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Abstract: Geocoding is a fundamental component of geographic information science that plays a cru‑
cial role in various geographical studies and applications involving text data. Current mainstream
geocoding methods fall into two categories: geodesic‑grid prediction and address matching. How‑
ever, the geodesic‑grid‑prediction method’s localization accuracy is hindered by the density of grid
partitioning, struggling to strike a balance between prediction accuracy and grid density. Address‑
matching methods mainly focus on the semantics of query text. However, they tend to ignore key‑
word information that can be used to distinguish candidates and introduce potential interference,
which reduces matching accuracy. Inspired by the human map‑usage process, we propose a two‑
stage address‑matching approach that integrates geodesic‑grid prediction and text‑matching mod‑
els. Initially, a multi‑level text‑classification model is used to generate a retrieval region proposal
for an input query text. Subsequently, we search for the most relevant point of interest (POI) within
the region‑proposal area using a semantics‑based text‑retrieval model. We evaluated the proposed
methodusing POI data from the BeijingChaoyangDistrict. The experimental results indicate that the
proposed method provides high address‑matching accuracy, increasing Recall@1 by 0.55 to 1.56 per‑
centage points and MRR@5 by 0.54 to 1.68 percentage points.

Keywords: address matching; geodesic‑grid prediction; pre‑trained languagemodel; attentionmechanism

1. Introduction
Geocoding is a fundamental functional component of geographic information science

that is useful for numerous applications, including map navigation [1], logistics [2], and
emergency rescue [3,4]. Geocoding aims to convert location‑reference text into a correspond‑
ing point or region on Earth. Early geocoding methods were mainly based on rules and
templates [5], splitting a query text into address elements and then manually designing cor‑
responding rules to match the query text with a standard address in a database. As the
volume of point‑of‑interest (POI) data continues to grow, the expenses associatedwithmain‑
taining standard address libraries are increasing significantly, and manually designed rules
are struggling to handle diverse query inputswith noise. Machine‑learning‑based automatic
geocoding techniques have attracted increasing interest from researchers [6]. Deep learning
has been the most popular machine learning approach over the past decade. Deep learning
can automatically extract and abstract high‑level features in input text [7] without requiring
the manual design of rules. Additionally, because deep learning models are exposed to a
wide variety of sample data during the training process, they are more resilient to differ‑
ent inputs than traditional methods [8]. Therefore, recent geocoding studies have mainly
focused on deep‑learning‑based methods [9].

Deep‑learning‑based geocoding methods can be divided into two categories: those
that rely on geodesic‑grid prediction and those that employ text–semantic address match‑
ing. Geodesic‑grid‑predictionmethods initially divide Earth’s surface into distinct regions
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using a discrete geodesic grid. They then transform geocoding into a classification prob‑
lem and employ a machine learning model to predict the grid affiliation of a query text.
Ultimately, they use the coordinates of the selected grid’s center point as the geographi‑
cal location corresponding to the query text. The main advantages of such methods are
their simplicity and efficiency, and ability to provide reasonable classification accuracy
when fine grid scales are not required. However, these methods encounter a bottleneck in
that the positional accuracy of the query text is directly constrained by the grid scale. Al‑
though a smaller spatial coverage for an individual grid would result in higher precision
for text localization, a smaller spatial coverage for an individual grid implies a greater num‑
ber of categories that the model must distinguish, rendering it challenging for the model
to provide accurate predictions. In contrast, semantic‑based address‑matching methods
transform geocoding into a text‑matching problem in natural language processing. By
comparing a query text with the textual information of POIs in a database, these methods
identify the record that best matches the query description, thereby converting the query
text into geographical coordinates. The main advantage of such methods is their high
reliability. Once a successful match is achieved, the positioning error is typically negligi‑
ble. Regardless, existing deep learning‑based address‑matching methods mainly focus on
the semantic information in text, neglecting keyword information such as roads and land‑
marks, which could be used to distinguish different POIs. Thismay cause some candidates
that are semantically similar to the query text but geographically distant to interfere with
matching, thereby reducing overall matching accuracy. Intuitively, pre‑filtering candidate
POIs based on the keywords of a query text before matching could narrow the comparison
scope, allowing a model to retain candidates that are more likely to be relevant to a query
and mitigating the impact of irrelevant candidates.

Typically, when people have a specific query regarding a POI, they first identify a
broad area based on the keywords in the query text and then conduct a comprehensive
searchwithin that region. This process essentially involves an attentionmechanismwithin
the human cognitive system [10], which selectively focuses on information that is more
likely to be relevant to the target and excludes interference from irrelevant candidates,
thereby enhancing the probability of successful matches. Inspired by this cognitive pat‑
tern, we integrated a geodesic‑grid‑prediction method with an address‑matching model
to develop a region‑proposal‑based address‑matching framework that utilizes a geodesic‑
grid‑predictionmodel to filter unrelated candidate POIs spatially. Specifically, ourmethod
consists of two stages. For an input query text, we first employ a geodesic‑grid‑prediction
model to predict its geodesic grid in geographical space, recalling POIs located within that
grid as candidates. Subsequently, we use a sentence encoder based on a pre‑trained lan‑
guage model (PLM) to obtain semantic vector representations of the query and candidate
POI texts, selecting themost relevant record based on vector similarity. We refer to the pro‑
posed approach as a region proposal based on an address‑matching framework (RPAM).
Experiments conducted on POI data from Beijing’s Chaoyang district demonstrate that
RPAM effectively improves the accuracy of existing address‑matching models.

2. Related Work
This study was inspired by two research directions: geodesic‑grid prediction and ad‑

dress matching. In this section, we introduce relevant research on both topics.

