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Abstract: Deep learning has emerged as a powerful tool for investigating intricate biological processes
in plants by harnessing the potential of large-scale data. Gene regulation is a complex process that
transcription factors (TFs), cooperating with their target genes, participate in through various aspects
of biological processes. Despite its significance, the study of gene regulation has primarily focused
on a limited number of notable instances, leaving numerous aspects and interactions yet to be
explored comprehensively. Here, we developed DEGRN (Deep learning on Expression for Gene
Regulatory Network), an innovative deep learning model designed to decipher gene interactions by
leveraging high-dimensional expression data obtained from bulk RNA-Seq and scRNA-Seq data in
the model plant Arabidopsis. DEGRN exhibited a compared level of predictive power when applied
to various datasets. Through the utilization of DEGRN, we successfully identified an extensive set
of 3,053,363 high-quality interactions, encompassing 1430 TFs and 13,739 non-TF genes. Notably,
DEGRN’s predictive capabilities allowed us to uncover novel regulators involved in a range of
complex biological processes, including development, metabolism, and stress responses. Using leaf
senescence as an example, we revealed a complex network underpinning this process composed of
diverse TF families, including bHLH, ERF, and MYB. We also identified a novel TF, named MAF5,
whose expression showed a strong linear regression relation during the progression of senescence.
The mutant maf5 showed early leaf decay compared to the wild type, indicating a potential role
in the regulation of leaf senescence. This hypothesis was further supported by the expression
patterns observed across four stages of leaf development, as well as transcriptomics analysis. Overall,
the comprehensive coverage provided by DEGRN expands our understanding of gene regulatory
networks and paves the way for further investigations into their functional implications.

Keywords: gene regulation network; single-cell transcriptome analysis; deep learning; transcription
factors; leaf senescence

1. Introduction

Complex traits are coordinated across diverse cell types and tissues by hormones,
metabolites, and mechanical forces, aiming to generate a coherent plant response to the
environment [1]. The key to unpicking what underpins these traits is to determine the
gene expression that occurs, which is principally independent in each plant cell [2]. Gene
expression is regulated by numerous factors, including transcription factors (TFs), epige-
netic factors, and miRNAs [3]. Notably, the primary regulators of gene expression are
transcription factors, which can bind specific DNA sequences and regulate the expression
of downstream genes. Hence, gene regulatory networks (GRNs), which consist of nodes
(TFs and their targets) and edges (the relationships of TFs and targets), link TF genes to
target genes and are thus used to represent condition-specific interactions of genes and
their regulators [4]. GRNs are a powerful tool for identifying the potential regulators
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and regulatory relationships of the development process and stress response [4–6]. An
example GRN is a salt-responsive GRN built by the temporal transcriptional patterns of
Marchantia polymorpha and Arabidopsis thaliana, contributing to the evolutionary divergence
of land plants at a network scale, a process that could not be unpicked using the previous
methods [7]. As this exemplifies, constructing an accurate GRN with a large number of
nodes and high quality is one of the key tasks in systems biology [8].

There have been numerous methods for constructing GRNs with different biological
components. Generally, TFs can recognize the specific binding sequences on the promoters
of target genes, enabling them to represent protein–DNA interactions. For example, the
AtRegNet database, which was updated in 2019, collects 1,638,778 direct physical inter-
actions between TFs and the promoters of their target genes [9]. Based on TF binding
motifs, the TF2Network can identify potential regulators or functionally related genes [10].
In addition, ConnecTF integrates different datasets, including TF–target binding and TF–
target regulation, through a website on which users can obtain TF–target information [11].
Meanwhile, an integrative GRN (iGRN) uses seven input networks, including TF ChIP data,
position weight matrices (PWMs), and co-expression (CoE) data, to build an integrative
inference of a transcriptional network with 1,709,871 interactions via a supervised learning
approach. However, it is limited to the evidence from public ChIP-Seq or DAP-Seq data,
which cover a limited number of TFs existing in plants. Recently, the accurate construction
of GRNs has become feasible due to the accumulation of abundant transcriptomic data
in plants. Representative methods include GENIE3 [12], EXPLICIT [3], and WGCNA [13],
which use gene expression data as inputs. For instance, EXPLICIT collects 24,545 RNA-Seq
datasets within a model based on regression. It can infer transcriptional regulators for Ara-
bidopsis genes and has high power in TF module detection [3]. However, the transcriptomic
data that it utilizes are at the tissue level, which hinders the discovery of subtle but critical
differences among cells. Recent technologies, such as single-cell RNA-Seq (scRNA-Seq), fa-
cilitate our understanding of the heterogeneity of different types of cells at a transcript scale,
providing a higher resolution of cellular differences than bulk RNA-Seq [14–16]. While
scRNA-Seq has only been performed in a few plant species, such as Arabidopsis [17,18],
tomato [19], maize [20], and rice [21], it has been shown that scRNA-Seq data are powerful
when utilized in GRN reconstruction in humans and mice [22–24]. Therefore, constructing
an accurate GRN with scRNA-Seq data in plants seems a promising research pathway.

Compared to classical statistical tools, deep learning has recently exhibited an improved
power to unpick complex biological processes in plants [25,26]. For example, PlantDeepSEA
uses the results of ATAC-seq to build a model that predicts the open chromatin region
(OCR), which can be further used to identify the cis-elements [25]. The neural network
DENA, which was trained on direct RNA-Seq data of in vivo-transcribed mRNAs from
wild-type and m6A-deficient Arabidopsis thaliana, can identify 90% of miCLIP-detected m6A
sites in Arabidopsis [26]. However, the application of deep learning to multiple dimensions
of expression data remains limited. Here, we designed a neural network called DEGRN
(Deep learning on Expression for Gene Regulatory Network), which was trained on both
bulk RNA-Seq and scRNA-Seq expression data. DEGRN obtained 3,053,363 high-quality
interactions with a score > 0.5, containing 1430 TF genes and 13,739 non-TF genes. The neural
network also showed greater power to recover TF regulators when compared with existing
tools applied in plants. DEGRN provides a valuable resource for the inference of novel gene
functions associated with each TF gene, encompassing a range of biological processes such
as development, metabolism, and stress responses. The application of DEGRN has led to
the discovery of previously unknown TFs that play a crucial role in the regulation of leaf
senescence. For instance, we identified a transcription factor named MAF5, whose mutant
exhibited premature leaf senescence, highlighting the crucial role of MAF5 in the process of
leaf senescence. Our study expands our understanding of gene regulatory networks and
paves the way for further investigations into their functional implications.
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2. Results
2.1. A Deep Learning Model for Identifying TF and Target Interactions

