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Abstract: Promoting walking is crucial for sustainable development and fosters individual health and
well-being. Therefore, comprehensive investigations of factors that make walking attractive are vital.
Previous research has linked streetscapes at eye-level to walking preferences, which usually focuses
on simple linear relationships, neglecting the complex non-linear dynamics. Additionally, the varied
effects of streetscape factors across street segments and intersections and different street structures
remain largely unexplored. To address these gaps, this study explores how eye-level streetscapes
influence walking preferences in various street segments and intersections in Setagaya Ward, Tokyo.
Using street view data, an image survey, and computer vision algorithms, we measured eye-level
streetscape factors and walking preferences. The Extreme Gradient Boosting (XGBoost) model was
then applied to analyze their non-linear relationships. This study identified key streetscape factors in-
fluencing walking preferences and uncovered non-linear trends within various factors, showcasing a
variety of patterns, including upward, downward, and threshold effects. Moreover, our findings high-
light the heterogeneity of the structural characteristics of street segments and intersections, which also
impact the relationship between eye-level streetscapes and walking preferences. These insights can
significantly inform decision-making in urban streetscape design, enhancing pedestrian perceptions.

Keywords: non-linear; eye-level streetscape; walking preference; Tokyo

1. Introduction

In many high-density cities across Asia, such as Tokyo, promoting active transporta-
tion, particularly walking, is a pivotal strategy for urban development. This initiative
aims to reduce reliance on private vehicles and foster sustainable development [1]. At the
individual level, promoting walking has immense significance due to its profound impact
on public health. Studies have shown that walking is a readily adoptable activity that
effectively mitigates the risks associated with chronic conditions, such as type 2 diabetes [2],
cardiovascular disease [3], and hypertension [4]. Moreover, encouraging walking stimu-
lates economic growth, fosters social cohesion, and boosts property values [5,6]. These
aspects emphasize the comprehensive benefits of promoting walking as a fundamental
urban strategy.

The effectiveness of initiatives designed to encourage walking relies on identifying
factors that impact street safety, comfort, and attractiveness [7–9]. Therefore, comprehen-
sive investigations of factors affecting walking appeal are essential for devising effective
strategies to encourage walking and amplify its positive effects at both the personal and
community levels.

Eye-level streetscapes have recently become a focal point of research as micro-scale
walkability factors, primarily because they are closer to human perceptions and can be
modified more cost-effectively and easily than macro-scale factors [10]. Numerous studies
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have explored the relationship between eye-level streetscape factors and walking pref-
erences and behaviors, primarily using linear analysis models [11–15]. However, these
studies have overlooked the complex and multi-dimensional nature of this relationship,
which frequently exhibits non-linear characteristics in real-world contexts. Nevertheless,
comprehensive research on the non-linear impact of eye-level streetscape factors on walk-
ing preferences is scarce. This limits our understanding of how the eye-level environment
shapes pedestrian perceptions. A holistic approach that considers these complex relation-
ships is essential for creating walkable, enjoyable, and safe urban spaces. Furthermore,
streets can be classified into two distinct sections based on their morphological and func-
tional characteristics: street segments and intersections. These classifications have already
been incorporated into existing walkability evaluation indexes [10,16]. However, the dis-
tinct effects of streetscape factors on walking preferences within these two sections remain
inadequately explored. Moreover, streets of different structural categories exhibit unique
configurations of elements, and their influence on walking preferences has also not been
thoroughly discussed [15,17].

Therefore, this study explored the non-linear impact of eye-level streetscape factors
on walking preferences in Japan, focusing on Tokyo’s Setagaya Ward. This study posed
the following research questions: do eye-level streetscape factors exhibit non-linear asso-
ciations with walking preferences? Furthermore, is there variability in how streetscape
factors influence walking preferences across different categories of street segments and
intersections? To address these questions, we utilized street-view big data, computer
vision techniques, and a machine-learning regression algorithm. Our research provides
valuable insights that could influence decision-making in the design of urban streetscapes
to promote pedestrian perceptions.

2. Literature Review

Many studies have focused on identifying the factors that affect walkability and
individual preferences for walking-friendly environments. Fundamental factors often
include macro-scale factors, such as urban form characteristics (i.e., density, diversity,
and design) [18], as well as destination accessibility and proximity to transit systems [19].
However, the focus on immediate eye-level factors is growing due to their cost efficiency
and simpler modifications compared to macroscale factors [10]. These factors, including
street width, building height, architectural style, greenery, pedestrian-focused design, street
furnishings, and other fine-grained elements, enhance the aesthetic and functional qualities
of streetscapes [20]. These factors are pivotal in shaping key urban design characteristics,
including imageability, sense of enclosure, human scale, and transparency [10]. Several
assessment tools were designed to measure the walkability and health characteristics of
local environments based on the existing research findings. These tools include the Irvine
Minnesota Inventory (IMI) [16], Microscale Audit of Pedestrian Streetscapes (MAPS) [10],
Analytic Audit Tool and Checklist Audit Tool [21], Healthy Aging Network [22], Walking
Suitability Assessment Form (WSAF) [23], PIN3 Neighborhood Audit Instrument [24],
Neighborhood Sidewalk Assessment Tool (NSAT) [25], and a set of indices specifically
focused on high-density Asian contexts [26,27].

Studies have comprehensively evaluated the impact of diverse streetscape factors
on pedestrians and explored the interplay between these factors. For instance, Gallimore
et al. [28] examined the link between walk-friendly routes to educational institutions and
the frequency of walking among students in neighborhood settings. They identified certain
IMI factors [16], particularly those of eye-level streetscapes, that were correlated with
increased instances of students walking to school. Numerous studies have investigated how
streetscapes affect pedestrian perceptions and experiences [17,29–31]. Built environment
characteristics at the eye-level shape feelings of safety, comfort, and interest, thereby
modifying pedestrian behavior [29,32]. Borst et al. [33] proposed that the visual appeal
of streets for pedestrians is influenced by three primary elements: cleanliness, aesthetic
appeal, and the presence of pedestrian activities. Harvey et al. [17] noted that streets
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bordered by buildings and greenery are typically perceived as safer than open and bare
ones. Asgarzadeh et al. [30,31] revealed a preference for low-rise buildings over high-rise
ones among pedestrians. Similarly, Agrawal et al. [34] focused on individuals commuting
to railway stations and observed that, while safety and visual appeal were influential, the
most critical factor was route directness. Li et al. [35] suggested that the presence of green
spaces could mitigate crime and boost pedestrians’ perceived security. Rodrigue et al. [36]
highlighted the various determinants of perceived walkability in the built environment
depending on the purpose of the trip.