2.1. Geodesic‑Grid Prediction
Wing and Baldridge [11] investigated the geolocation of texts fromWikipedia and Twit‑

ter. They proposedmodeling the text‑based‑ geolocation task as a classification problem that
initially involved discretizing the Earth’s surface into geodesic grids. Subsequently, a clas‑
sification model was used to predict the grid cell to which an input text belonged. Geodesic
grids were utilized for surface partitioning, and a statistical language model was employed
to represent the probability distribution of words in documents and grids. During the pre‑
diction phase, Kullback–Leibler divergence was used to measure the distance between the
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probability distributions of documents and grids. The grid with the minimum distance was
then identified as the geographical location of the document. Given the extensive scope
of their study and the issue of sparse data distribution in many grids, they addressed this
concern in subsequent research by using a k‑d tree to construct adaptively sized grids to
improve performance [12]. Santos et al. [13] used machine learning techniques to perform
document geolocation. They employed the LambdaMART ranking model to rank candi‑
date place names retrieved from a knowledge base. However, this approach utilizes text‑
similarity calculations based on character and word frequencies without considering the
semantic information within text. To address this issue, Gritta et al. [14] introduced a neu‑
ral geographic encoder called CamCoder that combines lexical semantic and geographical
features. CamCoder uses four input components, namely the target place name, context
surrounding the target place name, other geographic entities in the text, and a sparse vec‑
tor called MapVec, to represent the geographical features of locations. For vocabulary and
text inputs, independent convolutional neural networks (CNNs) are employed for feature
extraction, whereas for geographical features, a fully connected layer is used tomap them to
a dense vector representation. Subsequently, these four features undergo separate mapping
using fully connected neural networks and are ultimately concatenated to form a feature
vector for classification, allowing the prediction of the location to which the target belongs.
CamCoder explicitly considers geographical features beyond text, enhancing document ge‑
olocation precision. However, this method relies on a geographic name dictionary as a form
of external data and does not leverage the hierarchical relationships of place names on a spa‑
tial scale. To address this problem, Kulkarni et al. [15] employed S2 geometry to partition
the Earth’s surface. They proposed a multi‑level neural geographic encoder called MLG
based on a CNN to overcome the limitations of previous models.

Similar to CamCoder, MLG utilizes a CNN as a feature extractor to capture represen‑
tations of the target place name, the context surrounding the target place name, and other
geographic entities in the text independently. During the training phase, MLG simultane‑
ously predicts the categories of the input text inmulti‑level geodesic grids, jointly optimizing
the classification losses across various levels. In the inference phase, the predicted probabil‑
ity for each grid is the product of its own probability and that of its parent‑level grid. The
authors conducted a comparative analysis of MLG, CamCoder, and a single‑level classifica‑
tion network (SLG) on three publicly available English datasets. The results indicated that
MLG provides the greatest localization accuracy. Yan et al. [16] proposed a global context‑
embedding method to enrich the information available for geographical prediction.

Although the geodesic‑grid‑prediction problem has been studied extensively, previ‑
ous research has primarily focused on the geolocalization of document‑level texts contain‑
ing target toponyms and other contextual words. The spatial scale of the grids on which
these studies focused was also relatively large. For example, the average size of the target
grid in [15] was 1000 km2. Our research mainly focuses on predicting small‑scale geodesic
grids, where the average size of the target grid is 1.07 km2. In this study, the entered query
texts contained only the names and addresses of the target locationswithout any additional
contextual information, which made the problem more challenging.

2.2. Address Matching
Address matching refers to the comparison of a query text with the textual information

of POIs in a database to identify the record that corresponds to the query text, thereby trans‑
forming the query text into geographic coordinates. Existing address‑matchingmethods are
largely based on text‑matching methods from the natural language processing field.

Lin et al. [17] utilized an enhanced sequential inference model to ascertain whether a
query and target address matched. This method simultaneously considers the similarity
of textual characters in addresses and the comprehension of semantic information within
addresses. Shan et al. [18] explicitly considered the co‑occurrence information between
address elements, utilized Word2Vec [19] technology to obtain initial representations of
nodes, and obtained the embeddings of various address elements by training a graph neu‑
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ral network to performaChinese address‑matching task. Li et al. [20] proposed amultitask‑
learning‑based approach for addressmatching that jointly performs address‑element iden‑
tification and address matching. This method incorporates the hierarchical relationships
among address elements into a neural network model and introduces prior information
on the hierarchical relationships of address elements through a conditional random field
model. Although the aforementioned methods have enhanced text‑matching models by
leveraging the characteristics of addresses, these approaches require input query texts to
be as complete as possible and for the address elements to be arranged in hierarchical
order. However, real user queries often contain noise such as the omission of adminis‑
trative division information, disordered address elements, or the use of abbreviations for
place names. This noise may reduce the accuracy of the aforementioned methods, and all
of the methods mentioned above utilize the Word2Vec technique to obtain vector repre‑
sentations of words, which are permanent and unchangeable in the problem context [21].
Consequently, these methods do not address the issue of words with distinct meanings in
various contexts.

In 2018, Devlin et al. [22] introduced the bidirectional encoder representations from
the transformer (BERT) PLM model, which is based on a transformer model [23]. The
core of a transformer model is a self‑attention operation that allows the model to generate
word‑vector representations dynamically by considering the contextual information of the
current word. This alleviates the static representation problem encountered byWord2Vec.
Most currentmainstream text‑matchingmethods use semantic retrieval frameworks based
on PLMs. The essence of this approach is to convert a query text and candidate text into
dense vector representations in the semantic space using PLMs. This enables text pairs
with similar semantics to be closer to each other in the vector space, whereas text pairs
with lower semantic similarity are farther apart in the vector space. As a result, effective
differentiation among different texts can be achieved. Because thismethod directlymodels
textual semantic information, it has a strong ability to generalize inputs. Based on the
principles of BERT, Cui et al. introduced the Chinese whole‑word mask PLM RoBERTa‑
wwm [24], which outperformed the original BERT model on various tasks.

