW = 1.682 × 10−5S3 − 7.392 × 10−4S2 + 0.08132S − 4.416 × 10−4

∆VCCW = 3.199 × 10−5S3 − 3.313 × 10−3S2 + 0.199S + 0.05393
(4)

where ∆VCW and ∆VCCW denote the voltage differences for the CW and CCW directions,
respectively. Once the desired stiffness was selected, with respect to the sign of the desired
position (CW or CCW), the corresponding formula was used from (4) to obtain the related
voltage difference.

3.2. Linear Models

Stiffness characteristics were obtained for different voltage differences in the last
subsection. Because the dynamics from the input voltage to the output position were
dissimilar for different voltage differences, we obtained several linear models around
some operating points. Five voltage differences were chosen in the interval [0, 6 V],
namely, |∆V| = 1, 2, 3, 4, 5 V. |∆V| = 1 and |∆V| = 5 V generated the lowest and highest
stiffnesses, respectively. Notably, when the input voltage was positive (CCW direction for
the link), ∆V = V1 − V2 was applied. Conversely, when the input voltage was negative
(CW direction for the link), ∆V = V2 − V1 was applied. In the first case, motor 1 pulled
the tendon (and hence the second motor) with respect to the voltage difference and vice
versa. Once the voltage difference was set, one of the voltages could be obtained from
the other one. With this definition, only one input voltage was applied (instead of two
voltages for two motors) for any given voltage difference. Now, we have a SISO system
with the input voltage as the input and the link position as the output. For each of the
five voltage differences ∆V, PRBS signals were applied to the input voltage, and the link
positions were logged. As an example, the logged data for ∆V = 3 V are shown in Figure 6.
One set of measurements was used for the identification step, and the other set was used
for model validation.
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Figure 6. Measured data for voltage-position dynamic identification with ∆V = 3 V. The upper plot
shows the applied input voltage, and the lower plot illustrates the resulting link angle.

Using MATLAB’s Identification toolbox, five linear models were fitted to the measured
data as follows:

G1(s) =
−1.123s2 + 286.2s − 6.791 × 104

s3 + 30.46s2 + 5278s + 69.71

G2(s) =
3.614s2 − 789.1s − 2.896 × 104

s3 + 131.7s2 + 3298s − 197.7

G3(s) =
−6.343s2 − 1.501s − 0.9888

s3 + 0.3916s2 + 0.024s + 9.344 × 10−3

G4(s) =
−6.5s − 3.805

s2 + 0.1177s + 7.663 × 10−4

G5(s) =
−5.696s − 2.66

s2 + 0.1241s + 3.707 × 10−8

(5)

where Gi(s) for i = 1, 2, 3, 4, 5 denotes the linear continuous transfer function from the
input voltage to the link position for |∆V| = i V and s is the Laplace variable. According to
MATLAB’s Identification toolbox, the fitting level to validation data for the models G1(s)
to G5(s) are 46.68%, 53.44%, 66.96%, 71.83%, and 92.93%, respectively. Interestingly, for
higher voltage differences (higher stiffnesses), the model order was lower, which agrees
with intuition. When the stiffness was high (G5(s) in (5)), the spring was stretched tightly
and behaved like a rigid tendon; hence, the model order was reduced to two (the last term
of the denominator is approximately zero). As the voltage difference was reduced and the
stiffness became lower, the spring was not highly rigid and kept its elasticity; therefore,
the model order for the lowest stiffness (G1(s) in (5)) increased to three. It is well known
that the dynamic model of a DC motor from the input voltage to the speed has order 2
and that from the voltage to the angle has order 3. This extra pole is the integrator because
the motor angle is the integral of the speed. The model with the highest stiffness G5(s)
had an integrator that agreed with the theoretical model order of the DC motor without a
spring mechanism.

Remark 2. It is crucial to understand that the identified models are employed to characterize
the voltage-to-position dynamics of the system rather than the stiffness behavior. As mentioned
earlier, the stiffness at the output link is generated by the voltage difference of two motors through a
fitted polynomial. Consequently, the control performance for link stiffness is not contingent on the
precision of the identified position models. Instead, it is influenced by factors such as the accuracy of
polynomial fitting, the precision of the load cell sensor, and the number of selected voltage differences
for stiffness measurements.
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3.3. Nonlinear Hammerstein Models

In previous subsection, linear models have been identified for each stiffness level.
Linear models might not capture the entire behavior of the AVSA system due to some
factors such as friction and dead zone. Consequently, Hammerstein models are used to
obtain better models of the system. A Hammerstein model is composed of two parts: a
nonlinear static function, followed by a linear dynamic model [37]. A schematic diagram of
the Hammerstein model is shown in Figure 7.

Nonlinear Sta�c Func�on Linear Dynamical System

u(t) x*(t) y(t)

Figure 7. Schematic view of the Hammerstein model.