When seeking to build a robust model for inferring the relationship between tran-
scription factors (TFs) and their potential targets, the core of this process was to recover
the diverse expression of TFs and their targets. To do so, we collected a bulk RNA-Seq
expression dataset with 728 cultivars from 1001 Arabidopsis projects, which represents the
expression diversity of most cultivars of Arabidopsis with diverse genotypes. Simultane-
ously, we collected a single-cell RNA-Seq (scRNA-Seq) dataset of root tissue in Arabidopsis,
which can be characterized by the expression diversity of different tissues (cells) within an
individual. The two datasets enabled us to explore the potential transcriptional regulation
at the genome-wide level in Arabidopsis. Using these datasets, we built a convolutional
neural network (CNN) model, named DEGRN (Deep learning on Expression for Gene
Regulatory Network), containing six convolutional layers, one flattened layer, two dense
layers, and a final “sigmoid” layer. For the inputs of DEGRN, the expression levels of gene a
and gene b were separately extracted and transformed as a 2D histogram image (Figure 1A).
The 2D image was used for a higher-dimensional matrix (such as 32 × 32) to fit the input of
the CNN model. This method can improve the utilization of the expression data. When
two separate datasets are generated, the two can also be jointly combined to form a larger
matrix (example as above, 64 × 32) as the input of DEGRN (see Methods). The interaction
of gene a and gene b was labeled as “1”, indicating that gene a regulated gene b, while “0”
meant that gene a and gene b were not interacting. The output of the model was normalized
from 0 to 1, where the closer the output was to 1, the more likely it was that interactions
were present. With DEGRN, we trained a series of gene pairs from a gold-standard dataset
previously built by iGRN, which contained 47 TF families and 11,460 interactions with an
average of 11 interactions per TF [27]. To measure the performance of DEGRN, we used
the area under the curve receiver operating characteristic (AUROC) as the metric on a scale
of 0 to 1, with 1 being the most accurate.

We then used 70% of the gene pairs of the gold standard, which were randomly
selected and used as a training dataset for the model’s training via deep learning, while
the remaining 30% were used as an evaluation set. To measure the impact of expres-
sion datasets produced using different techniques, three different inputs were used to
train our models. Firstly, the bulk RNA-Seq dataset was independently used to train
the model, and the average value of AUROC was 0.770 (±0.0065). Secondly, the model
trained with the scRNA-Seq dataset achieved a more efficient and higher AUROC value
(0.795 ± 0.0050). Interestingly, the AUROC value of the model trained on either dataset
alone was significantly lower than that of the model trained by combined expression (aver-
age AUROCcombine = 0.839 ± 0.0036), suggesting that the combination of bulk RNA-Seq
and scRNA-Seq can better reflect transcriptional regulatory relationships (Figure 1B,C).
Furthermore, ten-fold cross-validation (CV) with 20 repeats was used to evaluate the per-
formance and stability of our model, in which the model was trained on 90% of the gene
pairs and tested on the remaining 10%. Among those repeats, the average AUROC value
was 0.85, indicating that the model performed well among those datasets (Table S1). In
consideration of the fact that the dimensions may have impacted the accuracy, we assessed
the effect of changing the dimensions of the expression matrix (i.e., 16 × 16, 32 × 32, and
64 × 64) on the AUROC of our model for the classification of interaction (Figure S1). The
result suggested that 32 × 32 was the optimal size for the model. Thus, using both bulk
RNA-Seq and scRNA-Seq data, and with a 32 × 32 expression matrix, DEGRN was built
for further analysis.

By applying DEGRN to predict the interactions of 1678 TFs and 29,182 non-TF genes,
we obtained a comprehensive landscape of transcriptional regulation with 3,053,363 in-
teractions, containing 1430 TF genes and 13,739 non-TF genes. Among those interactions
investigated, most target genes (62.86%) were targeted by fewer than 100 TF genes, while
435 (3.17%) genes were potentially regulated by more than 1000 TFs, suggesting the versa-
tility of these genes. Of note, 46.99% of the genes in the “1–100” group were targeted by



Plants 2024, 13, 1276 4 of 20

fewer than 10 TFs (Figure 1D). Furthermore, our study encompassed a wide array of TF
families, including the bHLH family, MYB family, ERF family, and NAC family (Figure 1E).
By investigating members from these diverse TF families, we obtained a comprehensive
understanding of the regulatory landscape underlying complex biological processes.
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Figure 1. Overview of the establishment of DEGRN. (A) Process of building DEGRN. Firstly, gene
a and gene b were obtained from single-cell RNA sequencing (scRNA-Seq) to be visualized into
two dimensions of the matrix. When combining the two datasets, the newly produced matrix was
used as input for DEGRN via a convolutional neural network (CNN). Thus, using a gold standard
of TF–target interactions, we predicted 1678 existing transcription factors (TFs) via DEGRN, thus
inferring the novel gene function of each TF and constructing the novel network with various TFs,
targets, and functions. (B) Receiver operating characteristic (ROC) plot of three models based on bulk
RNA-Seq, scRNA-Seq, and the combined data. (C) Average value of the ROC (AUROC) with five
repeats for the above three models. (D) Distribution of a number of predicted TFs per target gene.
(E) Number of TF families predicted by DEGRN.