However, these studies have failed to fully consider the intricate underlying inter-
relations among the built environment, walking behavior, and perceptions. To address
this gap, research has increasingly employed machine learning methods to unearth com-
plex, non-linear associations between these variables. For instance, Yin et al. [37] explored
the non-linear dynamics of various walking objectives. Tao et al. [38] used non-linear
approaches to examine the impact of built environments on active commuting and walk-
ing patterns among older adults. Similarly, Cheng et al. [39] investigated the non-linear
influences on walking duration among older adults. Furthermore, Wu et al. [40] analyzed
the non-linear interactions between streetscape attributes and the propensity for school
walking in Hong Kong. Nevertheless, despite the growing body of work, studies focusing
on the non-linear relationships between eye-level streetscape factors and their effects on
walking preferences, particularly those considering variations in street morphologies and
structures, remain relatively scarce.

3. Materials and Methods
3.1. Case Study Site and Study Scope

Tokyo is a high-density urban area with a substantial reliance on rail-based public
transportation, enhancing pedestrian experiences and perceptions is a pivotal component
of the city’s spatial development strategy. This study focused on Setagaya Ward, a highly
populous area situated on the southwestern edge of Tokyo (Figure 1). Setagaya is well
served by extensive and efficient rail networks (Figure 2a). These networks guarantee swift
transit of trains to major hubs, such as Shinjuku, Shibuya, and other districts of Tokyo. The
ward also has diverse land-use patterns, integrating residential, commercial, and industrial
zones (Figure 2b). This varied urban landscape, combined with its high population density
and superior transportation facilities, makes Setagaya an exemplary model for studying
walkability in urban environments [41].
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3.2. Study Scope

To delineate the scope of our study and subjects of investigation, we followed the
established methodologies to divide the streets into two main components: street segments
and intersections [10,16]. This division considers their unique morphological features and
roles in facilitating pedestrian perception and movement. Segments refer to the linear
portions of streets, encapsulating the vibrancy of street life, whereas intersections refer to
the pivotal points of traffic flow and direction change.

To gain a more nuanced understanding of whether differences in the street structure
affect the relationship between streetscapes and walking preferences, we further classified
street segments and intersections into distinct categories. We drew upon the Road Structure
Ordinance [42] and research conducted by Neighborhood Street Research Group [43],
Kato and Kanki [15], and Nagata et al. [15] in Japanese contexts and utilized street width
classes as the criteria for the classification. Through the utilization of width classification
information in street network centerlines of the Digital Road Map (DRM), we discerned
three categories of streets within Tokyo’s Setagaya Ward accessible to pedestrians. These
categories are delineated by width thresholds: streets with widths equal to or exceeding
13 m, between 5.5 and less than 13 m, and between 3 and less than 5.5 m. Each category
corresponds to a specific type of street segment: arterial, collector, and local [15,44]. For
street intersections, we employed a similar classification approach: intersections where
arterial streets intersect were defined as arterial street intersections, those where collector
streets intersect were termed collector street intersections, and those where local streets
intersect were designated as local street intersections. Table 1 records detailed descriptions
for each classification.

In Figure 3, the various categories of street segments (Figure 3a) and intersections
(Figure 3b) within the Setagaya ward were mapped.
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Table 1. The categorization of street segments and intersections based on their width classes.

Category Width Definition Example

Street Segments

Arterial street
segment W ≥ 13 m

Arterial streets constitute the
basic framework of national
road transportation as public
roads, with the majority
including bicycle lanes and
pedestrian sidewalks.
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3.3. Analysis Framework

Figure 4 illustrates the study framework. We collected walking preference data using
an online crowdsourced survey. These data were instrumental in training the deep learning
models, which were then used to predict walking preferences throughout the street seg-
ments and intersections in Setagaya Ward. Subsequently, we identified and quantified the
factors related to eye-level streetscapes in both segments and intersections by employing
panoptic segmentation [45] combined with Geographic Information System (GIS) methods.
Finally, we utilized an Extreme Gradient Boosting (XGBoost) [46] machine learning model
to analyze the complex influences of eye-level streetscape factors on walking preferences,
with street segments and intersections as distinct categories.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 7 of 27 
 

 

learning model to analyze the complex influences of eye-level streetscape factors on walk-

ing preferences, with street segments and intersections as distinct categories. 

 

Figure 4. Analysis framework. 

3.4. Data Preparation 

We used Google Street View (GSV) images as the data source. We began by using 

street network centerlines from the DRM, setting a 30 m interval for collecting GSV images 

and their corresponding coordinates using QGIS version 3.22.3. This interval was selected 

based on Gehl’s [47] concept of the human scale of outdoor urban spaces. Using this ap-

proach, we captured approximately 50,000 panoramic images at selected coordinates, in-

cluding approximately 46,000 representing street segments and approximately 4000 fo-

cusing on street intersections. Subsequently, we converted these panoramas into front-

view images to simulate an eye-level perspective. In this study, individual street view 

images were used as the units of analysis. 

3.5. Dependent Variables: Walking Preference Scores 

In recent years, deep learning methodologies have become increasingly prominent in 

environmental perception analysis. Our research applied a deep learning method that 

blends pairwise image comparison data with deep convolutional neural networks to pre-

dict walking preference scores [48]. This technique, tested by Ordonez et al. [49] and 

Dubey et al. [50], has undergone continuous refinement and application in subsequent 

studies [48,51–53], further enhancing its efficacy and applicability in the field. 

Our approach is grounded in the empirical foundation of existing research and in-

cludes three vital stages: (1) preparing image survey data, (2) collecting preference opinions 

through a pairwise image comparison survey, and (3) training the inference model. This 

structured approach allows us to make extensive inferences and accurately predict walking 

preference scores by utilizing individual street-view images as the input for scoring. 