The nonlinear static function is supposed to be a polynomial of order p:

x∗(t) = r0 + r1u(t) + r2u2(t) + · · ·+ rpup(t) (6)

Note that x∗(t) is not a physical variable and cannot be measured. The linear dynamic
system can be represented by the following transfer function:

G(q−1) =
Y(q−1)

X∗(q−1)
=

B∗(q−1)

A(q−1)
q−d

A(q−1) = 1 + a1q−1 + a2q−1 + · · ·+ ama q−1

B∗(q−1) = b∗1 q−1 + b∗2 q−1 + · · ·+ b∗mb
q−1

(7)

where Y(q−1) and X∗(q−1) are z-transform of y(t) and x∗(t), respectively. q−1 denotes a
shift operator (unit delay), and d represents the transport delay of the system. ma and mb
indicate the number of poles and zeros of the linear dynamic model, and G(q−1) is the
z-transfer function of the linear part. Note that b∗0 is supposed to be zero in the numerator of
the transfer function due to the biproper nature of the AVSA system (i.e., the system output
does not instantaneously follow the input voltage change). By cross multiplication of the
transfer function in (7) and obtaining the inverse z-transform, we obtain the following:

y(t) +
ma

∑
i=1

aiy(t − i) =
mb

∑
i=1

b∗i x∗(t − d − i) (8)

Substituting polynomial function (6) in (8) yields the following:

y(t) = −
ma

∑
i=1

aiy(t − i) +
mb

∑
i=1

b∗i

[
r0 +

p

∑
j=1

rjuj(t − d − i)

]
(9)

The difference Equation (9) represents the Hammerstein model of the system in the
time domain. A thorough examination of recorded data (such as the measured data
depicted in Figure 6) indicates the absence of any transportation delay within the system
(d = 0). It should be noted that any potential time delay within the system, if present, could
be shorter than the sampling time of 12 ms and, therefore, might not be discernible in the
measurements. In addition, due to the substantial symmetry of the motors and gearboxes
(which implies the symmetry in the polynomial function), the constant parameter of the
nonlinear function (6) is also assumed to be zero r0 = 0. Furthermore, it is assumed that
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mb = 1, and without loss of generality, b∗i = 1. Considering the assumptions above, the
difference Equation (9) can be rewritten as follows:

y(t) = −a1y(t − 1)− a1y(t − 2)− · · · − ama y(t − ma)

+ r1u(t − 1) + r2u2(t − 1) + · · ·+ rpup(t − 1)
(10)

Now, the measured values yo(t) are used instead of the model output y(t), and
estimated parameters are plugged into the model (10), resulting in the following:

yo(t) = −â1yo(t − 1)− â1yo(t − 1)− · · · − âma yo(t − ma)

+ r̂1u1(t − 1) + r̂2u2(t − 1) + · · ·+ r̂pup(t − 1) + e(t)
(11)

The residual e(t) in (11) arises from utilizing the measured values yo(t) instead of
the model output y(t) and employing parameter estimates rather than true values. This
error definition is linear in parameters owing to the assumptions made, and hence, the
least square method can be used for estimation. The presence of the error variable e(t)
avoids the computation of the output yo(t); however, Equation (11) can be used to obtain a
one-step-ahead prediction of the output ŷ(t|t − 1) based on the measurements available up
to time t − 1. Therefore, a one-step prediction of the output can be written as follows:

ŷ(t|t − 1) = −â1yo(t − 1)− â2yo(t − 1)− · · · − âma yo(t − ma)

+ r̂1u1(t − 1) + r̂2u2(t − 1) + · · ·+ r̂pup(t − 1)

= ψT(t)θ̂

(12)

where the data vector ψT(t) and the parameter vector θ̂ are defined by the following:

ψT(t) =
[
−yo(t − 1) · · · −yo(t − ma)|u(t − 1) · · · up(t − 1)

]
θ̂ =

[
â1 · · · âma |r̂1 · · · r̂mb

] (13)

Note that a data vector contains available input and output measurements and a
parameter vector contains the unknown model parameters to be estimated. Subtracting (12)
from (11), the error equation is obtained as follows:

e(t) = yo(t)− ŷ(t|t − 1) (14)

Assume that the input–output measurements are available for times t = 1, 2, . . . , ma +
N. In this case, the data vector ψT(t) will be filled for the first time at time t = ma. By
substituting (12) into (14), the observation equation is derived as follows:

yo(t) = ψT(t)θ̂ + e(t) (15)

For the time steps t = ma + 1, ..., ma + N, a system of N equations can be established
from (15) in the following form:

Yo = Ψθ̂ + E

Ψ =


−yo(ma) · · · −yo(1)|u(ma) · · · up(ma)

−yo(ma + 1) · · · −yo(2)|u(ma + 1) · · · up(ma + 1)
...

...
...