To enhance the application of PLMs to address matching, the additional fine‑tuning
of an original PLM can be conducted. Gururangan et al. [25] proposed domain‑adaptive
pre‑training techniques by slightly pre‑training a general PLM using text from the appli‑
cation domain, thereby enhancing the model’s accuracy for various tasks in that domain.
Gao et al. [26] introduced a contrastive learning framework called SimCSE to obtain high‑
quality sentence embeddings. They used dropout operations to generate negative exam‑
ples and updated the parameters of a PLM with triplet loss, thereby achieving state‑of‑
the‑art performance. To demonstrate the effectiveness of the proposed address‑matching
framework, we selected the two methods mentioned above as comparative baselines.

3. Methods
3.1. Overview

In this section, we introduce the overall structure and model details of RPAM. Our
approach consists of two steps: query region proposal and semantic‑similarity searching.
As shown in Figure 1, when given an input query text, we first use a multi‑level geodesic‑
grid‑prediction model to predict the S2 cell to which the text belongs. Subsequently, we
identify the POIs within that area as potential candidates. We then use a text encoder
to obtain semantic representations of the query and candidate POI texts. By utilizing a
dual‑encoder architecture, we compare the query with the candidates and select the top‑k
records with the highest similarity as the retrieval results.
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Figure 1. Overview of region‑proposal‑based address matching.

3.2. Query Text Region Proposal
Wemodeled geodesic‑grid prediction as a classification problem in linewith previous

grid‑based geocoding research. The input is a query text and the output is the probability
distribution of the input text belonging to various geodesic grids. In this section, we first
introduce the multi‑level partitioning of the study area using the S2 spatial index and then
present a model for geodesic‑grid prediction based on a PLM.

3.2.1. Multi‑Level Partitioning Using S2 Geometry
Figure 2 presents the multi‑level partitioning of the research area. We used Google’s

S2 geometry library (https://s2geometry.io/ (accessed on 20 April 2024)) to partition the re‑
search area into non‑overlapping cells. Each S2 cell represents a category of the geodesic‑grid‑
prediction model for forecasting. The S2 geometry is a spherical‑geometry‑based quadtree
data structure capable of subdividing the Earth’s surface into a series of contiguous quadrilat‑
eral grids. Adjacent grids at the same level do not overlap, and there is a natural hierarchical
relationship between the S2 cells at adjacent levels. The S2 geometry can support grid divi‑
sions of up to 31 levels, and in our research, we selected levels 11 (Avg. 17.14 km2), 12 (Avg.
4.29 km2), and 13 (Avg. 1.07 km2) to perform a multi‑level partitioning of the research area.
Level 13 is the grid scale of primary interest, whereas levels 11 and 12 are used as auxiliary
predictors. Following these procedures, each level had 43, 142, and 482 output categories, re‑
spectively. Ultimately, through collaborative prediction across multiple levels, we obtained
the cell indexes at level 13 to which each query text belonged.
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3.2.2. Geodesic‑Grid‑Prediction Model
Topredict the S2 cell towhich aquery text belongs,wedeveloped amulti‑level geodesic‑

grid‑prediction model based on a PLM.We refer to this model as the PTMLG. In contrast to
traditional single‑level geodesic‑grid classifiers, PTMLG considers the hierarchical relation‑
ships of input texts across multiple spatial scales. This allows for a more effective utilization
of multiscale geographical information within the text. Furthermore, the prediction results
at various levels can be combined by simultaneously considering the probability distribu‑
tion of the query text across multiple spatial scales, which addresses the issue of reduced
classification accuracy caused by the uneven distribution of POIs. The overall structure of
PTMLG is presented in Figure 3a. The multi‑level geodesic‑grid‑prediction model consists
of a shared feature extractor and three identically structured classification heads. Each clas‑
sification head is dedicated to predicting the geodesic grids at three different levels. Param‑
eters are not shared among the three classification heads.
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The PTMLG utilizes a bidirectional PLM composed of transformers to obtain deep se‑
mantic representations of input texts. To aggregate features across an entire sentence, we
first add a special token [CLS] at the beginning of an input query text Sq and then add a
[SEP] token at the end of the sequence to mark the end. Subsequently, Sq is split into L to‑
kens using a tokenizer, and each token is transformed into a dense representation {tk}L

k=1
using a word‑embedding matrix. Considering the importance of word‑position informa‑
tion in a sentence for semantic representation, it is necessary to obtain positional embed‑
dings of each token in the positional‑embedding matrix based on its absolute position in
the sequence. Next, the dense representation tk of the token and its positional representa‑
tion pk are summed and inputted into the encoder. Feature interaction is performed using
a multihead self‑attention mechanism that produces a semantic representation of each to‑
ken in the text. This process can be represented as follows:

ek = tk + pk (1)

h(i)k = PLM(ek) (2)

where ek represents the input of the k‑th token, k ∈ [1, L], and h(i)k denotes the semantic
representation of the k‑th token outputted by i‑th layer of the PLM encoder. We initial‑
ized the language model’s parameters using a RoBERTa‑wwm‑based model pre‑trained
on Chinese corpora. The dimensions of ek and h(i)k are both 768, where i∈ [1, 12].
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Figure 3b presents the architecture of a classification head. We use a fully connected
neural network consisting of two linear layers and a softmax function to predict the prob‑
ability of an input text belonging to a specific S2 cell. The LeakyReLU activation function
connects the two linear layers.