3.5.1. Image Survey Data Preparation 

To develop a model capable of predicting walking preference scores, compiling a 

training dataset that includes image survey data and the corresponding preference labels 

from individuals is essential. To prepare our image survey data, we meticulously chose 

1000 images that reflect the streetscape characteristics of street segments and 200 images 

Figure 4. Analysis framework.



ISPRS Int. J. Geo-Inf. 2024, 13, 131 7 of 25

3.4. Data Preparation

We used Google Street View (GSV) images as the data source. We began by using street
network centerlines from the DRM, setting a 30 m interval for collecting GSV images and
their corresponding coordinates using QGIS version 3.22.3. This interval was selected based
on Gehl’s [47] concept of the human scale of outdoor urban spaces. Using this approach,
we captured approximately 50,000 panoramic images at selected coordinates, including
approximately 46,000 representing street segments and approximately 4000 focusing on
street intersections. Subsequently, we converted these panoramas into front-view images
to simulate an eye-level perspective. In this study, individual street view images were used
as the units of analysis.

3.5. Dependent Variables: Walking Preference Scores

In recent years, deep learning methodologies have become increasingly prominent
in environmental perception analysis. Our research applied a deep learning method
that blends pairwise image comparison data with deep convolutional neural networks to
predict walking preference scores [48]. This technique, tested by Ordonez et al. [49] and
Dubey et al. [50], has undergone continuous refinement and application in subsequent
studies [48,51–53], further enhancing its efficacy and applicability in the field.

Our approach is grounded in the empirical foundation of existing research and in-
cludes three vital stages: (1) preparing image survey data, (2) collecting preference opinions
through a pairwise image comparison survey, and (3) training the inference model. This
structured approach allows us to make extensive inferences and accurately predict walking
preference scores by utilizing individual street-view images as the input for scoring.

3.5.1. Image Survey Data Preparation

To develop a model capable of predicting walking preference scores, compiling a
training dataset that includes image survey data and the corresponding preference labels
from individuals is essential. To prepare our image survey data, we meticulously chose
1000 images that reflect the streetscape characteristics of street segments and 200 images
that illustrate the streetscape features of intersections from our collected street-view image
dataset. During the selection process, we considered the image’s representativeness to en-
sure its ability to reflect diverse street hierarchies and intersection scenarios. Subsequently,
we randomly paired these selected survey images, creating pairs in which each image was
matched with the other images ten times. This process generated 10,000 image pairs for
street segments and 2000 for street intersections.

We then adapted the image comparison sets to an interactive interface optimized for
use on mobile devices (Figure 5a). The respondents were presented with two questions
designed for a comparative analysis of street segments and intersections: “Which street
segment is preferable for walking?” and “Which street intersection is preferable for walk-
ing?” Moreover, comparative levels were measured using a five-point scale: “Upper image
is much better than Bottom image”, “Upper Image is somewhat better than Bottom image”,
“Both are the same”, “Bottom image is somewhat better than Upper image”, and “Bottom
image is much better than Upper image”.

3.5.2. Walking Preference Surveying

In February 2023, a survey involving pairwise image comparisons was conducted
among volunteer participants of diverse ages and genders living in Japan, facilitated by
a professional survey company. Approximately 18,000 anonymous respondents were re-
cruited. Each comparison pair received responses from 10 different respondents. The
highest number of responses from a single individual was 120, whereas the lowest number
was one. In total, we collected over 120,000 responses with an average of 6.6 responses
per respondent. The survey successfully achieved a balanced representation of gen-
der and age among the respondents, ensuring that the results accurately reflected the
broader population.
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3.5.3. Prediction-Model Training

Two distinct models were trained to predict walking preferences for street segments
and intersections. The training data consisted of image pairs of street segments and inter-
sections used in the image surveys along with the corresponding comparative preference
scores gathered as labels. The training data were divided into two parts: 60% for training
and 40% for validation. First, image pairs were processed using a CNN with ConvNeXt
V2 [54] as the backbone for feature extraction. Meanwhile, the survey scores corresponding
to the image comparisons were transformed into a binary classification label. Subsequently,
the extracted features were then introduced into a Deep Neural Network (DNN) to generate
two predicted scores. We calculated the differences between these scores to facilitate binary
classification and model training. Subsequently, we applied a sigmoid function to map this
difference to the range of 0–1. This transformation enabled us to minimize the loss function
by comparing the predicted values with the pre-processed labels obtained from an online
image survey. The detailed architecture of this model is illustrated in Figure 5b.

This approach led to the development of two distinct prediction models, which demon-
strated accuracy rates of 81.3% (street segments) and 82.0% (street intersections) (Figure 5c).
These accuracies reflected the proportion of correctly predicted samples among the total
number of samples. During the model training phase, we did not consider creating separate
models for different genders and age groups due to concerns that splitting the training data
might reduce the accuracy of the predictive models.

3.5.4. Prediction Model Application

We utilized the trained models to predict the GSV scores across the street segments
and intersections in Setagaya Ward. They were then normalized within their respective cat-
egories using the z-score method for subsequent regression analysis. Figure 6 illustrates the
spatial mapping of preference scores for street segments of different categories, arranged in
descending order from warm to cold based on color. Figure 6a,c,e depicts street scenes with
high predicted preference scores based on arterial street segments, collector street segments,
and local street segments, respectively. Meanwhile, Figure 6b,d,f illustrate examples with
lower predicted scores based on the aforementioned three categories of segments.
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Figure 7 shows the preference-mapping pattern for street intersections. Figure 7a,c,e
show the intersection scenes that received relatively high scores based on arterial street in-
tersections, collector street intersections, and local street intersections, whereas Figure 7b,d,f
show the intersection scenes that received relatively low scores on the aforementioned
three categories of intersections.
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3.6. Independent Variables: Eye-Level Streetscape Factors
3.6.1. Selection of Eye-Level Streetscape Factors

We drew on existing research to select the independent variables for our study. Many
studies, including those by Handy et al. [20] and Harvey and Aultman-Hall [17], have
suggested that eye-level streetscapes can be categorized into two groups: (1) the skeleton
of streetscapes and (2) finer streetscape details. The first group concentrates on the street’s
skeletal configuration, which Handy et al. [20] describe as “three-dimensional features
along a street, bounded by buildings”. The second group focuses on finer streetscape factors,
such as pedestrian facilities, street furniture, and detailed architectural features [10,16].