2.2. Performance across Diverse Datasets

To test whether DEGRN had significant predictive power in other datasets, we selected
four public transcriptome datasets of scRNA-Seq for different tissues and one transcriptome
dataset of 1001 Arabidopsis, to generate eight test datasets for further evaluation. To better
assay the power of DEGRN, two strategies were used. Firstly, we used the above eight
datasets as the input data of DEGRN for model training and thereby obtained eight models
for these eight datasets. We found that most models (all except for Dataset 8) had an
AUROC value of more than 0.8, which was poor (Figure S2A,B). We reasoned that this
result was caused by the limited number of samples in the expression data. The comparable
performance of the above eight models with DEGRN implied the power of the neural
network when dealing with diverse datasets. Secondly, we used the above eight datasets
as the evaluation data of DEGRN, to generate predictive data, the AUROC, and the F1
score between the observed data and predictive data. Despite the low AUROC values and
F1 scores in the above datasets, DEGRN still had modest power (AUROC > 0.6 and F1
score > 0.5) to predict the interactions among these diverse datasets (Figure S2C,D).
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2.3. Validation of TF–Target Interactions according to the Experimental Evidence

To evaluate the accuracy of the interactions predicted by DEGRN, we utilized an
independent DAP-seq dataset containing 387 TFs with in vitro physical binding to the
promoters of their target genes. The interactions of our model were compared with the
DAP-seq binding target gene list, thus evaluating if there was significant overlap between
the two. Among those 387 TF genes, 88.11% (341) were found to overlap between the dataset
of DAP-Seq and DEGRN, while 46 TF genes did not overlap. Interestingly, 262 (or 67.70%
of the) TF genes with target genes in DEGRN showed significant enrichment for DAP-Seq
binding among their target genes (p < 0.05 after Benjamini–Hochberg (BH) adjustment)
(Figure 2A). For example, the top 10 most enriched TFs comprised NAC083, NAC058, BRN2,
WRKY55, NAC055, NAC007, WRKY65, HY5, NAC101, and NAC046, in which NAC083
shared an overlap of 1991 targets with the DAP-Seq data (Figure 2B; Table S2). Those results
suggested that DEGRN has good potential in predicting the interactions of TF genes and
their target genes.
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Figure 2. DEGRN was supported by experimental evidence. (A) Results of our comparison and
enrichment analysis between TF–target interactions from DAP-Seq and DEGRN. (B) Top 10 TFs
enriched with DAP-Seq. (C) Overlap of TF–target interactions between DEGRN, ChIP genes, DE
genes, and Y1H genes. (D) Histogram plots of the expected overlap between DEGRN and the three
sets of experimental evidence based on 10,000 randomized networks. The black arrows represent the
observed overlap, and the number represents the expected overlap of 10,000 randomized networks
by chance. The p-value was defined as the number of expected overlaps by chance exceeding the
observed overlap divided by 10,000. (E) Examples of overlaps of EIN3 (AT3G20770) and WRKY15
(AT2G23320) are shared by DEGRN and sets of experimental evidence. The red bars represent the
selected TFs. The blue, brown, yellow, and green bars represent the targets obtained by ChIP data, DE
data, Y1H data, and DEGRN, respectively. The purple bars represent the overlap targets, which were
covered by DEGRN and experimental evidence. The gray lines represent the interactions between
TFs and their targets.
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Next, we used three external datasets to evaluate the performance of DEGRN. The
first dataset comprised TF ChIP-bound genes (called “ChIP genes”) for 24 different TFs,
reflecting primarily direct binding in vitro (9353 interactions selected for the top 500 per
TF), while the second dataset contained a set of 23 differentially expressed genes (called
“DE genes”) after TF perturbation (18,213 interactions). The third dataset covered 1115 Y1H
interactions directly reflecting interactions in vitro (called “Y1H genes”). The performance
of DEGRN was measured by examining the overlaps, to determine if those were more
significant than the expected overlaps generated randomly by DEGRN. In this way, an
overlap of 1245 interactions (13.31%) was detected between DEGRN and ChIP genes,
which was a 1.81 higher overlap than that expected by chance (687) (Figure 2C,D; Table 1).
The DE genes displayed an overlap of 2890 edges (15.87%), with an enrichment fold
of 2.07 (2890/1393). The third dataset, of Y1H genes, contained the minimum number
of interactions, with us only detecting an overlap of 586 interactions (31.78%), which
showed a higher enrichment (3.02-fold enrichment) than those for the other two datasets
(Figure 2C,D). For example, the TF gene EIN3, which is involved in ethylene responses,
was predicted with 4725 targets by DEGRN. Among those targets, we found that 43.47%
(163) and 21.80% (109) of DE genes and ChIP genes overlapped with DEGRN, respectively,
implying a high similarity between these two datasets. Similarly, the TF gene WRKY15, with
1563 targets by DEGRN, was found to overlap in 100% (3) and 12.47% (168) of targets with
DEGRN, respectively (Figure 2E). Overall, these results offered support for the interactions
of DEGRN in the form of experimental evidence.

Table 1. Comparison between DEGRN and the experimental evidence.

Comparison Overlap
Numbers

Expected Overlap of Permutation
Test with 10,000 Replicates Range p-Value Enrichment

Fold

DEGRN vs. ChIP genes 1245 687 456–878 p < 1 × 10−4 1.81
DEGRN vs. DE genes 2890 1393 1032–1703 p < 1 × 10−4 2.07
DEGRN vs. Y1H data 586 194 154–234 p < 1 × 10−4 3.02