Weutilize the embedding of the [CLS] token outputted by the final layer of the encoder
as a classification feature for the entire sentence. This feature is separately fed into the three
classification heads to facilitate the prediction of different levels of S2 cells. This process is
defined as follows:

y1
L = σ

(
W1

Lh12
cls + b1

L

)
(3)

pL = so f tmax
(

W2
Ly1

L + b2
L

)
(4)

where y1
L denotes the first linear layer output of the classifier of level L and pL represents

the probability that the query text belongs to each S2 cell of level L. W(n)
L and b(n)L denote

the parameters of the nth linear layer in the classification head of level L, and σ represents
the activation function.

We optimized the PTMLG parameters by minimizing the cross‑entropy loss, which
was calculated using the following formula:

LCE = −
C

∑
n=1

qnlog(pn) (5)

where C represents the number of categories, qn represents the label of the nth category,
and pn represents the predicted probability of the nth category.

During the training phase, we simultaneously predict the level‑11, level‑12, and level‑
13 S2 cells to which the input text belongs. The average of the cross‑entropy losses at
different levels is then computed to serve as the overall loss function for the entire geodesic‑
grid‑prediction network.

Ltotal = w1LCE11 + w2LCE12 + w3LCE13 (6)

Here, LCE11, LCE12, and LCE13 denote the cross‑entropy losses at levels 11, 12, and 13,
respectively, and w1, w2, and w3 areweight factors that are used to balance the contributions
of the loss functions. Considering level 13 as the primary region and levels 11 and 12 as
supporting regions, we assignweights of 0.1, 0.2, and 0.7 to levels 11, 12, and 13, respectively.

3.2.3. Multi‑Level Joint Inference
To determine the final score for each level‑13 S2 cell, we multiply the predicted prob‑

abilities of the level‑13 cells by the predicted probabilities of the level‑11 and level‑12 cells
in their respective parents. We achieve this by using the aforementioned network to de‑
termine the probability that the query text belongs to each grid at each level during the
prediction phase.

s13 = p11 ∗ p12 ∗ p13 (7)

ŷ = argmax(s13) (8)

Here, s13 denotes the final probability that the query text belongs to each grid of level
13, and ŷ denotes the index of the S2 cell in level 13 to which the query text belongs.

During our experiments, we noticed that some samples located at grid boundarieswere
mistakenly classified into neighboring cells. Because the quality of the candidate POI set re‑
called during the region‑proposal stage directly affects the accuracy of subsequent query
matching, we aimed to maximize the inclusion of true query values in the candidate set.
After obtaining the prediction results for the level‑13 S2 grid, we constructed a buffer zone
with a 1000 m radius to serve as the final candidate region. Subsequent experiments demon‑
strated that this process can further improve the recall of POIs corresponding to a query.
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3.3. Address Matching Based on Semantic Similarity
In the previous subsection, we discussed the prediction of the geographic grid to

which a query text belongs to narrow down the search scope. In this subsection, we in‑
troduce natural language processing techniques for text matching to retrieve the most rel‑
evant records from candidate POIs.

To achieve efficient address matching, we utilized a Bi‑Encoder architecture for ad‑
dressmatching, as illustrated in Figure 4. The Bi‑Encoder consists of two sentence encoders
with shared parameters. These encoders are dedicated to obtaining sentence‑vector repre‑
sentations for query and candidate texts, respectively. The forward inference processes
of the two encoders are the same and operate independently. Similar to the geographic‑
grid‑prediction network, we use a PLM as the underlying feature extractor to capture the
semantic representations of each token in an input text.
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To transform an entire sentence into a fixed‑size embedding for semantic retrieval,
pooling operations are performed. This process yields vector representations u for the
query text and v for the candidate POI text, which are defined as follows:

u = Pooler
({

h(i)k,q

})
(9)

v = Pooler
({

h(i)k,d

})
(10)

where the terms of
{

h(i)k,q

}
represents the semantic representations of the query text, and

the terms of
{

h(i)k,d

}
represents those of the candidate POI, both of which are output by a

pre‑trained language model.
Finally, we use cosine similarity to measure the relevance of queries and candidates

as follows:
sim(u, v) =

u·v
∥u∥∥v∥ . (11)

The final results of address matching are obtained by sorting all candidate POIs based
on cosine similarity.

4. Experiments
In this section, the datasets, evaluation metrics, and implementations used in our ex‑

periments are described.

4.1. Datasets
To evaluate the effectiveness of the proposed method, we collected POI data from

the Chaoyang District of Beijing from 2021. The Chaoyang District is one of the six pri‑
mary urban areas in Beijing, covering an area of 470.8 km2. The original POI data included
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297,400 POIs across various categories such as dining services, residential communities,
popular business districts, and road intersections. Additionally, the data included various
fields such as POI names, addresses, longitudes, and latitudes. The expression forms of
POI addresses vary and include door‑address‑type addresses, spatial‑relationship‑based
addresses, and referential and nested address descriptions. We excluded invalid anddupli‑
cate records, removed special symbols from the POI addresses and names, and converted
numbers and letters into half‑width characters. After preprocessing, 287570 POIs were
retained. We concatenate the names, addresses, and administrative division information
of the POIs into text representations to form a reference database. The average length of
the POI texts was 34.57 characters. We used 95% of the POIs to train the geodesic‑grid‑
prediction model and reserved the remaining 5% for testing.

To simulate real query scenarios, we employed strategies such as toponym abbrevi‑
ations, the removal of redundant information, and swapping address and name orders
for data augmentation of the original POI texts to generate query texts. Several groups of
queries and their corresponding POI texts are listed in Table 1. We manually inspected the
dataset and confirmed that each query corresponds exactly to one correct POI.

Table 1. Examples of POI text data augmentation.