−yo(ma + N − 1) · · · −yo(N)|u(ma + N − 1) · · · up(ma + N − 1)



Yo =


yo(ma + 1)
yo(ma + 2)

...
yo(ma + N)

, E =


e(ma + 1)
e(ma + 2)

...
e(ma + N)


(16)
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In order to determine ma + p parameters, the number of measurements must be at
least ma + p, i.e., N > ma + p. Assume the sum of squared errors as a cost function:

V = ETE =
(
Yo − Ψθ̂

)T(
Yo − Ψθ̂

)
(17)

To minimize the cost function (17), the first derivative must be equal to zero:

dV
dθ̂

= −2ΨT(Yo − Ψθ̂
)
= 0 (18)

The solution of the minimization problem (18) (least squares problem) is given by
the following:

θ̂ =
(

ΨTΨ
)−1

ΨTYo (19)

Note that
(
ΨTΨ

)−1ΨT is a well-known Moore–Penrose inverse of the data matrix
Ψ in (16). The optimal parameters of the Hammerstein model are given by (19), which
minimize the sum of square errors between the measured outputs and model predictions.
However, the existence of such optimal parameters inverse of the matrix ΨTΨ is required.
The size of the matrix Ψ ∈ N×(ma+p) grows for larger measurements, but regardless of
the measurements’ size N, the size of ΨTΨ ∈ (ma+p)×(ma+p) is fixed by the number of
model parameters. For the matrix ΨTΨ to be nonsingular, it is necessary for the system
to be sufficiently excited. A PRBS signal with a period length N is persistently exciting of
the order ma + p, if N = ma + p + 1 [37]. This condition is satisfied for all measurement
experiments. As an example, for ∆V = 1 V, the final time is 30 s, and hence, the number of
measurements is N = 30/0.012 = 2500, which is much higher than the number of model
parameters ma + p + 1.

For different values of ma and p, the optimal parameters were obtained, and then
the RMSE values of the errors between measurements and the Hammerstein model were
calculated. ma = 3 and p = 3 led to the minimum RMSE values. Table 1 shows the optimal
parameters of the Hammerstein models for each voltage difference.

Table 1. Hammerstein model parameters for different voltage differences.

Parameters ∆V = 1 V ∆V = 2 V ∆V = 3 V ∆V = 4 V ∆V = 5 V

â1 −2.51 −2.22 −2.25 −2.03 −1.94
â2 2.17 1.65 1.67 1.3 1.17
â3 −0.655 −0.432 −0.423 −0.268 −0.234
r̂1 0.0122 0.0101 0.00934 0.00471 0.00497
r̂2 4.58 × 10−5 5.29 × 10−4 5.06 × 10−4 4.99 × 10−4 6.37 × 10−4

r̂3 −0.00147 −8.67 × 10−4 −4.89 × 10−4 −2.65 × 10−4 −1.95 × 10−4

The nonlinear static function of the Hammerstein model for ∆V = 1 V is illustrated in
Figure 8. As seen from Figure 8, the nonlinear static function has a negative sign, which
was predictable from the negative sign of r̂3 in Table 1. This occurred due to the clockwise
definition of the positive orientation of the position. It is remarkable that the output of the
nonlinear function x∗s is close to zero for input voltages in the interval [−2.7, 2.7], which is
consistent with the dead zone of the motors.

To compare the obtained Hammerstein models, the RMSE of the position for the linear
models and the Hammerstein models were compared with each other. Table 2 shows the
RMSE of the errors between measurements and the Hammerstein models for different
voltage differences. RMSE values clearly confirm the advantage of the Hammerstein
models over the linear models. Overall, the improvement is about 90%. The enhancement
primarily stems from integrating the nonlinear static function into the Hammerstein model,
effectively capturing and modeling the dead-zone characteristics of the gearboxes.
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Figure 8. Nonlinear function of the Hammerstein model for ∆V = 1 V.

Table 2. RMSEs for the proposed Hammerstein models and the linear models obtained from the least
squares method.

Voltage Difference
(V) Linear Model Hammerstein Model Improvement

Percentage

∆V = 1 22.229 2.552 88.52
∆V = 2 41.837 5.173 87.635
∆V = 3 44.355 4.169 90.601
∆V = 4 48.753 4.206 91.373
∆V = 5 46.022 1.824 96.037

To illustrate the performance of the Hammerstein model, the predicted positions
of the linear models and the Hammerstein models together with the measurements for
∆V = 1 V are shown in Figure 9. Since the measurements were logged in degrees, the
identified models’ output is also in degrees. Obviously, the predicted output position from
the Hammerstein model surpasses that of the linear model by a significant margin.

Time (s)

L
in

k
 p

o
s
it
io

n
 (
°
)

Real data

Linear model

Hammerstein model

Figure 9. Position measurements, linear and Hammerstein model outputs for ∆V = 1 V.

4. Control Design

The PID control method stands out as the prevailing solution for addressing real-world
control challenges [41] due to its simple structure, easy implementation, and acceptable
performance. In this section, two control approaches with a PID structure are introduced
for linear and nonlinear Hammerstein models.
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4.1. Switching PID Control for Linear Models

For any given model in (5), a PID controller was designed to have perfect tracking for
the link position. The general form of the continuous PID controllers is as follows:

Ci(s) = Pi +
Ii
s
+ Di

Ni

1 + Ni
s

(20)

where Pi, Ii, Di, and Ni for voltage differences i = 1, 2, 3, 4, 5 V are proportional, integral,
derivative, and filter coefficients, respectively. The filter used in the derivative term was
useful for reducing the measurement noise of the sensors and for suitable implementation.
Table 3 shows that the derivative gains were quite small, and for i = 4 V, a PI controller
was obtained. Because all controllers had integral terms, for the steplike desired positions,
perfect tracking can be achieved.