2.4. Inference of Potential Gene Functions for TF Genes

Using the above interactions, which were supported by functional research, the gene
function of each TF was inferred via Gene Ontology (GO) enrichment analysis of its
corresponding targets (Figure 3A; see Section 4.4). The GO terms with a general process
were filtered out, while experimental biological process (BP) annotations were kept. If a
term of a BP was enriched among the target genes, the corresponding TF gene was thought
to be involved in this BP. The enriched terms of unannotated TFs were thought to represent
a novel functionality. Among the 1424 TF genes predicted in DEGRN, 80.90% (1152) of
TFs with known experimental BP annotations could be used to evaluate the accuracy of
the validation of known functions, while the remaining TFs without any experimental BP
annotations could be inferred as representing novel functions. As a result, 40% of known
BPs were recovered with a rate > 5%, with an average of 23.51% of known regulators
recruited (Figure 3B). Remarkably, there were several processes with a recovery rate higher
than 80%, including root development (100%), response to hypoxia (100%), response to
cold (97.56%), response to jasmonic acid (95.45%), response to salicylic acid (94.44%),
glucosinolate metabolic process (87.50%), and respond to auxin (85.71%) (Figure 3C).
Unfortunately, the terms related to seed development were not recovered, such as seed
development (GO:0048316), seed coat development (GO:0010214), and seed germination
(GO:0009845), which may have been due to the lack of seed tissues in our datasets.
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Figure 3. The inference of novel gene functions by DEGRN. (A) Overview of our inference of novel
gene functions with DEGRN. The red dots in the center represent the TFs; the yellow dots represent
the targets; the blue dots represent the GO terms of biological processes. (B) Recovery rate of known
TFs per biological process (BP) term in Gene Ontology (GO). (C) Examples of BPs with high recovery
rates. (D,E) show examples of networks of flower development and xylem development, respectively.
(F) Examples of different TFs interacting with the common target genes within the same BP. The red
bars represent the known TFs, while the yellow bars are the novel TFs obtained by DEGRN. The blue
bars represent the common target genes. The colors of the line represent the −log10 value (p-value).

Based on the rule of guilt by association, the enrichment of target genes of TFs can
be inferred to represent novel gene functions. Considering this, we found that there were
abundant novel TFs predicted to be involved in the development of the plant, which had
not been reported previously. For example, the most enriched term related to development
was root development, which contained 1247 TFs, and 38 TFs were known regulators of root
development (Figure S3A). Examples of these TFs were AIL6 [28], LRP1 [29], ATMYB61 [30],
AT5G42700 [31], ATWKRY9 [31], and MGP [32]. Likewise, seventeen TFs were responsible
for flower development, of which three TFs (CO, HAN, and GATA20) had been reported
previously [33,34] (Figure 3D). Meanwhile, 18 TFs were identified for leaf development,
such as bZIP59, MYB83, ANAC081, and DOF6 (Figure S3B). Furthermore, there were
three TFs involved in anther development: ARF5, DOF3.4, and AT4G29000 (Figure S3C).
Meanwhile, four hundred and fifty-six TFs were related to pollen development, of which
eight TFs were known regulators: REM35, bHLH010, LRP1, AT3G10470, AMS, DREB2,
ABS7, and ATWRKY43 [35–37] (Figure S3D). Otherwise, the TFs predicted to be involved
in different aspects of development were explained by the significantly enriched target
genes of the same BP. For example, one hundred and nine TFs were associated with
xylem development, of which two (VNI2 and VND6) are known regulators of xylem
development [38,39] (Figure 3E). All of these TFs contained the common target genes



Plants 2024, 13, 1276 8 of 20

involved in xylem or vascular development, including IRX11, AtXYP2, JLO/LBD30, LBD18,
BP, AHP6, VUP1, XTH9, and EXGT-A1/XTH4 [40–45] (Figure 3F).

2.5. Prediction of Biological Processes Related to Metabolism and Stress Responses

In addition to the developmental processes, the novel TFs related to metabolism were
also investigated. As a result, three hundred and eighty TFs were uncovered for suberin
biosynthesis, of which two TFs (SUB and MYB92) had been reported for suberin biosyn-
thesis [46,47] (Figure 4A). As for flavonoid biosynthesis, 882 TFs were able to regulate
this process, though only ATMYB12 had been shown to participate in this process [48],
suggesting that DEGRN may perform well at inferring novel gene functions related to
basic metabolism (Figure 4B). Additionally, six novel TFs were identified for glucosinolate
biosynthesis: ATERF-2, DEAR3, AtGlsA1, AT3G06410, OXS2, and HAG1 (Figure 4C). Mean-
while, there were four novel TFs, GNC, ESE3, CGA1, and AT1G12890, responsible for fatty
acid biosynthesis, which had been not reported previously (Figure S4A).
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Figure 4. Prediction of the pathways related to metabolism and stress responses. (A–C) show
three networks associated with metabolism, as predicted by DEGRN: suberin biosynthesis, flavonoid
biosynthesis, and glucosinolate biosynthesis. (D,E) show examples of novel networks associated
with abiotic stresses: heat stress and cold stress. The red dots represent the known TFs that were
previously reported; the yellow dots represent the novel TFs predicted by DEGRN; the blue dots
represent the target genes obtained by DEGRN; and the grey lines represent the correspondence of a
TF and its target genes, which were enriched in the BPs. (F) Overlap genes between differentially
expressed genes (DEGs) and novel TFs predicted by DEGRN. The red bars represent root tissues,
while the blue bars represent shoot tissues.
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At the same time, we identified novel TFs for processes related to stress responses.
Of note, for the terms related to cold stress and heat stress, we obtained a large number
of TFs, including 1258 TFs for heat and 1375 TFs for cold, which had the potential to
regulate these processes (Figure 4D,E). Among these TFs, 40 had been reported to respond
to cold, including the key TF genes CBF1, CBF2, and CBF3 [49,50]. Similarly, nineteen TFs
were known for the heat response, of which six belong to the HSF family, namely, HSFA2,
HSFA7B, HSFA3, HSFA4C, HSF1, and HSF3 [51–53]. To validate the accuracy of these, we
compared the network of cold responses with public time-series transcriptome data after
cold treatment. We found that the overlap between differentially expressed genes (DEGs)
and DEGRN increased gradually with time after cold treatment, no matter whether in root
or shoot (Figure 4F). When combining these times, we identified 736 TFs, consisting of
53.53% of the genes identified by DEGRN, which were differentially expressed at a time
point, suggesting a large overlap between DEGRN and the previous study that produced
these data. Moreover, there were 38 TFs associated with response to UV, 102 TFs related to
salt stress, and 15 TFs involved in metal ions (Figure S4B–D).