Data Augmentation Methods Raw POI Text Results of Data Augmentation

Synonym replacement
北京国贸商城B2层3B怪兽充电 (China
World Trade Center B2 Level 3B

Monster Charging)

国贸地下2层3B怪兽充电 (Guomao
Underground 2nd Floor 3B

Monster Charging)

Element removal
阜荣街10号首开广场F7层02‑090 (Room
02‑090, Floor F7, Shoukai Plaza, No. 10

Furong Street)

首开广场7层02‑090 (Room 02‑090, Floor
F7, Shoukai Plaza)

Changing address and name order 光华路12号中信大厦 (CITIC Building,
No. 12 Guanghua Road)

中信大厦光华路12号 (No. 12 Guanghua
Road, CITIC Building)

4.2. Metrics
To quantitatively measure the performance of our address‑matching model, we eval‑

uate two aspects: matching performance and positional accuracy. For matching perfor‑
mance, we employed commonly used information‑retrieval metrics, namely Recall@k [27]
and mean reciprocal rank (MRR)@k [28]. Recall@k measures the proportion of queries
for which the top‑k retrieved results contain the corresponding POI. The query address is
deemed a correct match if the corresponding POI is included within the top‑k results re‑
trieved. MRR@k represents the reciprocal of the average rank of the relevant POIs placed
in the top‑k retrieved results and evaluates the ranking quality of the retrieval system. For
positional accuracy, we use “Accuracy@N km” [7] as the evaluation metric, which mea‑
sures the percentage of predicted locations that are apart with a distance less than N km
to their actual physical locations.

4.3. Implementation Details
All experiments were conducted using a single NVIDIA RTX 3090 GPU. We used the

Pytorch (https://pytorch.org/ (accessed on 20 April 2024)) deep learning framework and
transformer library (https://github.com/huggingface/transformers, (accessed on 20 April
2024)) to implement the proposed address‑matching algorithm. For the geodesic‑grid‑
prediction model, we used a batch size of 64 with the Adam optimizer and a peak learning
rate of 5× 10−5 for 30 epochs on the training set. Additionally, we employed a linear learn‑
ing rate scheduler to adjust the learning rate dynamically during the training period. This
involved awarm‑up phase for the first 5% of the epochs, duringwhich the learning rate lin‑
early increased to its peak, followed by a linear decay during the subsequent epochs. In the
vector‑search process, we utilized Faiss [29], a vector‑similarity search library developed
and made open source by a meta‑fundamental artificial intelligence‑research group. Faiss

https://pytorch.org/
https://github.com/huggingface/transformers
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enables rapid and efficient nearest‑neighbor searches in vector sets of any size. Figure 5
shows a line graph of the learning rate and loss changes during training.
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5. Discussion
5.1. Effectiveness of Query Text Region Proposal

We began our investigation by examining how query text region proposals affect
address‑matching accuracy. We compared the matching accuracies of BERT, RoBERTa‑
wwm, RoBERTa‑wwm‑DA, andRoBERTa‑wwm‑CSE,with andwithout the proposedquery
text regions. BERT serves as a classic baseline for PLMs, demonstrating outstanding perfor‑
mance across various natural language processing tasks through the introduction of bidi‑
rectional encoders and masked pre‑training tasks. RoBERTa‑wwm is an improved version
of BERT that employs dynamic masking strategies and whole‑word masking techniques
during pre‑training. Domain‑adaptive pre‑training techniques are widely used for han‑
dling text data in specific domains. RoBERTa‑wwm‑DA was fine‑tuned on the POI text
data using domain‑adaptive pre‑training techniques. RoBERTa‑wwm‑CSE is a variation of
RoBERTa‑wwm trained on POI text data using the unsupervised contrastive learning tech‑
nique from [26]. To ensure fair comparisons, we adopted the first–last average pooling strat‑
egy [30] for BERT, RoBERTa‑wwm, and RoBERTa‑wwm‑DA, motivated by their demon‑
strated higher retrieval accuracy when employing this approach. For RoBERTa‑wwm‑CSE,
the CLS pooling method was employed, aligning with the methodologies outlined in the
original study [26]. The experimental results are presented in Table 2.

Table 2. Address‑matching accuracies of different retrieval models with and without the PTMLG.
The content in parentheses indicates the accuracy improvement after incorporating the PTMLG.

Model Recall@1 Recall@5 Recall@10 MRR@5 MRR@10

BERT

w/o

53.76 62.68 66.57 57.14 57.66
RoBERTa‑wwm 60.05 70.97 75.03 64.18 64.72

RoBERTa‑wwm‑DA 64.53 76.19 80.23 68.96 69.48
RoBERTa‑wwm‑CSE 66.61 78.55 82.53 71.14 71.67

BERT

with PTMLG

55.24 (↑ 1.48 ) 64.61 (↑ 1.93 ) 68.67 (↑ 2.1 ) 58.81 (↑ 1.67 ) 59.35 (↑ 1.69 )
RoBERTa‑wwm 61.59 (↑1.54) 72.85 (↑1.88) 77.03 (↑ 2.00 ) 65.86 (↑ 1.68 ) 66.41 (↑ 1.69 )

RoBERTa‑wwm‑DA 65.08 (↑0.55) 76.66 (↑ 0.47 ) 80.78 (↑ 0.55 ) 69.50 (↑ 0.54 ) 70.05 (↑ 0.57 )
RoBERTa‑wwm‑CSE 68.17 (↑ 1.56 ) 81.09 (↑2.54) 85.43 (↑2.90) 73.07 (↑ 1.40 ) 73.66 (↑ 1.99 )