Table 3. PID gains with respect to the voltage difference.

∆V PID Coefficients

i Pi Ii Di Ni
1 −0.476 −0.544 0.0115 10.42
2 −0.421 −0.421 0.013 7.5
3 −0.907 −0.961 −0.025 21.75
4 −0.905 −0.772 0 0
5 −0.96 −0.673 −0.04 8.77

Each PID controller in (20) was responsible for the corresponding voltage difference. To
select the best PID controller for any given desired stiffness (with related voltage difference
from (4)), the following condition is defined:

i =


1 0 < ∆V < 1.5
2 1.5 ≤ ∆V < 2.5
3 2.5 ≤ ∆V < 3.5
4 3.5 ≤ ∆V < 4.5
5 4.5 ≤ ∆V

(21)

Although the PID controller C1(s) was designed for ∆V = 1 V, it can be used for the
surrounding region 0 < ∆V < 1.5. For better performance, the voltage intervals can be
made smaller. However, the number of PID controllers is increased, which complicates
the design.

Soft Switching among Controllers

An active PID controller was selected with respect to the changing desired stiffness
values using the rules in (21). Thus, switching among the five PID controllers was inevitable.
This switching during system operation can produce jumps at the control input because
the outputs of the five PID controllers are not the same at any given time. To resolve this
issue, the following low-pass filter was placed after the PID blocks:

GS =
3

s + 3
(22)

Whenever a jump was intended to occur, the low-pass filter (22) was activated to switch
softly from the previous PID to the next PID controller. Otherwise, the active PID continued
to work in the HIL. Overall, the PID controllers designed with the switching rule in (21)
along with the low-pass filter in (22) result in a smooth transition of stiffness values and
achieve precise tracking for the step-shaped reference position.

A schematic diagram of the switching PID control system design is illustrated in
Figure 10. All PID controllers have the same continuous structure in (20) with PID gains in
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Table 3. Based on the voltage difference provided by (4), a corresponding PID controller is
chosen from the switching rule in (21). The designed LPF (22) smooths the transition from
one PID output to the other whenever switching occurs. The voltage difference and the
voltages of the motors are obtained by (4). Link position is measured by the encoder and
subtracted from a reference position to construct the tracking error. It is clear from Figure 10
that the proposed design is an output feedback control system without any current, velocity,
or position control loop for individual motors.

AVSA
Voltage

Di erence (4)
LPF (22)

Switching 

Rule (21)

PID1

PID2

PID3

PID4

PID5

Link 

Position

Reference 

Stiffness

V1

V2

V

Tracking

Error

Reference 

Position

-
+

ΔV

Figure 10. Schematic view of the closed-loop system.

4.2. PID Control for Hammerstein Models

A discrete PID controller is used to control the AVSA position dynamics since the
obtained Hammerstein models are also discrete. The following implementation for PID
is considered:

GPID

(
q−1

)
= P +

ITs

2
1 + q−1

1 − q−1 +
DN

1 + NTs
2

1+q−1

1−q−1

(23)

where P, I, and D are proportional, integral, and derivative gains, respectively. Instead of
an ideal derivative that can amplify the measurement noise, a filtered derivative term is
utilized with the parameter N. For very large values of N, this term approaches the ideal
derivative. For discretizing integral and derivative terms, the trapezoidal method has been
used as an implicit method. It is also second-order accurate and guarantees the stability of
discretization in case the continuous PID is stable [42].

Selecting a PID controller is motivated by several factors. First, its inclusion of an
integral term ensures precise tracking of steplike position references. Additionally, its
straightforward implementation adds to its appeal.

Optimization with GA

There are numerous heuristic algorithms available for optimization purposes, such as
GA, PSO, and SA. Each algorithm may excel in specific applications. When dealing with
complex and highly nonlinear optimization problems, it is crucial to select the most suitable
method based on factors like computational complexity, optimization time, and adjustable
parameters. Literature comparisons indicate that for standard optimization tasks involv-
ing few variables (e.g., the four PID parameters in our design), the performance of these
algorithms is comparable [43,44]. However, since our optimization process is conducted
offline and the resulting gains are applied to the closed-loop system, considerations such as
computational efficiency, convergence speed, and the number of adjustable parameters are
of less significance in our design. The obtained results confirm that the gains computed by
GA yield acceptable minimums for the cost function, constituting satisfactory suboptimal
solutions, while other algorithms may primarily enhance computational efficiency or con-
vergence speed. Consequently, the GA algorithm was used in the current design to find
optimal PID gains.
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GA is an evolutionary algorithm inspired from the biological development of species
with mating selection and survival of the fittest [45]. The versatility of the genetic algorithm
has resulted in its extensive application across various optimization problems. The brief
and basic algorithm of GA is illustrated in Figure 11. The population containing underlying
parameters is initialized at first. Crossover allows the combination of the genetic materials
of two or more solutions. In a mutation step, the solution is disturbed by some random
changes. A fitness function is defined representing the quality of the solutions. The fitness
function is computed for the whole population. Based on predefined selection criteria, the
best offspring solutions are selected to be parents in the new population. If the obtained
population satisfies the desired fitness criteria, the optimal parameters are ready to use
and the algorithm is terminated. Otherwise, the selected parents are used to repeat the
algorithm from the crossover step.