2.6. DEGRN Accelerates the Investigation of Leaf Senescence

Leaf senescence is a complex biological process, which can be regulated by various
factors, such as hormones, circadian rhythm, and stress [54,55]. Our network has the
potential to identify novel TFs involved in leaf senescence, and we tested this potential out.
As a test case, a large number of TFs with predicted leaf senescence (1027) were extracted, of
which 21 TFs were known to respond to leaf senescence (Table S3; Figure 5A). Among those
known TFs, ten TF genes belong to NAC transcript factors, such as ANAC087, NAC059,
NAC081, NAC017, NAC042, NAC029, NAC092, and NAC053 [56–59], and there were four
WRKY genes known for leaf senescence: WRKY22, WRKY30, WRKY53, and WRKY70 [60,61].
WRKY70, a negative senescence regulator, can cooperate with WRKY54 to regulate leaf
senescence via a salicylic-acid-dependent pathway [61]. In contrast, WRKY53, which is
induced at an early stage of leaf senescence, acts as a positive regulator of senescence [62].
It was reported that NAC017 negatively regulated leaf senescence together with ANAC090
by suppressing the reactive oxygen species (ROS) response, which was referred to as a
“NAC troika” [58]. Among the remaining 1026 TF genes, the bHLH TFs were the most
abundant family, with 91 genes predicted to be responsible for leaf senescence, followed
by the ERF (89 genes) and MYB (83 genes) families (Figure 5B). We then compared the
novel TFs identified by DEGRN with the potential leaf-senescence-related genes (SAGs)
collected from the Leaf Senescence Database (LSD), which compiles 3852 genes supported
by genetic or genomic evidence or microarray data [63]. After filtering out the non-TF genes
from the LSD, the remaining 415 TFs displayed an overlap of 333 genes (80.24%), with a
fold enrichment of 2.14, indicating high performance in the network of leaf senescence
(Figure 5C).

To evaluate the potential role of novel TFs in leaf senescence, we investigated the
expression pattern of these novel TFs through the lifespan of Arabidopsis leaves. To do
so, with public transcriptome data (GSE43616) from the GEO database, we were able to
investigate whether these novel TFs were involved in or regulated during the senescence
stage. As shown in Figure 5D, we found that these TFs could be classified into four groups,
named C1–C4. The groups C1 and C2 were highly expressed in the late developmental
stage from 20D to 30D, suggesting a potential role of these TFs in the late stage. Previous
studies showed that many genes involved in auxin biosynthesis were up-regulated during
age-dependent senescence [64,65]. We identified serval ARF genes in groups C1 and C2,
such as ARF4, ARF7, ARF9, ARF16, and ARF17, suggesting that auxin may function in the
process of leaf senescence [65]. Group C4 showed high expression in early development
from 4D to 14D, while group C3 increased among the mid-stage from 14D to 22D.
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Figure 5. The application of DEGRN in leaf senescence. (A) Novel network of leaf senescence
predicted by DEGRN. The red dots represent the known TFs; the yellow dots represent the novel
TFs obtained by DEGRN; the blue dots represent the target genes; and the grey lines represent
the correspondence of a TF and its target genes. (B) Distribution of the TF family involved in leaf
senescence. (C) Overlap between TFs identified by DEGRN and senescence-associated genes (SAGs)
obtained from Leaf Senescence Database (LSD) 3.0. (D) Expression of novel TFs in the lifespan of
Arabidopsis from public transcriptome data. (E) Linear regression of MAF5 during the process of leaf
senescence. (F) Relative expression of MAF5 at four stages of leaf development. YLs, young leaves;
NS, fully expanded mature leaves without senescence symptoms; ES, early senescent leaves with
<25% leaf area yellowing; LS, late senescent leaves with >60% leaf area yellowing. (G) Phenotype
within wild-type (WT) and mutant maf5. (H) Fold change of the known TFs identified by public
population-scale transcriptome data for 1001 Arabidopsis. The differentially expressed genes (DEGs)
were identified between the accessions with the lowest and highest expression levels of MAF5.

We also found a TF named MAF5, belonging to C1, which showed strong linear
regression with a significant p-value (R2 = 0.82, p-value = 4.50 × 10−6), suggesting its
potential role in leaf senescence (Figure 5E). To validate this function of MAF5, we assayed
its expression in the four stages of leaf development, including young leaves (YLs) and
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fully mature leaves without senescence symptoms (NS), in early senescence (ES), and in
late senescence (LS) (Figure 5F). The results indicated that the relative expression of MAF5
gradually increased with the progression of senescence, which showed a similar trend
to the leaf senescence marker gene SAG12 (Figure 5F). Similarly, we observed little leaf
decay in the mutant maf5 compared to the wild-type col-0 (Figure 5G). To investigate the
mechanism of MAF5 in leaf senescence, we evaluated transcriptional changes through the
public transcriptome of 1001 Arabidopsis. We defined the samples with high expression of
MAF5 as MAF5+, while the samples with low or no expression were defined as MAF5−.
With the criteria of “|LogFC| > 1 and p value < 0.05”, we identified that 20 known genes
collected from LSD were differentially expressed between MAF5− and MAF5+, including
ANAC029, ANAC046, bZIP44, WRKY75, and LBD1 (Figure 5H). This result suggested that
the reduction in MAF5 caused alterations in a variety of leaf senescence genes. Finally,
we investigated the functions of these DEGs via GO and KEGG enrichment analyses. The
results showed that most DEGs may be involved in these terms related to “response to
salicylic acid”, “response to oxidative stress”, “response to hypoxia”, and “plant hormone
signal transduction” (Figure S5A,B). Thus, we speculated that phytohormones may play a
crucial role in the pathway of MAF5 with leaf senescence. However, the mechanism needs
to be validated through further experiments.