Matching Performance. Table 2 reveals a noticeable improvement in retrieval accu‑
racy across various models after integrating the query text region‑prediction module. Re‑
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call@1 increased by 0.55 to 1.81 percentage points, Recall@5 increased by 0.47 to 2.54 per‑
centage points, andMRR@5 increased by 0.54 to 1.68 percentage points, validating the effec‑
tiveness of thematching strategy proposed in this paper, which combines query text region
prediction with a semantic‑retrieval model. Among all baseline models, RoBERTa‑wwm‑
CSE exhibited the most significant improvement, with Recall@1 increasing by 1.56 per‑
centage points and Recall@5 increasing by 2.54 percentage points. RoBERTa‑wwm‑DA
exhibited a Recall@1 increase of 0.55 percentage points and a MRR@5 increase of 0.54 per‑
centage points. Although the absolute improvement provided by our method may seem
relatively modest, the significance of this improvement becomes meaningful when consid‑
ering that the accuracy of the PTMLG is not completely accurate, indicating that there is po‑
tential for further refinement. These experimental results demonstrate that our proposed
approach, which combines geographic‑grid prediction and address‑matching models, ef‑
fectively enhances the accuracy of address matching and exhibits a certain degree of gen‑
eralization across different address‑matching models. Additionally, RoBERTa‑wwm‑CSE
with PTMLG outperformed RoBERTa‑wwm‑CSE with a 1.99 percentage‑point increase in
MRR@10, indicating that leveraging the query text region‑prediction model to narrow the
search scope is beneficial for improving ranking performance.

PositionalAccuracy. As shown inTable 3, integrating the query text region‑prediction
module also results in an improvement in positional accuracy across variousmodels. Accu‑
racy@0.5km increased by 1.76 to 5.71 percentage points, and Accuracy@1km increased by
2.17 to 6.67 percentage points. We attribute this to the fact that, by utilizing the geographic‑
grid‑prediction model, we eliminate the interference from POIs that are spatially distant
but semantically similar, significantly enhancing the positional accuracy of the address‑
matching model.

Table 3. Positional accuracies of different retrieval models with and without PTMLG.

Model Accuracy@0.5 km Accuracy@1 km Accuracy@1.5 km Accuracy@2 km

BERT

w/o

87.13 89.65 90.63 91.25
RoBERTa‑wwm 88.45 90.75 91.71 92.28

RoBERTa‑wwm‑DA 92.95 95.06 95.93 96.40
RoBERTa‑wwm‑CSE 88.27 90.36 91.26 91.80

BERT

with PTMLG

92.84 (↑ 5.71 ) 93.62 (↑ 6.67 ) 97.85 (↑ 7.22 ) 98.69 (↑ 7.44 )
RoBERTa‑wwm 93.21 (↑4.76) 96.47 (↑5.72) 98.64 (↑ 6.93 ) 98.99 (↑6.71)

RoBERTa‑wwm‑DA 94.71 (↑1.76) 97.23 (↑ 2.17 ) 98.30 (↑ 2.37 ) 98.75 (↑ 2.35 )
RoBERTa‑wwm‑CSE 93.41 (↑ 5.14 ) 96.30 (↑5.94) 97.76 (↑6.50) 98.60 (↑ 6.80 )

5.2. Explaining Why Query Text Region Proposal Is Helpful
To gain a deeper understanding of the role of query text region proposal in RPAM,

we examined the top‑k POIs retrieved by a single‑stage semantic retriever. As shown in
Table 4, we calculated the S2 cell recall for several baseline models. Successful S2 grid
matching was defined as at least one of the top‑k results returned by the retrieval model
beingwithin the same S2 grid as the true value. In Table 3, one can see that none of the base‑
line models can ensure that the top‑20 retrieved results contain potentially correct results
(POIs in the same grid as the query) when directly using semantic vectors for retrieval, and
that retrieval results will be affected by some targets outside grid ranges. In the retrieved
results of RoBERTa‑wwm, 14.67% of the query top‑1 results were outside the target S2 cell
(the S2 cell to which the query belonged). Although RoBERTa‑wwm‑CSE achieves higher
matching accuracy in single‑stage retrieval experiments, 6.73% of the queries still have top‑
five results that are all located outside the target S2 cell, and 4.83% of the queries still have
top‑ten results that are all located outside the target S2 cell. These results indicate that
the direct use of a single‑stage retriever for semantic address matching may be suscepti‑
ble to interference from false positives outside the grid. Region proposal for query texts



ISPRS Int. J. Geo‑Inf. 2024, 13, 138 12 of 15

spatially eliminates interfering POIs and generates higher‑quality candidates, thereby en‑
hancing the retrieval performance of the address‑matching model.

Table 4. S2 cell recall for single‑stage address matching across various models.

Method Recall@1 Recall@5 Recall@10 Recall@20

BERT 83.39 91.91 93.99 95.82
RoBERTa‑wwm 85.33 92.73 94.47 96.08

RoBERTa‑wwm‑DA 89.99 95.75 97.03 97.94
RoBERTa‑wwm‑CSE 85.68 93.27 95.17 96.54

5.3. Effectiveness of Establishing a Buffer
Figure 6 presents the spatial distribution and heat map of the POI points that were

incorrectly classified when the PTMLG model was used to predict the geodesic grid of
the query texts. A darker color indicates a denser distribution of misclassified samples.
Figure 5a reveals that the misclassified samples were mostly located at grid intersections.
Such points near category boundaries are inherently challenging in machine learning clas‑
sification problems and are prone to misclassification into adjacent grids. Therefore, we
established a buffer zone based on the S2 cell‑prediction results, which expands the search
scope of the query text region proposal. This post‑processing operation incorporates corre‑
sponding points of interest into the candidate set at the retrieval stage, specifically targeting
samples that are prone to misclassification into adjacent grids, which effectively provides
a high‑quality set of candidates for address‑matching models.
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Table 5 presents the effective retrieval rate of the geodesic‑grid prediction results for
different buffer‑zone radii. The effective retrieval rate is the percentage of corresponding
POIs that are included within the candidate set. It is evident that with an increase in the
buffer‑zone radius, the effective retrieval rate gradually improved. However, increasing
the buffer‑zone radius also introduces additional candidates, which is not conducive to
maximizing the effectiveness of the query strategy in terms of narrowing the search scope.
Considering that the improvement introduced by a 1200 m buffer zone is similar to that
introduced by a 1000mbuffer zone, we considered a 1000m radius to represent the optimal
buffer zone.
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Table 5. RPAM effective retrieval rate with different buffer‑zone radii.