No

Ini aliza on Crossover Muta on
Termina on

condi on

Yes

Fitness 

computa on

Op mal

popula on

Figure 11. A schematic diagram of genetic algorithm steps.

In the current design scenario, the population of GA comprises four PID parameters, P,
I, D, and N, which are subject to optimization. Due to the nonlinear nature of Hammerstein
models, the optimized PID gains vary depending on the amplitude of the reference position
Ar. Hence, it is necessary to choose various reference position values and run optimization
for each amplitude level. Note that the sign of the reference position is not important in
this regard, and only the absolute value of the amplitude is important. In other words,
step signals with the same amplitudes but with opposite signs lead to the same optimized
gains. We have selected amplitude levels ranging from 10◦ to 90◦, in increments of 10◦,
resulting in nine levels. Additionally, there are five Hammerstein models corresponding
to five stiffness levels. Thus, there exist 45 combinations of different levels for position
amplitude and stiffness (Hammerstein models).

In the optimization process, a population size of 30 is assumed, and the termination
criteria are set to a maximum of 100 iterations. In addition, the fitness function is supposed
to be an RMSE of the position tracking error (eθ = θr − θ) passed through the following
low-pass filter:

GLPF

(
q−1

)
=

0.05q−1

1 − 0.95q−1 (24)

The inclusion of LPF (24) is essential because, without it, the optimized PID gains
result in a very rapid response from the closed-loop system, leading to excessively high
gains. These high gains, in turn, cause large control inputs that violate the maximum
allowable voltages of the motors and result in poor control performance. To mitigate this
issue, a smoother version of the reference step function can be achieved by filtering the
reference input. A step signal with the amplitude Ar is assumed as the reference position θr.

The results of GA optimization for PID gains are depicted in Figure 12. The acquired
45 gains are denoted by red circles in the same figure. It is notable that all proportional
(P), integral (I), and derivative (D) gains exhibit negative values. This phenomenon arises
due to the negative nonlinear static function in all Hammerstein models, as detailed in
Section 3.3. Examining the upper-left quadrant of Figure 12, it becomes evident that the
absolute value of the proportional gain increases with ∆V (stiffness) for nearly all position
amplitudes. Conversely, the integral gain demonstrates minimal variation with changes
in stiffness; its primary sensitivity lies in the amplitude of the reference position. The
derivative gain exhibits a higher amplitude with increased stiffness, yet its dependency
on the reference position amplitude remains limited. Furthermore, the derivative filter
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parameter N exceeds 10 for all ∆V and Ar values. This parameter has the least influence
on the performance compared with the other parameters.

Figure 12. Proportional (P), integral (I), and derivative (D) gains together with derivative filter
parameter (N) obtained from GA in terms of five voltage differences (∆V) and nine reference position
amplitudes (Ar).

A schematic diagram of the closed-loop system is shown in Figure 13. Knowing Ar
and ∆V, the P, I, D, and N gains are calculated by linearly interpolating 45 points in
Figure 12. Interpolation lines are shown with black color in Figure 12. Since the reference
position and stiffness (voltage difference) can change abruptly, the following low-pass filter
was used to smooth the gains for better performance:

Ggain(s) =
1

1 + 0.05s
(25)

LPF (25) was discretized by the sample time of Ts = 12 ms for implementation. Once
the reference stiffness and PID output are available, the voltage difference ∆V and motors’
voltages can be obtained using (4).
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Figure 13. Closed-loop configuration of the control system.

5. Experimental Results

In this section, the performance of the proposed method will be evaluated. Several
different scenarios were conducted, and a switching PID controller will be compared with
the proposed optimal controller. For ease of reference in the following, LS and GAHAM
will represent the switching PID control based on linear identified models and the proposed
optimal PID control derived through genetic algorithm optimization of a PID controller
based on Hammerstein models, respectively. In every situation, including cases involving
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square signals, the reference position has undergone filtration via an LPF. Had a perfectly
square signal been employed, the input voltage could potentially exceed the maximum
motor voltages. An LPF is not necessary for square reference stiffness since the change in
stiffness only modifies the voltage difference, not the voltage itself.

5.1. Square Position and Stiffness Tracking

For the initial experiment, square signals are utilized as reference position and stiffness
waves. This scenario is encountered when a sudden change in position and stiffness is
intended. As an example, in an exoskeleton for rehabilitation, it may be required to adjust
the stiffness or position very fast to keep the balance of the body [46]. A square signal
with an amplitude of 30◦ and a frequency of 10 s is designated as the reference position.
The designated range for reference stiffness spans from 10 to 40 Nm/rad, also with a
frequency of 10 s. It is assumed that there exists a phase delay between the reference
position and stiffness, facilitating the examination of their individual effects on the system.
The experimental outcomes are depicted in Figures 14 and 15. Figure 14 displays position
measurements, revealing that the LS method results in oscillatory motion, particularly no-
ticeable at lower stiffness levels. This behavior is likewise evident in voltage measurements
for the LS method. While a decrease in stiffness from 40 Nm/rad to 10 Nm/rad introduces
a small error in the GAHAM method, this error diminishes over time, approaching zero.
The PID gains for the GAHAM method are depicted in Figure 15, demonstrating smooth
adjustments corresponding to variations in reference position and stiffness values.