This study referenced and utilized a skeletal-detail framework to select eye-level
streetscape factors. For skeletal variables in street segments, in line with our focus on
discontinuous perception, we concentrated on variables that reflected the cross-sectional
characteristics, including street-to-building and sidewalk-to-roadway ratios [55]. For street
intersections, we selected the number of legs and average crossing distance [10] as skeletal
variables. Our selection of detailed streetscape variables for both street segments and
intersections was primarily guided by variables found in classical eye-level walkability
assessment indexes and existing computer vision-based eye-level streetscape analyses.
From which we derived factors encompassing elements depicting major static streetscape
features, such as walls [15,40], sidewalks [10,16,26,40], elevated viaducts [40], and road-
ways [10,16,40], along with associated facilities, like mailboxes, street lights [10,16,26,40],
benches [10,16,26], trees [10,16,26,40], shrubs [40], awnings [16,26,40], trash cans [10,26],
crosswalks [10,16,26], and traffic lights [10,16,26,40]. Additionally, dynamic components,
such as pedestrians [15,40], riders [15], and vehicles [15,48], have been acknowledged
for their influence on visual preference, as they significantly shape perceptions of safety
(e.g., through the presence of “eyes on the streets” or effects on traffic congestion) and
comfort (e.g., through the presence of eyes on the streets or effects on traffic congestion)
and comfort [26]. Considering that integrating dynamic factors as control variables within
the model can help mitigate potential perceptual biases and since our research does not
aim to conduct a systematic audit of street walkability, dynamic variables have also been
included in the variable selection process.

Ultimately, we identified two skeletal factors and 20 detailed factors for street segments
and two skeletal factors and 16 detailed factors for street intersections (Tables 2 and 3).

3.6.2. Quantification of Eye-Level Factors

An increasing number of studies have utilized street-view imagery and computer
vision techniques to quantify streetscape factors, thereby facilitating automated and large-
scale quantitative analyses [26]. This study used deep-learning-based computer vision
algorithms to analyze the GSVs and quantify selected variables. For streetscape factors
with continuous or non-countable attributes, such as elevated viaducts, walls, trees, and
sidewalks, we computed pixel view indices. The pixel view index of a streetscape factor is
commonly defined as the ratio of its pixels to all pixels within a GSV [40,56], as described
in Equation (1).

Vobj =
∑n

i=1 Pixelobj

∑n
i=1 Pixeltotal

, obj ∈ {tree, crosswalk, sidewalk, etc} (1)

where Vobj is the view index, ∑n
i=1 Pixelobj is the number of pixels of the streetscape fac-

tor, and ∑n
i=1 Pixeltotal is the total number of pixels. This ratio reflects the proportion of

streetscape variables in a pedestrian’s eye-level view.



ISPRS Int. J. Geo-Inf. 2024, 13, 131 11 of 25

Table 2. Eye-level streetscape factors of street segments.

No Variable Description Data
Source

Mean Std

Arterial Collector Local Arterial Collector Local

Skeletal streetscape
1 Street-to-building ratio Ratio of the street view index to

the building view index GSV 0.894 0.712 0.387 0.544 0.609 0.379

2 Sidewalk-to-roadway ratio Ratio of the sidewalk view index
to the roadway view index GSV 0.252 0.285 0.234 0.150 0.239 0.272

Detailed streetscape

3 Elevated viaduct view index
Proportion of pixels of the
elevated viaduct category in the
image.

GSV 0.005 0.013 0.002 0.030 0.059 0.022

4 Wall view index Proportion of pixels of the wall
category in the image. GSV 0.010 0.026 0.041 0.017 0.036 0.041

5 Fence view index Proportion of pixels of the fence
category in the image. GSV 0.023 0.031 0.038 0.019 0.038 0.044

6 Sidewalk view index Proportion of pixels of the
sidewalk category in the image. GSV 0.038 0.030 0.012 0.020 0.024 0.019

7 Roadway view index Proportion of pixels of the
roadway category in the image. GSV 0.145 0.118 0.181 0.025 0.033 0.026

8 Tree view index Proportion of pixels of the tree
category in the image. GSV 0.176 0.098 0.088 0.116 0.113 0.108

9 Shrub view index Proportion of pixels of the shrub
category in the image. GSV 0.024 0.037 0.053 0.026 0.045 0.062

10 Grass view index Proportion of pixels of the grass
category in the image. GSV 0.001 0.003 0.001 0.005 0.010 0.008

11 Number of street stores Number of street stores detected
in the image. GSV 0.718 0.652 0.155 1.025 1.018 0.656

12 Number of utility poles Number of utility poles detected
in the image. GSV 3.015 3.536 3.323 1.879 2.135 1.748

13 Number of street lights Number of street lights detected
in the image. GSV 0.989 0.883 0.597 0.817 0.894 0.699

14 Bike lane view index Proportion of pixels of the bike
lane category in the image. GSV 0.001 0.001 0.001 0.004 0.004 0.002

15 Number of benches Number of benches detected in
the image. GSV 0.010 0.003 0.003 0.100 0.058 0.065

16 Number of trash-cans Number of trash-cans detected in
the image. GSV 0.020 0.032 0.054 0.150 0.198 0.254

17 Number of awnings Number of awnings detected in
the image. GSV 0.029 0.018 0.007 0.169 0.156 0.089

18 Number of mailboxes Number of mailboxes detected in
the image. GSV 0.002 0.009 0.025 0.050 0.099 0.160

19 Number of banners Number of banners detected in
the image. GSV 0.125 0.097 0.045 0.394 0.374 0.258

20 Number of riders Number of riders detected in
the image. GSV 0.263 0.162 0.075 0.553 0.435 0.291

21 Number of vehicles Number of vehicles detected in
the image. GSV 4.119 2.911 1.748 2.066 2.203 1.594

22 Number of pedestrians Number of pedestrians detected
in the image. GSV 0.898 0.606 0.367 1.136 1.010 0.758

Skeletal streetscape factors, street-to-building ratios, and sidewalk-to-roadway ratios
were calculated based on pixel statistics. The street-to-building ratio was calculated as the
ratio of the sum of pixels of vertical elements, such as buildings and walls, to the sum of
pixels of sidewalks, roadway, people, and vehicles on them. This method, as shown in
Equation (2), has been outlined in previous studies [55].