2.7. The Performance of DEGRN Compared with EXPLICIT, iGRN, and AtRegNet

To evaluate the robustness of DEGRN, three methods previously reported, EXPLICIT [3],
iGRN [27], and AtRegNet [9], were compared with DEGRN. Firstly, we compared the com-
pleteness of the whole TFs across different methods. For the number of TFs analyzed,
DEGRN obtained 3,053,363 interactions covering 1430 TFs, which was higher than AtReg-
Net (585) and comparable with iGRN (1491) and EXPLICIT (1679). However, the average
number of interactions per TF in our model (2135) was greater than those in iGRN (1146)
and EXPLICIT (584). DEGRN also showed the best performance in the median number of
interactions per TF (1876), implying the continuity of DEGRN (Table S4). The details per TF
family were as follows: the bHLH family was predicted by iGRN with the highest members
(142) and an average of 1345 interactions for each member, followed by EXPLICIT (140 mem-
bers and 588 interactions per member), DEGRN (126 members and 2160 interactions per
member), and AtRegNet (32 members and 861 interactions per member). Although the
number of members predicted in DEGRN was a little lower, the average interactions
in our model were 1.61 and 3.67 times greater than in iGRN and EXPLICIT (Table S5).
Furthermore, DEGRN outperformed on several more TFs than the other three methods.
For example, the C3H family, containing 13 members, was predicted to have the greatest
average number (2036) of interactions, which was five and two times more than iGRN (431)
and EXPLICIT (977), respectively. AtRegNet did not cover one member of the C3H family.
Next, for each TF gene in the C3H family, we compared the overlapped target genes of
three of the methods: iGRN, EXPLICIT, and DEGRN. We found that 61.53% of the 13 TFs
showed a greater overlap in genes between DEGRN and iGRN (or EXPLICIT) than between
iGRN and EXPLICIT. These results demonstrated that our model was able to obtain better
results than the other three methods on TF target pairs.

Secondly, the gene functions were compared of TF genes consisting of target genes with
the same GO BP annotations. According to the TF pairs from the other three methods, the
predicted BP was calculated for each TF. To measure the performance of different methods,
the power was defined as the number of known regulators previously reported. We found
that the BPs were associated with nine types of abiotic stresses: cold stress (GO:0009409),
heat stress (GO:0009408), salt stress (GO:1902074), hypoxia stress (GO:0001666), osmotic
stress (GO:0006970), oxidative stress (GO:0006979), ethylene stress (GO:0009723), jasmonic
acid stress (GO:0009753), and salicylic acid (GO:0009751). DEGRN obtained 13.11 known
regulators on average, which was slightly higher than iGRN (12.67), EXPLICIT (12.11), and
AtRegNet (7.56) (Table S6). In particular, DEGRN significantly outperformed the other
methods in several BPs, covering cold stress, salt stress, hypoxia stress, ethylene stress, and
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salicylic acid stress. For example, DEGRN obtained 12 known TFs that were involved in
cold stress, exceeding the other methods. Examples of known TFs associated with cold
stress covered NLT6, which is induced by cold and, in turn, induces a small group of
cold-inducible PR (pathogenesis-related) genes to elicit pathogen resistance [66]. Overall,
these results suggest that DEGRN outperforms the other methods when predicting the
novel gene functions of TF genes.

3. Discussion

Gene regulatory networks (GRNs) are powerful tools for understanding the complex-
ity, functionality, and pathways of biological systems, including development, metabolism,
and stress responses [7]. Since the advent of high-throughput technologies in biology in the
late 1990s, reconstructing GRNs has stood as a central computational problem in systems
biology [67]. Recently, increasing evidence has begun to suggest that deep learning is a
useful method for addressing various biological problems [25,68,69]. However, there are
few published works on deep learning used to study GRNs in plants. Hence, we used
the expression data of bulk RNA-Seq and scRNA-Seq to develop a deep learning model
(DEGRN) for inferring the interactions of TFs and their target genes. There are a set of
popular newly developed methods in deep learning, such as iGRN [27] and TFBSnet [70].
However, most of these methods depend on the limited ChIP binding site data of specific
TFs. By overcoming that limitation, and benefitting from the improved power of deep
learning and large-scale data, we can screen almost all potential transcription factors for
interactions with candidate target genes. Accordingly, the DEGRN used here is not limited
to specific TF binding sites, for which data are not easily obtained, but instead utilizes
transcriptome data available in public databases. However, due to the specificity of gene
expression in different tissues, it was found that several TFs were not predicted for any
interactions in our data because of their low or even absent expression. We propose that
merging expression data on genes in more tissues may have a great effect on the universal
construction of GRNs.

Compared with traditional bulk RNA-Seq data, which are mixed for different cell
types, single-cell RNA-Seq (scRNA-Seq) is a powerful tool for identifying and quantifying
transcriptional activity at a single-cell resolution. Previous studies showed that scRNA-Seq
can perform well in plants, and it offers great advances in identifying transcriptional activity
in individual cells, constructing development trajectories, and detecting novel cell identity
markers [16,20,71]. In our study, we used expression data from scRNA-Seq (containing
17,290 cells in Arabidopsis roots) for GRN construction using deep learning. The model
built with expression data from scRNA-Seq outperformed that built on expression data
from bulk RNA-Seq, implying the potential of scRNA-Seq in gene regulation. Furthermore,
all three models showed high AUROC values (greater than 0.75), suggesting that expression
is an important feature when constructing models with which to investigate transcriptional
regulation. We also hypothesized that scRNA-Seq would contain additional transcriptional
information within a cell type or a tissue compared to the scant bulk RNA-Seq and thus
would provide a higher-resolution GRN, thereby producing more robust results. Accord-
ingly, our results suggested that using such large-scale expression data from scRNA-Seq
could make it more feasible to explore the secrets of transcriptional regulation in plants.
With technological development, more and more non-model species can be investigated
for transcriptional regulation via scRNA-Seq, such as peanut [72] and crantz [73]. There
is a possibility that DEGRN could be applied to these non-model species. However, it is
important to note that further validation and testing are necessary to assess the feasibility
and effectiveness of DEGRN in these species.

Inferring novel gene functions or novel regulators of TF genes is the key role of a GRN.
Through these high-quality interactions of DEGRN, several novel regulators were identified
for abundant biological processes in Arabidopsis, including development, metabolism,
and stress responses. We used 1152 TFs to evaluate the recovery of known BPs and infer
novel functions, while 272 TFs were inferred to have novel functions without any exper-
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imental BP annotations. The highly accurate recovery of known regulators implies that
DEGRN performs well in inferring TF gene functions. Notably, we focused on biological
processes related to development, metabolism, and stress responses. Examples of devel-
opment include root, flower, leaf, xylem, anther, and pollen development. Among these
processes, we obtained many typical genes involved in development. These typical known
regulators included CO, REM35, bHLH010, and LRP1 [34–36]. For stress responses, we
found that key genes from the CBF family and HSF family were responsible for cold and
heat stress, respectively [52,74]. These results suggest that DEGRN is a powerful tool for
inferring novel gene functions for TFs and thus constructing a more complete landscape of
transcriptional regulations.