Reference

LS

GAHAM

V
1
 (LS)

V
2
 (LS)

V
1
 (GAHAM)

V
2
 (GAHAM)

Figure 14. Position and stiffness tracking together with motors’ voltages for LS and GAHAM methods
subject to square position and stiffness waves.

Figure 15. Proportional (P), integral (I), and derivative (D) gains and filter parameter (N) for GAHAM
method subject to square position and stiffness waves.
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5.2. Sinusoidal Position and Stiffness Tracking

Assume sinusoidal waves applied for both position and stiffness, which is a common
movement for rehabilitation purposes. As an example, sinusoidal movements have been
used in [47] to treat movement impairments for the upper limb. The amplitude and
frequency of a reference position are supposed to be 45◦ and 10 s, respectively. The reference
stiffness starts from 5 Nm/rad and increases to the maximum value of 50 Nm/rad and
decrease again to its minimum of t = 20 s. From the experimental results shown in
Figures 16 and 17, the LS and GAHAM methods have approximately the same position
and stiffness tracking performance. The voltage difference for both methods starts with a
minimum value and increases to a maximum value of t = 10 s and decreases again to its
minimum value of t = 20 s. PID gains in Figure 17 also confirm that the interpolated gains
are adequately produced according to the stiffness value and reference position amplitude.

Reference

LS

GAHAM

V
1
 (LS)

V
2
 (LS)

V
1
 (GAHAM)

V
2
 (GAHAM)

Figure 16. Position and stiffness tracking together with motors’ voltages for LS and GAHAM methods
subject to sinusoidal position and stiffness waves.

Figure 17. Proportional (P), integral (I), and derivative (D) gains and filter parameter (N) for GAHAM
method subject to sinusoidal position and stiffness waves.

5.3. Sawtooth Position and Sinusoidal Stiffness Tracking

In this experiment, a sawtooth signal with an amplitude of 70◦ and a period of 10 s
was used to represent the reference position, while a sinusoidal wave with a period of 40 s
and an amplitude ranging from 5 Nm/rad to 50 Nm/rad was employed to represent the
reference stiffness. The results are depicted in Figures 18 and 19. This scenario represents a
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more realistic scenario in body movement, which is the combination of gradual and abrupt
changes of the position.

Reference
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Figure 18. Position and stiffness tracking together with motors’ voltages for LS and GAHAM methods
subject to sawtooth position and sinusoidal stiffness waves.

Figure 19. Proportional (P), integral (I), and derivative (D) gains and filter parameter (N) for GAHAM
method subject to sawtooth position and sinusoidal stiffness waves.

From Figure 18, it is evident that the proposed method clearly outperforms the LS
method in position tracking. This improvement occurs because, as the reference stiffness
increases from 5 to 50 Nm/rad, a switching point is reached among the PID controllers in
the LS method, resulting in poor performance in position tracking. This phenomenon is
also observable in the motors’ voltages for the LS method, which exhibit high-frequency
oscillations. In contrast, the voltage difference between V1 and V2 for the GAHAM method
is commensurate with the reference stiffness profile, ensuring accurate stiffness tracking.
Oscillations were only observed in the increasing trend of reference stiffness. Figure 19
illustrates the proportional, integral, and derivative gains, along with the derivative filter
parameter of the GAHAM method for the current scenario. As expected from Figure 12, the
amplitude of the proportional gain increases for higher stiffness values, particularly around
t = 10 s. Additionally, during the time interval [0, 10 s], as the reference position increases,
the amplitude of the integral gain decreases. However, after t = 10 s, upon resetting the
reference position, the absolute value of the integral gain increases once again. Furthermore,
as the reference stiffness approaches its maximum, the amplitude of the derivative gain
increases to its peak value.
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5.4. Square Position and Sawtooth Stiffness Tracking

To verify the performance of the GAHAM and LS methods under a sawtooth wave
stiffness reference, a square wave with an amplitude of 45◦ and a period of 10 s is chosen as
the position reference, and a sawtooth signal with a period of 10 s and an amplitude ranging
from 5 Nm/rad to 50 Nm/rad is selected as the reference stiffness profile. The obtained
results are illustrated in Figures 20 and 21. As expected, perfect tracking is achieved for the
GAHAM method even with varying stiffness over the entire range from 5 to 50 Nm/rad.
Motors’ voltages confirm that the voltage difference (and hence link stiffness) follows the
reference sawtooth stiffness. As stiffness increases, the switching from one PID to another
leads to poor tracking of the reference position for the LS method. Figure 21 illustrates
the P, I, D, and N values for the current experiment. It is obvious that these gains are not
changed sharply due to the existence of LPF in the loop, as shown in Figure 13.
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Figure 20. Position and stiffness tracking together with motors’ voltages for LS and GAHAM methods
subject to square position and sawtooth stiffness waves.