Vsb =
∑n

i=1 Pixelsidewalk + ∑n
i=1 Pixelroadway + ∑n

i=1 Pixelperson + ∑n
i=1 Pixelvehicle

∑n
i=1 Pixelbuilding + ∑n

i=1 Pixelwall
(2)

where Vsb is the visual ratio of street-related pixels to building-related pixels; and
∑n

i=1 Pixelsidewalk, ∑n
i=1 Pixelroadway, ∑n

i=1 Pixelperson, ∑n
i=1 Pixelvehicle, ∑n

i=1 Pixelbuilding, and
∑n

i=1 Pixelwall are the total pixels of the sidewalk, roadway, person, vehicle, building, and
wall categories, respectively.

The sidewalk-to-roadway ratio was calculated by comparing the sum of the pixels of
the sidewalk and pedestrians with the sum of the pixels of the roadway and vehicles, as
shown in Equation (3).

Vsr =
∑n

i=1 Pixelsidewalk + ∑n
i=1 Pixelperson

∑n
i=1 Pixelroadway + ∑n

i=1 Pixelvehicle
(3)

where Vsr is the visual ratio of sidewalk-related pixels to roadway-related pixels; and
∑n

i=1 Pixelsidewalk, ∑n
i=1 Pixelroadway, ∑n

i=1 Pixelperson, and ∑n
i=1 Pixelvehicle are the total pixels

of sidewalk, roadway, person, and vehicle categories, respectively.
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Table 3. Eye-level streetscape factors of street intersections.

No Variable Description Data
Source

Mean Std

Arterial Collector Local Arterial Collector Local

Skeletal streetscape

1 Average crossing distance

Mean length that pedestrians
need to cover to traverse the
intersection from one side to
the other.

DRM 3.342 2.133 1 1.215 0.931 0

2 Number of legs
Total count of segments that
intersect at a particular
crossing point.

DRM 3.709 3.677 3.488 0.550 0.528 0.513

Detailed streetscape

3 Elevated viaduct view index
Proportion of pixels of the
elevated viaduct category in
the image.

GSV 0.040 0.013 0.003 0.106 0.058 0.028

4 Corner space view index Proportion of pixels of the corner
space category in the image. GSV 0.033 0.033 0.020 0.018 0.021 0.017

5 Fence view index Proportion of pixels of the fence
category in the image. GSV 0.015 0.021 0.030 0.017 0.025 0.033

6 Crosswalk view index Proportion of pixels of the
crosswalk category in the image. GSV 0.033 0.023 0.003 0.027 0.021 0.010

7 Curb ramp view index Proportion of pixels of the curb
ramp category in the image. GSV 0.002 0.002 0.001 0.001 0.002 0.001

8 Number of vehicle traffic lights Number of vehicle traffic lights
detected in the image. GSV 1.118 0.709 0.042 0.891 0.922 0.270

9 Number of pedestrian
traffic lights

Number of pedestrian traffic
lights detected in the image. GSV 0.610 0.428 0.018 0.780 0.775 0.164

10 Bike lane view index Proportion of pixels of the bike
lane category in the image. GSV 0.001 0.001 0.001 0.003 0.004 0.005

11 Number of stop lines Number of stop lines detected in
the image. GSV 0.348 0.334 0.305 0.496 0.507 0.493

12 Number of street lights Number of street lights detected
in the image. GSV 0.877 0.751 0.674 0.711 0.770 0.727

13 Tree view index Proportion of pixels of the tree
category in the image. GSV 0.069 0.071 0.088 0.074 0.084 0.102

14 Shrub view index Proportion of pixels of the shrub
category in the image. GSV 0.012 0.025 0.048 0.020 0.033 0.052

15 Grass view index Proportion of pixels of the grass
category in the image. GSV 0.001 0.001 0.001 0.003 0.006 0.007

16 Number of riders Number of riders detected in
the image. GSV 0.465 0.269 0.105 0.707 0.548 0.345

17 Number of vehicles Number of vehicles detected in
the image. GSV 3.903 2.585 1.620 1.848 1.942 1.471

18 Number of pedestrians Number of pedestrians detected
in the image. GSV 1.069 0.751 0.458 1.213 1.092 0.842

Although pixel statistics are effective for computing certain streetscape factors, they are
less suited for quantifying discontinuous and countable streetscape factors, such as benches
and street lights. Therefore, specifying the precise numbers offers clear explanations and
practical guidance for design purposes [26].

To simultaneously extract both pixel- and quantity-based features from images, we
utilized a panoptic segmentation algorithm [45]. Unlike semantic segmentation, panoptic
segmentation not only provides pixel counts for each category but also identifies and
counts individual instances within these countable categories. This dual capability enables
a comprehensive and detailed image analysis.

We trained a model capable of inferring streetscape variables from images based on
the Mask2Former structure [57] using a ResNet50 backbone [58]. The training dataset used
was Mapillary Vistas v2.0 [59], which encompassed a comprehensive set of 124 feature
categories (116 categories for panoptic segmentation). This training dataset was carefully
selected due to its ability to effectively encapsulate most of the selected variables, which was
central to the focus of this study. Moreover, we used a pre-trained panoptic segmentation
model, also based on the Mask2Former structure but trained on the ADE20K dataset [60],
to extract pixel values for indicators, including the view index of trees, shrubs, and grasses,
and number-counting information, such as awnings.

Figure 8 shows the results of the panoptic segmentation applied to the images. These
images were segmented based on models trained using both the Mapillary Vistas v2.0
(Figure 8a,b) and the ADE20K dataset (Figure 8c,d).
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In addition to using GSV data, we utilized DRM data as a supplementary resource
to quantify variables, such as leg numbers and the average crossing distance. To calculate
the leg numbers, which represent the total number of segments intersecting at a specific
crossing point, we counted the number of segments converging at each intersection point.
For calculating the average crossing distance, which represents the difficulty people face
when crossing streets in intersection areas, we measured the average number of drive lanes
of the segments intersecting at the intersections. To facilitate this calculation, we retrieved
the lane count classification from the DRM, which included four levels within the study
area. We then assigned scores ranging from 1 to 4 to represent the gradation from the
lowest to the highest level of the drive lane classification and calculated the average score
to characterize the average crossing distance.