A complicated biological process requires a more accurate network in order to explore
its regulations. Here, we used the example of leaf senescence to display the performance of
DEGRN in terms of its power to unpick complicated processes. Leaf senescence is known
to be regulated by multiple factors, such as environmental factors (circadian rhythm, light)
and genetic factors (epigenetic regulation, transcriptional regulation) [55]. We obtained
1027 TF genes related to leaf senescence, indicating that leaf senescence is highly complex
and regulated by multiple TF genes. Among these TFs, 21 TFs were shown previously
to regulate this process via various pathways, containing multiple members of the NAC
family and WRKY family. For instance, NAC083 (VIN2) integrates ABA-mediated abiotic
stress signals into leaf aging by regulating a subset of COLD-REGULATED (COR) and
RESPONSIVE TO DEHYDRATION (RD) genes [75]. The MADS-box gene, namely FYF,
acts as a repressor controlling floral organ senescence and abscission in Arabidopsis, while
the transgenic plant 35S: FYF delays leaf senescence [76]. Apart from this, 415 senescence-
associated TFs were obtained from the LSD 3.0 database, which collects SAGs (senescence-
associated genes) from various species through multiple methods, and 80.24% (333) of
TFs were uncovered using DEGRN, demonstrating the reliability of the predictions from
DEGRN. Thus, transcriptome data for the lifespan of Arabidopsis leaves showed that
novel TFs related to leaf senescence were dynamically changed during senescence. Our
analysis of the random network indicated that these novel TFs were highly associated
with leaf senescence. Overall, these findings suggest that DEGRN has potential to be used
for exploring complex biological processes and that it may uncover interactions that are
valuable for transcriptional regulation.

4. Materials and Methods
4.1. Gene Expression Data and Model Construction

To explore as many transcriptional regulators as possible, we selected bulk transcrip-
tome data with 728 cultivars from 1001 Arabidopsis with the ID “GSE80744” in the Gene
Expression Omnibus (GEO) database, which contains abundant transcriptional information
at the population level. The scRNA-Seq data were obtained from the Single Cell Expression
Atlas with ID E-GEOD-141730, representing 17,290 cells. For these datasets, the transcripts
per million (TPM) expression value was calculated for each gene.

The structure of DEGRN is composed of 6 convolutional layers and 3 max-pools. To
build DEGRN, the gold standard of TF–target interactions was collected from a previous
report [27]. For each gene pair, the gene expression data for the TF and its target were
extracted from bulk RNA-Seq and scRNA-Seq, respectively. Next, due to the low expression
and many zero values in scRNA-Seq, the expression data were normalized using log
transformation. Then, we used the function “histogram2d” of Python to generate 2D
histogram images for each gene pair with the parameter “bins = 32”, which produces a
32 × 32 matrix representing the relationship of the gene pair. To train the model, 70%
of the whole data were selected as training data, while the rest were used as the testing
data. For the models built solely from bulk RNA-Seq or scRNA-Seq, the input shape of
the convolutional neural network (CNN) was set as 32 × 32. When combining the two
datasets, the input shape of the CNN was set as 64 × 32. To evaluate the stability of DEGRN,
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10-fold cross-validation (CV) was conducted with 20 repeats. The indicators related to the
performance of the models were calculated as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN
The true positive (TP) was defined as the interactions that exist in DEGRN and exist in

the gold standard. The true negative (TN) was defined as the interactions that do not exist
in DEGRN or the gold standard. The false positive (FP) was defined as the interactions that
exist in DEGRN but not in the gold standard, while the false negative (FN) was defined as
the interactions that do not exist in DEGRN but exist in the gold standard. To evaluate the
performance of the models constructed by the different strategies, we selected the AUROC
values as the criteria, which refer to the area under the receiver operating characteristic
(ROC) curve drawn by the TPR and FPR. A set of 30,536,306 interactions were first predicted
by DEGRN. We selected the top 10% of the whole interactions for further analysis with a
probability of 0.72. With this threshold, we saw that the true positive rate (TPR) was 0.52,
which was 4.3 times higher than the false positive rate (FPR). The code is available from
https://github.com/guocc212/DEGRN (accessed on 1 January 2022).

4.2. Validation of DAP-seq and Experimental Results

The DAP-seq data (version 4) of TF–target gene pairs were downloaded from the
Plant Cistrome Database, which contains 3,685,526 interactions [77]. For each TF, its target
genes from DAP-seq were compared with the predicted target genes of DEGRN, using a
hypergeometric distribution to determine if the two datasets significantly overlapped [3].

To validate the predicted network from DEGRN, three independent experimental
datasets were used. The first dataset comprised the 9353 TF–target gene pairs of 24 different
TF-ChIP data, which were collected from the literature (Table S7). To ensure credibility,
only the top 500 target genes for each TF were considered. For TF perturbation, a set
of DE genes, containing 18,213 interactions, was obtained from the literature on 23 TF
genes [10]. Meanwhile, a set of 1844 Y1H interactions was collected from the literature
(Table S7). Thus, the overlap of DEGRN and the above three datasets was defined as the
number of interactions that were both present in DEGRN and experimental networks. The
value of fold enrichment between two networks was defined as the number of interactions
that were present in both networks divided by the number of interactions expected by
chance. The interaction by chance was calculated as the average of the interactions from the
permutation test with 10,000 repeats. The significance of the permutation test was defined
as the number of times that the overlap of the random network was greater than the real
overlap, divided by 10,000.