Figure 21. Proportional (P), integral(I), and derivative (D) gains and filter parameter (N) for GAHAM
method subject to square position and sawtooth stiffness waves.

5.5. Disturbance Rejection Property

To further analyze the performance of the proposed design, we investigate its distur-
bance attenuation capabilities by subjecting it to a square disturbance with an amplitude of
12 N and a duration of 400 ms. The experimental results are depicted in Figure 22. As shown
in the lower plot, the reference stiffness starts at 5 Nm/rad and increases to 20 Nm/rad
at t = 20 s, before further increasing to 40 Nm/rad at t = 40 s. Both the LS and GAHAM
methods demonstrate the ability to attenuate the negative effects of the disturbance within
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a limited time frame, with minor differences in performance. As expected, a lower stiffness
setting results in larger oscillations compared with a higher stiffness value.
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Figure 22. Position and stiffness tracking together with applied disturbance for LS and GAHAM
methods subject to square position and incremental stiffness waves.

While the current scenario is presented to evaluate the robustness property of the
proposed design, its robustness to external disturbances or model uncertainties is not
explicitly investigated. To the best of the authors’ knowledge, no robust controller has
been introduced for multiple Hammerstein models in the literature. This subject poses a
challenging task and remains the focus of ongoing research. However, some existing robust
controllers introduced for single Hammerstein models can serve as a starting point [48].

6. Discussion

The proposed control system design offers several advantages over the existing model-
based design discussed in the literature. As previously mentioned, there is no necessity for
measuring or estimating system parameters, a task that can sometimes be challenging or
impractical. Modeling nonlinear effects like friction, backlash, or dead zones is difficult,
and certain other effects remain unknown for modeling purposes. With the identification
approach, the system is treated as a black box, requiring no further detailed information.
The only essential information needed is the amplitude of the stimulating PRBS signal and
the minimum variation time [37]. The minimum variation time refers to the shortest time
interval within which the system responds to the input signal. This information can be
easily obtained through straightforward experiments for any system.

Different from the methods in the literature, stiffness was produced using the voltage
difference method here. As its advantage, this method is easy to implement and requires
simple experiments. Additionally, no stiffness model is necessary, and only a force sensor
or load cell is required for torque measurements. These properties enable us to apply this
method to other types of mechanisms, such as pneumatic and electrohydraulic actuators.
The proposed pure data-driven approach enhances the modeling procedure and control
system design over the existing model-based methods extensively used in the literature.
Furthermore, the voltage difference method used for stiffness production precludes the
modeling process for link stiffness.

Many of the current approaches necessitate the measurement of both motors and
link positions. Even in studies employing identification methods such as [29], motor
positions must be measured. The suggested design offers an advantage by relying solely
on link position measurements, requiring only a single position sensor (encoder) for the
link. Consequently, the proposed design simplifies the setup and reduces the overall
sensor requirements.
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One of the challenges of the data-driven methods is the limited range of the link
position (in the current setup [−90◦, 90◦]). When the PRBS signals are being applied to
the motors, there is no control on the range of possible movements of the link. Although
some limit switches have been included in the hardware to avoid physical damage to the
hardware, if the link position for a specific PRBS signal violates the allowed range, then the
measured data will not be valid for the identification process. To avoid such situations, the
PRBS duration was restricted in time. As an example, for the case of ∆V = 3 V, the final
time of a PRBS signal was limited to 10 s, as shown in Figure 6.

Enhancing the identification process could involve the utilization of APRBS rather than
PRBS signals [37]. Unlike fixed-amplitude PRBS signals, APRBS offers varying amplitude
levels. The variability in amplitude within APRBS signals is advantageous for effectively
stimulating nonlinear systems, such as the AVSA, compared with PRBS signals with
constant amplitudes. Regrettably, employing APRBS signals in the AVSA setup is unfeasible
due to the risk of exceeding the physical limitations of the load, particularly within the
range of [−90◦, 90◦]. This constraint arises from the hardware configuration.

The findings presented in Section 3 confirmed the superior performance of Hammer-
stein models in capturing nonlinear phenomena within the AVSA system, such as gearbox
friction in the motors. Improved models are crucial for enhancing system control. For the
optimization process, resolutions of voltage difference (stiffness) and position levels were
set at 1 V and 10◦, respectively. However, these values can be reduced for enhanced perfor-
mance. Decreasing the resolutions leads to a rapid increase in the number of optimizations
required by the genetic algorithm. Specifically, the number of optimizations needed is
equal to the product of the number of stiffness levels and the number of reference position
levels. While higher numbers of position and stiffness levels amplify the computational
load, they facilitate finer interpolation among the optimized gains, resulting in improved
control. These resolutions were determined through a trial-and-error process to achieve
satisfactory responses from the AVSA setup.