3.7. XGBoost Regression Analysis

For the regression analysis, we utilized the XGBoost machine learning algorithm [46]
to explore the influence of eye-level streetscape factors on walking preferences.

XGBoost is a software library designed to be highly efficient in terms of computational
speed and model performance by providing parallel-tree boosting. It optimizes Gradient
Boosting Decision Tree (GBDT) training and dramatically improves the computational
speed and model performance by conducting distributed computing. It attempts to ac-
curately predict target variables by combining a set of simpler and more fragile model
estimates. While this model performs better than its counterparts, it may encounter chal-
lenges, such as overfitting or the misjudgment of component weights, when exposed to a
limited number of samples or certain model-specific factors.

XGBoost modeling provided two key insights. First, the relative importance of each
predictor was identified, totaling 100%, using the mean-decreasing impurity. The Mean
Decrease Gini method, based on the Gini impurity index [61], quantifies the effect of each
independent variable on the dependent variable. Second, the model generated partial
dependence plots (PDPs). These plots illustrate the relationship between a given predictor
and the predicted walking preferences, considering interactions with other predictors.
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4. Results
4.1. Results of XGBoost Model Training

This study was conducted using Python within the PyCharm Integrated Development
Environment, version 2022.0.2. We employed the XGBRegressor module from the XGBoost
library for our regression analysis, aiming to train separate models to explore the non-linear
impacts of eye-level streetscape factors on walking preferences across various categories of
street segments and intersections. To ensure the performance of the models, we employed
GridSearchCV from scikit-learn to adjust the parameters. Table 4 presents an overview of
the optimal parameter configurations for all models. We used the pseudo-R-squared as the
assessment metric to evaluate the training performance of the models. In total, six models
were developed. Among them, three models focused on street segments—specifically
arterial street segments, collector street segments, and local street segments—with R-
squared values of 0.38, 0.41, and 0.31, respectively. The other three models targeted
intersections connected to arterial streets, collector streets, and local streets, achieving
R-squared values of 0.35, 0.39, and 0.29, respectively.

Table 4. XGBoost model training parameters and results.

Arterial
(Segment)

Collector
(Segment)

Local
(Segment)

Arterial
(Intersection)

Collector
(Intersection)

Local
(Intersection)

Gamma 0 0.1 0.1 0.1 0 0.1
Learning_rate 0.01 0.1 0.1 0.01 0.01 0.01
Max_depth 4 3 5 4 4 4
Min_child_weight 3 1 3 5 3 5
n_estimators 200 300 300 300 300 300
Pseudo R2 0.38 0.41 0.31 0.35 0.39 0.29

4.2. Results for Relative Importance

Figure 9 delineates the relative importance of eye-level streetscape variables in pre-
dicting walking preferences across street segments. As depicted in Figure 9, skeletal and
detailed streetscape factors based on arterial street segments, collector street segments, and
local street segments explain 12.042% and 87.958%, 19.333% and 80.667%, and 26.273% and
73.727% of the variance, respectively.

Specifically, for arterial street segments, the roadway view index was a key factor,
with a significant impact of 8.847%, followed by the tree view index (8.529%) and elevated
viaduct view index (7.657%). Other significant variables included the number of street
stores (7.428%) and number of street lights (7.325%). In terms of collector streets, the
most influential variables impacting walking preferences were the street-to-building ratio
(14.850%), tree view index (14.154%), number of street stores (11.505%), elevated viaduct
view index (9.416%), and sidewalk view index (4.822%). For local streets, in addition
to the street-to-building ratio, tree view index, and number of street stores, the shrub
view index and number of utility poles are also key influencing factors. Conversely,
the presence of trash cans, mailboxes, and awnings exerted a lesser effect on walking
preferences across nearly all categories of segments, indicating their lower predictive power
for walking preferences.

In the analysis of street intersections (Figure 10), we observed that the proportions of
skeletal factors and detail factors at intersections linked to arterial streets, collector streets,
and local streets were found to be 8.791% and 91.209%, 5.035% and 94.965%, and 13.64%
and 86.36%, respectively.

For arterial street intersections, the elevated viaduct view index was the most influ-
ential factor, accounting for an importance of 16.046%. This was closely followed by the
tree view index at 15.483% and crosswalk view index at 6.884%. These three factors also
stand out as key determinants for collector street intersections. Meanwhile, at local street
intersections, the predominant factors included the number of intersection legs (13.638%),
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the grass view index (9.383%), and the crosswalk view index (8.397%). In contrast, across all
categories of intersections, factors, such as the number of stop lines, riders, and pedestrian
traffic lights, had a considerably lower impact on walking preferences.
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4.3. PDP Results

The PDP depicts a fine-grained analysis of the relationship between independent and
dependent variables. For each plot, the X-axis shows the distribution and variation of the
independent variable, and the Y-axis represents the level of walking preference.
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4.3.1. Skeletal Streetscapes in Segment Sections

Figure 11 illustrates the non-linear effects of skeletal streetscape factors on walking
preferences within street segments. The plot revealed an inverted U-shaped pattern for
the street-to-building ratio based on arterial street segments (Figure 11a). When the ratio
ranged from 0.5 to approximately 1.3, a positive correlation with the walking preference
was observed. However, when the ratio exceeded 1.3, the positive impact began to plateau,
indicating a diminishing influence on the walking preference. Furthermore, when the
ratio exceeded 3, walking preferences were adversely affected. This observed pattern
can be compared with studies examining the distance-to-height (D/H) ratio [62], which
contrasts the street width with building height. This non-linear trend is not unique to
arterial street segments but is also observed in other segment categories, suggesting that
certain skeletal factors have a universal impact on walking preferences across different
categories of street segments.
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Another skeletal streetscape factor, the sidewalk-to-roadway ratio (Figure 11b), dis-
played a threshold effect as well, particularly on collector streets and arterial streets. The
beneficial effects on walking preferences increase until the ratio reaches around 0.5 for both
arterial and collector street segments, after which the marginal benefits significantly decline.
This indicates that there is an optimal proportion of the sidewalk width to roadway width
based on arterial and collector street segments that encourages pedestrian preferences,
beyond which the added value decreases. However, variations in the sidewalk-to-roadway
ratio have a less pronounced impact on walking preferences for local streets.