Buffer Radius 0 m 100 m 500 m 1000 m 1200 m

Effective retrieval rate 89.47 94.91 97.76 98.52 98.67

6. Conclusions
In this study, we utilized the keyword information in query texts and imitated the

attention mechanism used by humans when using maps, combining the geodesic‑grid‑
prediction task and the address‑matching method for geocoding. We designed a region‑
proposal‑based address‑matching framework called RPAM. RPAM initially predicts the
geographical region to which a query text belongs, eliminating candidates irrelevant to
the query text from a geographical perspective, thereby narrowing the search scope. Sub‑
sequently, we employed a semantics‑based address‑matching model to search for the POI
with the highest similarity to the query text in the vector space. Through comparisons
of baseline methods and in‑depth experimental analyses, we demonstrated that incorpo‑
rating a geodesic‑grid‑prediction model enhances the precision of address matching. Al‑
though the proposed framework enhances the match rate of address matching, future
work is still required. Initially, the geodesic‑prediction model within the proposed region
proposal‑based address‑matching framework utilizes a fixed spatial scale for candidate
regions, but this framework ineffectively manages points of varying densities. This limita‑
tion could be mitigated by implementing an adaptive discretization partition scheme [31].
Another direction for future work involves improving the embedding quality of POI text.
Future research can consider developing specialized methods to enhance the distinguisha‑
bility of POI text embedding. We believe that RPAM provides novel insights for tackling
the address‑matching problem.

Author Contributions: Yizhuo Quan and ChengboWang conceived the idea for the study, designed
the proposed method, and wrote the manuscript Yizhuo Quan and Linlin Liang developed the
address‑matching framework and performed the experiments. Yanyou Qiao, Chengbo Wang, and
Yuanfei Chang served as experts. and provided funding support. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was funded by the National Key Research and Development Program of China
(No. 2022YFC3301603).

Data Availability Statement: The data presented in this research are available on request from the
corresponding author.

Acknowledgments: We thank Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and Ziqing Yang for
making the Chinese RoBERT‑wwm PLM available for download.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

POI point of interest
RPAM region‑proposal‑based address matching
PLM pre‑trained language model
CNN convolutional neural network
BERT bidirectional encoder representations from transformers
RoBERTa robustly optimized BERT pre‑training approach

References
1. Huang, J.; Wang, H.; Sun, Y.; Fan, M.; Huang, Z.; Yuan, C.; Li, Y. HGAMN: Heterogeneous graph attention matching network

for multilingual POI retrieval at Baidu maps. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
D’ata Mining, Singapore, 14–18 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 3032–3040.
[CrossRef]

https://doi.org/10.1145/3447548.3467059


ISPRS Int. J. Geo‑Inf. 2024, 13, 138 14 of 15

2. Chatterjee, A.; Anjaria, J.; Roy, S.; Ganguli, A.; Seal, K. SAGEL: Smart address geocoding engine for supply‑chain logistics. In Pro‑
ceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame,
CA, USA, 31 October–3 November 2016; ACM: New York, NY, USA, 2016; pp. 1–10. [CrossRef]

3. Belcastro, L.; Marozzo, F.; Talia, D.; Trunfio, P.; Branda, F.; Palpanas, T.; Imran, M. Using social media for sub‑event detection
during disasters. J. Big Data 2021, 8, 79. [CrossRef]

4. Milusheva, S.; Marty, R.; Bedoya, G.; Williams, S.; Resor, E.; Legovini, A. Applyingmachine learning and geolocation techniques
to social media data (Twitter) to develop a resource for urban planning. PLoS ONE 2021, 16, e0244317. [CrossRef] [PubMed]

5. Cheng, X.; Yu, B. A rule‑based segmenting and matching method for fuzzy Chinese addresses. Geogr. Geo‑Inf. Sci. 2011, 27, 26–29.
6. Hu, X.; Zhou, Z.; Li, H.; Hu, Y.; Gu, F.; Kersten, J.; Fan, H.; Klan, F. Location Reference Recognition From Texts. arXiv 2022.

[CrossRef]
7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
8. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
9. Kuai, X.; Guo, R.; Zhang, Z.; He, B.; Zhao, Z.; Guo, H. Spatial Context‑Based Local Toponym Extraction and Chinese Textual

Address Segmentation from Urban POI Data. ISPRS Int. J. Geo‑Inf. 2020, 9, 147. [CrossRef]
10. Lai, Q.; Khan, S.; Nie, Y.; Shen, J.; Sun, H.; Shao, L. Understanding More about Human and Machine Attention in Deep Neural

Networks. arXiv 2020. [CrossRef]
11. Wing, B.; Baldridge, J. Simple supervised document geolocation with geodesic grids. In Proceedings of the 49th Annual Meet‑

ing of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2011; pp. 955–964.

12. Roller, S.; Speriosu, M.; Rallapalli, S.; Wing, B.; Baldridge, J. Supervised Text‑Based Geolocation Using Language Models on
an Adaptive Grid. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, Jeju Island, Republic of Korea, 12–14 July 2012; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2012; pp. 1500–1510.