4.3. Evaluation of DEGRN across Diverse Datasets

To assess the suitability of DEGRN, we selected five additional datasets for this study,
including four single-cell transcriptome datasets of different tissues and one population-
scale transcriptome dataset with 144 accessions of 1001 Arabidopsis [16,17,78,79]. The
four single-cell transcriptome datasets were downloaded from the Single Cell Expression
Atlas with IDs E-GEOD-161332, E-GEOD-121619, E-GEOD-123013, and E-MTAB-11006.
The population-scale transcriptome data were downloaded from the GEO database with
ID GSE43858. To better assay the effect of sample size and tissues, we constructed eight
datasets for further analysis. Dataset 1 contained the scRNA-Seq data of E-GEOD-121619
and bulk RNA-Seq of GSE80744, while Dataset2 was mixed with scRNA-Seq data of E-
GEOD-123013 and bulk RNA-Seq of GSE80744. Dataset 3 contained E-GEOD-161332 and
GSE80744, while Dataset 4 contained E-MTAB-11006 and GSE807744. Datasets 5–8 were
set up with the other bulk RNA-Seq (GSE43858) replacing GSE80744. The details of these
databases are listed in Table S8. Furthermore, we used two strategies to evaluate the

https://github.com/guocc212/DEGRN
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performance of DEGRN. Firstly, we used the above eight datasets as the inputs of DEGRN
to train eight models, following the same pipeline with the above datasets. The AUROC
was used as the metric for evaluating the performance differences between these eight
models and DEGRN. Secondly, we used the DEGRN model constructed on E-GEOD-141730
and GSE80744 to predict the gene interactions when using the expression data of these
eight datasets as the inputs. The AUROC value and F1 score were used as the metrics of
comparison. The F1 scores were calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 × Precision × Recall
Precision + Recall

4.4. Prediction of Gene Function for TFs by DEGRN

The GO annotation of each gene was downloaded from The Arabidopsis Information
Resource (TAIR) [80]. For each TF, the target gene obtained by DEGRN was subjected to
GO enrichment analysis using the hypergeometric distribution in ClusterProfiler v4.0 [81].
The p-value was adjusted with the Benjamini–Hochberg (BH) method, and the P-adjust-
value cutoff was set as 0.05 to give the final results. Only experimental and curated GO
biological process annotations were considered (version August 2018). GOs corresponding
to terms located at the root of the GO hierarchy were excluded (GO:0008150, GO:0009987,
GO:0008152, GO:0044237, GO:0071704, GO:0050896, GO:0065007, GO:0032502, GO:0050789,
GO:0032501, GO:0007275, GO:0050794, GO:0006355, GO:0045893, GO:0045892), as previ-
ously reported [27]. The recovered TF of GO was defined as the TF containing a certain GO
term and that was successfully enriched for the same GO term by its predicted target genes.
The recovery of the GO term was defined as the number of TFs successfully recovered
divided by the number of TFs with the corresponding GO term.

4.5. Comparison between Differentially Expressed Genes (DEGs) and DEGRN

Time-course expression data of a control and cold treatment of Arabidopsis were
downloaded from the GEO database with IDs GSE5620 and GSE5621 [82]. The differen-
tially expressed genes (DEGs) were identified with “limma” packages. We calculated the
corresponding times between the control and cold treatment, including 0.5 h, 1.0 h, 3.0 h,
6.0 h, 12.0 h, and 24.0 h.

4.6. Validation of Leaf Senescence Using Time-Course Data

The expression data for the lifespan of Arabidopsis leaves were obtained from GSE43616
in the GEO database. This time-course dataset contains the leaves of Arabidopsis at different
developmental stages, set at 2-day intervals from 4 to 30 days. The heatmap of the genes
predicted from DEGRN was constructed using the R package “pheatmap”. The SAGs were
randomly selected from the LSD database [63].

4.7. Plant Materials and Growth Conditions

The transfer DNA (T-DNA) insertional mutant maf5 was obtained from the Not-
tingham Arabidopsis Stock Center (NASC). Seeds were surface-sterilized in 10% (v/v)
sodium hypochlorite for 10 min, washed 3 times with sterilized water, and then grown
on Murashige and Skoog medium plus 3% sucrose and 0.6% agar (PH5.8) after 3 days of
vernalization in darkness at 4 ◦C. The 7-day-old seedlings were transferred into soil and
were grown at 22 ◦C in a 16 h light/8 h dark cycle. The selection of four stages of a leaf was
described in a previous study [83]. The total RNA was isolated from the seedlings with
TRIzol reagent. qRT-PCR analysis was performed with a Roche Light Cycler 480 real-time
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PCR system using SYBR Green Master Mix (Vazyme Biotech Co., Ltd., Nanjing, China).
Actin2 was used as an internal control for data normalization.

4.8. Transcriptome Analysis Based on MAF5 Expression in 1001 Arabidopsis

To investigate the potential mechanism of MAF5, we sorted the samples with the
expression of MAF5 in 1001 Arabidopsis (GEO ID: GSE43858). We selected the 4 accessions
with no expression of MAF5 (6921, 763, 6931, and 6982) and 6 accessions with the highest
expression of MAF5 (6961, 8264, 7342, 7068, 6989, and 6994), which had a TPM value of
more than 20. The DEGs were filtered with the criteria of “|logFC| > 1 and p value < 0.05”.
GO and KEGG enrichment analyses were conducted using ClusterProfiler in R [81].

4.9. Comparison with Previously Reported Methods

To ensure a fair comparison was made, the GO enrichment of target genes per TF
from the other three methods was obtained in the same way (i.e., using ClusterProfiler
v4.0) [81]. The background GO file was acquired from the Arabidopsis Information Re-
source (TAIR) [80]. Only the top 50 TFs predicted for abiotic stress were selected for the
comparison between DEGRN and the other three methods. The performance of each
method was defined as the number of known regulators recovered. The information on the
TF family in Arabidopsis was downloaded from PlantTFDB [84].

5. Conclusions

In this study, we developed a model named DEGRN, which can merge the expression
data of bulk RNA-Seq and scRNA-Seq. We used DEGRN to investigate transcription
factors and their interactions and, in this way, we predicted novel potential functions of
transcription factors. Taking leaf senescence as an example, we obtained a set of novel
transcription factors that may be involved in leaf senescence and validated the potential
role of MAF5 through transcriptomics analysis and phenotype analysis. Overall, the
comprehensive transcriptional regulation predicted by DEGRN can provide a valuable
basis for further investigations into gene functions and may find breeding applications.
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