4.3.2. Detailed Streetscapes in Street Segments

Figure 12 shows the influence of detailed streetscape factors on walking preferences
across different categories of street segments. Initially, several factors reveal consistent
patterns that either enhance or discourage walking in specific street categories. For instance,
the increase in street stores (Figure 12a) on both arterial and collector streets demonstrated
a predominantly positive effect, indicating that when this factor is more visible, it makes
walking more attractive. Likewise, the visibility of the roadway (Figure 12b) has a reliably
positive effect on the walking preference on local street segments, despite displaying a
different trend in the other segment categories. On the other hand, factors, like the fence
(Figure 12c), wall (Figure 12d), and elevated viaduct view index (Figure 12e), tend to
discourage walking across almost all segment categories, indicating an overall negative
impact on the desire to walk.
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Additionally, we observed clear threshold effects for some detailed streetscapes. Fac-
tors, like the tree view index (Figure 12f) and sidewalk view index (Figure 12g), on arterial
street segments and collector street segments show an inverted L pattern. Specifically,
enhancing the visibility of trees to around 0.32 on arterial, 0.31 on collector, and 0.35 on
local street segments has a positive effect on people’s preference to walk. However, after
reaching these visibility levels, the additional advantage of more tree visibility for walking
preferences markedly diminishes (Figure 12f). For the sidewalk view index (Figure 12g),
on arterial and collector street segments, visibility within the range of 0.06 to 0.07 and from
0 to 0.06 positively influences walking preferences. Beyond these ranges, any increase
in visibility does not have a significant impact. However, the trend in variations in the
sidewalk view on local street segments shows a different trend (Figure 12g), presenting a
left-slanted L pattern in its impact on walking preferences. This left-slanted L pattern is
also observed in factors, such as the number of vehicles (Figure 12h) across all segment
categories and the number of utility poles (Figure 12i) on arterial street segments.

Moreover, an inverted U-shaped pattern can be identified in certain detailed streetscape
factors, such as the shrub view index (Figure 12j) based on collector and local street seg-
ments and the number of pedestrians (Figure 12k) based on collector street segments.
Regarding the shrub view index (Figure 12j), changes in visibility within the ranges of
0–0.15 for collector street segments and 0–0.2 for local street segments positively influence
walking preferences. However, surpassing these tipping points leads to a negative im-
pact on walking preferences. The number of pedestrians (Figure 12k) on collector street
segments has a positive influence on walking preferences up to a count of eight, after
which it starts to have a negative effect, highlighting a balance point beyond which more
pedestrians become a deterrent rather than an encouragement to walk on collector streets.
Other factors that exhibit a similar pattern include the roadway view index (Figure 12b)
based on arterial and collector street segments and the number of street stores (Figure 12a)
based on local street segments.

4.3.3. Skeletal Streetscapes in Street Intersections

Figure 13 depicts the impact of skeletal streetscape factors on walking preferences
at street intersections of varying categories. For arterial street intersections, the average
crossing distance (Figure 13a) showed a generally decreasing preference for walking, indi-
cating that larger average crossing distances are associated with lower walking preference.
Conversely, for collector street intersections, a greater crossing distance tends to enhance
walking preferences, up to a score of 2.7. However, for local street intersections, this
variable did not vary because the values at this category of intersections were consistent.
Therefore, it did not have an impact on walking preferences. Regarding the number of
intersection legs (Figure 13b), a notable inverted-L pattern was observed based on local
street intersections. Intersections with four legs have been observed to positively influence
walking preferences. However, an increase beyond this number does not contribute to
further enhancements in walking preferences. A different trend is observable for both
arterial and collector street intersections, where the presence of four legs also acts as a
tipping point. Beyond this level, an increase in the number of legs is found to have a
negative impact on walking preferences, a trend that is particularly pronounced for arterial
street intersections.

4.3.4. Detailed Streetscapes in Street Intersections

In the detailed streetscape analysis of street intersections, factors, such as the cross-
walk view index (Figure 14a), across intersections of all categories exhibited an overall
positive correlation with walking preferences, reflecting that the number of marked cross-
ings was positively correlated with perceived safety levels [63,64]. Conversely, factors,
like the number of vehicles (Figure 14b), at intersections interacting at collector streets
exhibited a contrasting trend, showing that a higher presence of vehicles negatively impacts
walking preferences.
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Factors, such as the curb ramp view index (Figure 14c), the number of street lights
(Figure 14d), and the corner space view index (Figure 14e), exhibited inverted L-shaped
patterns in relation to walking preferences. Specifically, the curb ramp view index exhibited
a positive correlation within specific ranges: from 0 to 0.002 at arterial and collector
street intersections, and from 0 to 0.001 at local street intersections; however, beyond
these thresholds, the marginal effect was significantly diminished. This trend can be
understood as the strategic positioning of curb-ramp visibility at intersection corners aiding
the transition from the sidewalk to street level [63] and offered accessible routes for people
with physical disabilities, as well as for those using shopping carts or strollers [65]. However,
an excessive visibility of the ramp facility did not bring additional benefits. Additionally, a
left-slanted L pattern can also be identified in some detailed factors, such as the elevated
viaduct view index (Figure 14f), which exhibits a decreasing trend within specific ranges
and then leveling off across all categories of intersections. This trend diverges from the
pattern observed along street segments, where the elevated viaduct view index (Figure 12e)
tends to exhibit a nearly negative correlation with walking preferences on street segments.

Regarding factors, such as the fence view index (Figure 14g), an inverted U-pattern can
be detected. Specifically, the observed trend indicated a significant positive correlation with
walking preferences within specific ranges: from 0.04 to 0.07 for arterial street intersections,
and from 0 to 0.04 for collector street intersections. However, when the value exceeded the
tipping points, the positive influence began to diminish and a negative correlation emerged,
suggesting nuanced interplay between perceived safety and the desire for unrestricted
movement around intersections. While a moderate number of safe barriers improves
perceived safety and positively influences walking preferences, an excess can lead to
negative perceptions. This adverse effect is likely due to the feelings of restriction or
confinement that the barrier creates, particularly at local street intersections. In addition,
this trend was markedly different from that observed for street segments (Figure 12c).
Other factors exhibiting an inverted U-pattern include the tree view index (Figure 14h) and
shrub view index (Figure 14i) across all categories of intersections.
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5. Discussion

The results of this study are important for guiding design practices aimed at creating
pedestrian-friendly street environments. First, pinpointing critical factors is vital for de-
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ciding which streetscape factors to prioritize for design intervention. By acknowledging
these key variables, urban planners can optimize resource utilization, minimize waste, and
significantly improve the overall efficiency of city development.