13. Santos, J.; Anastácio, I.; Martins, B. Using machine learning methods for disambiguating place references in textual documents.
GeoJournal 2015, 80, 375–392. [CrossRef]

14. Gritta, M.; Pilehvar, M.T.; Collier, N. Which Melbourne? Augmenting geocoding with maps. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018;
Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 1285–1296. [CrossRef]

15. Kulkarni, S.; Jain, S.; Hosseini, M.J.; Baldridge, J.; Ie, E.; Zhang, L. Spatial Language Representation with Multi‑Level Geocoding.
arXiv 2020. [CrossRef]

16. Yan, Z.; Yang, C.; Hu, L.; Zhao, J.; Jiang, L.; Gong, J. The integration of linguistic and geospatial features using global context
embedding for automated text geocoding. ISPRS Int. J. Geo‑Inf. 2021, 10, 572. [CrossRef]

17. Lin, Y.; Kang, M.; Wu, Y.; Du, Q.; Liu, T. A deep learning Architecture for semantic address matching. Int. J. Geogr. Inf. Sci. 2020,
34, 559–576. [CrossRef]

18. Shan, S.; Li, Z.; Qiang, Y.; Liu, A.; Xu, J.; Chen, Z. DeepAM: Deep semantic address representation for address matching. In
Web and Big Data; Shao, J., Yiu, M.L., Toyoda, M., Zhang, D., Wang, W., Cui, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; Volume 11641, pp. 45–60. ISBN 978‑3‑030‑26071‑2. [CrossRef]

19. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation ofWord Representations in Vector Space. arXiv 2013. [CrossRef]
20. Li, F.; Lu, Y.; Mao, X.; Duan, J.; Liu, X. Multi‑task deep learning model Based on hierarchical relations of address elements for

semantic address matching. Neural Comput. Applic. 2022, 34, 8919–8931. [CrossRef]
21. Shen, Y.; Liu, J. Comparison of text sentiment analysis based on Bert and Word2vec. In Proceedings of the 2021 IEEE 3rd

International Conference on Frontiers Technology of Information and Computer (ICFTIC), Virtual, 12–14 November 2021; IEEE
Publications: Greenville, SC, USA, 2021; pp. 144–147. [CrossRef]

22. Devlin, J.; Chang, M.‑W.; Lee, K.; Toutanova, K. BERT: Pretraining of Deep Bidirectional Transformers for Language Under‑
standing. arXiv 2019. [CrossRef]

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.
arXiv 2023. [CrossRef]

24. Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre‑training with whole word masking for Chinese BERT. IEEE/ACM Trans. Audio
Speech Lang. Process. 2021, 29, 3504–3514. [CrossRef]

25. Gururangan, S.; Marasović, A.; Swayamdipta, S.; Lo, K.; Beltagy, I.; Downey, D.; Smith, N.A. Don’t stop pretraining: Adapt
language models to domains and tasks; Association for Computational Linguistics. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 8342–8360. [CrossRef]

26. Gao, T.; Yao, X.; Chen, D. SimCSE: Simple Contrastive Learning of Sentence Embeddings. arXiv 2022. [CrossRef]
27. Qu, Y.; Ding, Y.; Liu, J.; Liu, K.; Ren, R.; Zhao, W.X.; Dong, D.; Wu, H.; Wang, H. RocketQA: An optimized training approach

to dense passage retrieval for open‑domain question answering. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; Association
for Computational Linguistics: Stroudsburg, PA, USA, 2021; pp. 5835–5847. [CrossRef]

28. Zhao,W.X.; Liu, J.; Ren, R.;Wen, J.‑R.Dense Text Retrieval Based onPretrainedLanguageModels: A Survey. arXiv 2022. [CrossRef]

https://doi.org/10.1145/2996913.2996917
https://doi.org/10.1186/s40537-021-00467-1
https://doi.org/10.1371/journal.pone.0244317
https://www.ncbi.nlm.nih.gov/pubmed/33534801
https://doi.org/10.48550/arXiv.2207.01683
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.3390/ijgi9030147
https://doi.org/10.1109/TMM.2020.3007321
https://doi.org/10.1007/s10708-014-9553-y
https://doi.org/10.18653/v1/P18-1119
https://doi.org/10.48550/arXiv.2008.09236
https://doi.org/10.3390/ijgi10090572
https://doi.org/10.1080/13658816.2019.1681431
https://doi.org/10.1007/978-3-030-26072-9_4
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1007/s00521-022-06914-1
https://doi.org/10.1109/ICFTIC54370.2021.9647258
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.48550/arXiv.2104.08821
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.1145/3637870


ISPRS Int. J. Geo‑Inf. 2024, 13, 138 15 of 15

29. Douze, M.; Guzhva, A.; Deng, C.; Johnson, J.; Szilvasy, G.; Mazaré, P.‑E.; Lomeli, M.; Hosseini, L.; Jégou, H. The Faiss Library.
Available online: https://github.com/facebookresearch/faiss (accessed on 17 February 2024).

30. Li, B.; Zhou, H.; He, J.; Wang, M.; Yang, Y.; Li, L. On the Sentence Embeddings from Pretrained Language Models. arXiv 2020.
[CrossRef]

31. Weyand, T.; Kostrikov, I.; Philbin, J. Planet‑photo geolocation with convolutional neural networks. In Proceedings of the 2016
the IEEE/CVF European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 37–55.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/facebookresearch/faiss
https://doi.org/10.48550/arXiv.2011.05864

	Introduction 
	Related Work 
	Geodesic-Grid Prediction 
	Address Matching 

	Methods 
	Overview 
	Query Text Region Proposal 
	Multi-Level Partitioning Using S2 Geometry 
	Geodesic-Grid-Prediction Model 
	Multi-Level Joint Inference 

	Address Matching Based on Semantic Similarity 

	Experiments 
	Datasets 
	Metrics 
	Implementation Details 

	Discussion 
	Effectiveness of Query Text Region Proposal 
	Explaining Why Query Text Region Proposal Is Helpful 
	Effectiveness of Establishing a Buffer 

	Conclusions 
	References