The voltage difference method offers a versatile approach to stiffness control in ac-
tuators, including those with antagonistic structures. Regardless of the actuation source
(electric motors, hydraulics, pneumatics, shape memory alloys, cable-driven systems, or
magnetic fields), the voltage difference method can be applied to adjust stiffness. In simpler
terms, this method allows for the independent control of output stiffness based on voltage
difference, without being influenced by link position, actuator complexity, or desired stiff-
ness range. However, one key consideration is the need for non-backdrivable actuation
units. In the presented design, two motors with worm gearboxes ensure that the rotation of
one motor does not affect the other, enabling stiffness control through voltage difference.
This non-backdrivable property is crucial for applying the voltage difference method to
other types of AVSAs. While worm gearboxes achieve this in electromechanical designs,
alternative solutions are necessary for different AVSA types to achieve the same behavior.

While initially introduced and applied to an AVSA setup, the proposed design can be
adapted for use with other types of VSAs, such as SVSAs. It is commonly understood that,
in SVSA configurations, a larger motor is dedicated to position control, while a smaller
one is employed for stiffness adjustment. Consequently, various stiffness levels can be
generated by adjusting the voltage levels of the stiffness (smaller) motor. This approach
allows for the establishment of a relationship between the voltage applied to the stiffness
motor and the resulting stiffness, without necessitating detailed knowledge of the structural
dynamics. Furthermore, for each stiffness level, suitable PRBS signals can be applied to the
position motor to identify the position dynamics of the SVSA.

The suggested design is suitable for a single-degree-of-freedom AVSA with one link at
the output. For AVSAs with two or more links, various configurations are possible. One
potential configuration involves connecting two AVSA units in series, with one AVSA unit
(unit A) serving as the load on the link of another AVSA unit (unit B). If the intention is to
apply the proposed design to this two-link AVSA, then unit A can be controlled using the
same method as outlined earlier. Since unit B carries a load on its link (unit A), the identifi-
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cation process must be conducted considering the existence of this load, which is unit A.
Consequently, identified models for units A and B will inherently differ. Subsequently, PID
controllers can be individually designed for each unit based on their identified models to
achieve position tracking. In essence, although PID controllers are independently designed
for each unit, the identification process varies for the two units. The design of stiffness
control requires more careful consideration. The stiffness at the output link of unit A results
from the combination of individual stiffness values for each unit. One potential method
for measuring the resulting stiffness at the output involves considering several VDs (e.g.,
five VDs, as in the proposed design) for each unit. This approach yields 25 different levels
of output stiffnesses by exploring all possible combinations of VDs for the two units. For
each VD combination, a load cell can be employed to measure the stiffness at the output
link. Subsequently, the measured stiffness values, corresponding to the VDs of the two
units, can be fitted by a surface. While a single unit involves a straightforward curve fitting,
as depicted in Figure 5, the case of two units extends to a surface fitting with two VD
variables. The same logic can be exploited for higher degrees of freedom.

7. Conclusions

A novel optimal PID controller was introduced for the position and stiffness control
of AVSA utilizing Hammerstein models. The voltage difference method was employed
to convert the original two-input, two-output system into a single-input, single-output
system. For each stiffness level, a Hammerstein model was identified using the least
squares method. Experimental results demonstrated an improvement of approximately
90% for Hammerstein models compared with linear models. Genetic algorithms were
utilized to compute the optimal PID gains for various position and stiffness values. Linear
interpolation of the obtained optimal gains ensures precise position tracking and rapid
stiffness transition. Comparison between the GAHAM method and the LS method across
multiple scenarios confirms the capability of the proposed approach in facilitating smooth
transitions of stiffness and achieving superior position tracking performance. The mini-
mum and maximum achievable stiffness values with the designed hardware is 5 Nm/rad
and 50 Nm/rad, respectively. Considering a link length of 9.175 cm, the maximum and
minimum load weights for making a deflection of 1° at the endpoint are 9.5 N and 0.95 N,
respectively. These values fall in a range for which the user has an intuition of the stiffness
quantity by applying external force on the link endpoint. The rise time of the position
tracking was approximately 1 s, and the operating region of the link was [−90◦, 90◦]. With
the proposed method, position and stiffness can be controlled simultaneously, and there is
no need for theoretical modeling and parameter estimation/measurement. This property
lets us design a control system for any AVSA without any prior information about the
hardware characteristics.
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Abbreviations

APRBS Amplitude-modulated Pseudo Random Binary Sequence
AVSA antagonistic variable stiffness actuator
CW clockwise
CCW counterclockwise
EMAVSA electromechanical antagonistic variable stiffness actuators
FAVSA fluidic antagonistic variable stiffness actuators
GA genetic algorithm
HIL hardware in the loop
LPF low-pass filter
MIMO multi input multi output
MPC model predictive control
PEA parallel elastic actuator
PID proportional integral derivative
PRBS pseudo random binary sequence
PSO particle swarm optimization
RMSE root mean square error
SA simulated annealing
SEA serial elastic actuator
SISO single input, single output
SMA shape memory alloy
SMC sliding mode control
SVSA serial variable stiffness actuator
VD voltage difference
VSA variable stiffness actuator
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