Existing studies have highlighted numerous key eye-level factors in street segment
sections that can influence walking preferences, such as the street-to-building ratio [55],
number of street stores [66–68], and roadway view index [40]. Similarly, for street intersec-
tions, factors, such as the crosswalk view index [63,64], elevated viaduct view index [64],
and number of legs [63,64], have been identified as key variables affecting pedestrian
behavior and preferences. Our study underscores the significance of these factors but goes
further by incorporating the heterogeneity of the street structure into our analysis. By
categorizing streets into three categories for analysis, we have unearthed deeper insights.
Our investigation reveals that while there are common effects of eye-level streetscape
factors on walking preferences across different segment and intersection categories, sig-
nificant differences also exist. For instance, within street segments, factors, such as the
roadway, tree, and elevated viaduct view index, are crucial in influencing walking pref-
erences on arterial streets (Figure 9). However, for collector and local streets, the key
variables that predict walking preferences shift to the street-to-building ratio, tree view
index, and the number of street stores. By highlighting these key factors, tailored to various
street categories in practical design initiatives, an opportunity arises to improve pedestrian
experiences and perceptions. This is achieved through the implementation of more precise
and context-sensitive design strategies.

Second, our study employed PDPs to uncover potential non-linear trends across
various streetscape factors, unveiling diverse patterns, such as upward, downward, and
threshold effects. By observing these patterns, planners and designers can discern the
optimal range for design interventions. For street segments, some streetscape factors show-
ing an upward trend in relation to walking preferences, like street stores on arterial and
collector street segments (Figure 12a), indicate that future urban renovations and design
projects could enhance walkability by promoting ground-level small businesses along
arterial and collector streets. For local street segments, integrating an appropriate number
of stores can similarly contribute to increasing pedestrian activity and enhancing interest
in walking. Conversely, the presence of elevated viaducts consistently undermines walk-
ing preferences, affecting both street segments (Figure 12e) and intersections (Figure 14f)
negatively. Strategies aimed at mitigating their impact—such as burying these structures
or improving their permeability—should be considered to enhance walkability. Acknowl-
edging threshold effects is vital for urban planners and designers, as it allows them to
precisely adjust the number of specific streetscape factors and establish the most suitable
extent for interventions. In this study, the findings suggest that enhancing tree visibility on
streets of all categories up to a certain threshold can optimally boost the walking preference
(Figure 12f). However, beyond this level, further improvements in tree visibility cease to
yield additional benefits. These insights are consistent with established research [69]. These
findings not only demonstrate the superiority of non-linear approaches but also provide
designers with the necessary tools to precisely determine the optimal scale and intensity of
design interventions.

Third, our research uncovers that while shared trends exist in the non-linear influence
of eye-level streetscape factors on walking preferences across different categories of street
segments and intersections, such as the effects of the wall view index (Figure 12d), elevated
viaduct view index (Figure 12e), and tree view index (Figure 12f) on street segments,
and the impacts of the crosswalk view index (Figure 14a), shrub view index (Figure 14i),
and the number of street-lights (Figure 14d) at intersections, notable differences are also
evident. For example, the sidewalk view index along street segments (Figure 12g) shows
an initial increase followed by a plateauing trend based on arterial and collector streets,
indicating an inverted L-shaped pattern. However, on local streets, sidewalk visibility
tends to negatively correlate with walking preferences. This phenomenon can be attributed
to the fact that in Japan, local streets often lack sidewalks and are subject to regulatory
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limits on traffic flow and speed, leading residents to become accustomed to freely walking
on any part of the road [44]. Consequently, the introduction of sidewalks on local streets
might be perceived as an impediment to the freedom of walking. Conversely, on arterial
and collector streets, the high volume of vehicular traffic prompts a desire for dedicated
and adequately wide pedestrian sidewalks, aligning with existing research findings [68].
Identifying these heterogeneous trends aids designers in more accurately and contextually
applying non-linear statistical results in their work.

Last, our study revealed that the same factors can elicit different perceptual responses
in street segments and intersections, as evidenced by factors, such as the fence view in-
dex (Figures 12c and 14g). This discovery underscores the significance of discerning
and conducting a comprehensive examination of how various streetscapes affect walk-
ing preferences within different morphological street sections when formulating street
design strategies.

6. Conclusions

This study aimed to unravel the intricate and non-linear relationships between eye-
level streetscape factors and individual walking preferences. This study used the XGBoost
regression method and importance plots to identify the relative importance of eye-level
streetscape factors across different street categories and sections that influence walking
preferences. Furthermore, by employing PDP, this study illustrated the non-linear trends
of streetscape factors in street segments and intersections of various categories, aiding the
identification of optimal design intervention thresholds for promoting walking preference.
These insights offer planners and designers the opportunity to craft specific intervention
strategies for different categories of street segments and intersections. Ultimately, this
study contributes significantly to the advancement of evidence-based and context-sensitive
designs for pedestrian-friendly environments that promote a healthy lifestyle.

This study had several limitations. First, this study focused on walking preferences
and desires. However, the role of streets as places is also critically important. Future
research should consider both the function of streets as pathways and as places, as well
as the impact of the streetscape on each of these roles. Second, our analysis explored the
heterogeneity among street segments and intersections, along with different structural
categories. However, it fell short of thoroughly investigating the effects of land use dif-
ferences and other more detailed contextual factors on eye-level streetscape variations
and their impact on walking preferences. Future research should aim to integrate these
contextual variances. Last, this study’s reliance on street view imagery from vehicular
perspectives to simulate human visual perception may introduce bias due to differences in
the street structure, viewpoint elevation, and vehicular movement patterns. To mitigate
this limitation and more accurately reflect the pedestrian experience, subsequent research
should strive to include imagery data collected from pedestrian viewpoints.
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